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Preface 
With increasing worldwide emphasis on asset sustainability, there is a trend toward Condition-
Based Maintenance (CBM) approaches, and the broader approach of Reliability-Centred 
Maintenance (RCM). These approaches require knowledge of structural condition obtained 
through diagnostic systems which detect damage and monitor structural health and/or prognostic 
systems which predict the future health of a structure. Structural Health Monitoring (SHM) is the 
enabler for these critical capabilities and involves the rapid interrogation of a structure, generally 
using structurally integrated transducers, to diagnose the current state of health. 
Structural Health Monitoring is multi-disciplinary. For it to be successfully developed and 
implemented in a useful timeframe requires constructive interaction across a diverse spectrum of 
academics, researchers, original equipment manufacturers (OEMs) and end-users such as 
industry and military operators. Basic and applied research is necessary to develop and 
demonstrate SHM concepts and systems that can satisfy stringent sensitivity, reliability, and 
confidence requirements. 
The task of the OEMs and end-users is to define the problem, establish the requirements and the 
practical limitations, and to assist in developing the business case for such technologies. These 
interactions will enable the ‘technology pull’ required to facilitate rapid implementation of the 
technologies rather than relying on ‘technology push’ alone. The 9th Asia-Pacific Workshop on 
Structural Health Monitoring (9APWSHM), 7th to 9th December 2022, Cairns, Queensland, 
Australia, brings together academics and researchers, and end-users from Asia, Australia, North 
America, South America, and Europe to facilitate this interaction. These peer-reviewed papers, 
assessed on technical originality and significance, reflect an impressive breadth and depth of 
contribution from across this SHM community. 
We wish to thank the following sponsors for their contribution to the success of 9APWSHM: 

• Defence Science and Technology Group (DSTG) 
• Department of Mechanical and Aerospace Engineering, Monash University  
• US Navy Office of Naval Research – Global (ONR-Global) 
• USAF Asian Office for Aerospace Research and Development (USAF, AOARD) 
• Polytec/Warsash Scientific 
• 1 MILLIKELVIN Pty Ltd 
• Aerospace (Open Access Journal in MDPI) 

The Organising Committee wishes to acknowledge the contribution of one of our founding co-
chairs, Dr Steve Galea, Defence Science and Technology Group. Dr Galea was the driving force 
behind the Inaugural Australasian Workshop in Structural Health Monitoring, Melbourne in 
2002, and its transition to the Asia-Pacific Workshop on Structural Health Monitoring in 2006. 
We are very grateful to Dr Galea for his leadership, service, and support to this conference over 
many years and wish him all the best for his future endeavours. 
We wish also to express our gratitude to the reviewers, contributors, and participants, without 
whom 9APWSHM would not have been possible. A special thanks to the Secretariat, Mr Dat 
Bui. His tireless effort in keeping things on track has been crucial to the success of this 
workshop. 
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Vibration monitoring of railway bridge pier and  
probability of scour occurrence  

Daigo Kawabe1, a and Chul-Woo Kim1, b *  
1C1-183, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, Japan 

akawabe.daigo.2r@kyoto-u.ac.jp, bkim.chulwoo.5u@kyoto-u.ac.jp 

Keywords: Ambient Vibration, Bridges, Natural Frequency, Probability, Railway, Scour 
Detection 

Abstract. This study aims to propose a way to estimate probability of scour occurrence of a 
railway bridge pier by means of ambient vibration monitoring. A remote real-time scour 
monitoring scheme utilizing ambient vibrations of piers is considered as an alternative method for 
conventional impact test. A stochastic approach to deal with uncertainty of estimated frequencies 
caused by relatively poor signal to noise of the ambient vibration is discussed. The probability 
distribution of the identified frequencies in a normal condition is modeled with a stable 
distribution, and the probability of scour occurrence is estimated using a logistic curve. The 
validity of proposed method is verified using monitoring vibration data during swollen river water 
period in the past.  
Introduction 
Scour that undermines bridge foundations during flooding caused by increasing chances of heavy 
rainfall due to climate change is one of the major threats of bridges crossing rivers. Japanese 
railway companies conduct impact tests in which a weight is dropped and hit the target pier to 
excite the pier, and its natural frequency is identified for the purpose of assessing occurrence of 
scour. Although it gives bridge owners quantitative information for its structural stability, it is time 
and labor consuming method. Furthermore, it is inapplicable during the swollen river water (SRW) 
period because of difficulties to approach the pier for the safety reason. 

This study thus investigates a real-time vibration monitoring for scour detection during SRW 
period as an alternative method for the conventional impact test. Tri-axial accelerometers with 
power supply equipment were installed on top of a railway bridge pier, and the monitored vibration 
data is transmitted to a cloud computing system via Wi-Fi [1]. This study also proposes a way of 
estimating the probability of scour occurrence from ambient vibration monitoring. Since train 
operation would be suspended when the water level is high, it is more convenient to utilize ambient 
vibrations for scour assessment during SRW period than to utilize train-induced vibrations. It is 
noteworthy that the amplitude of ambient vibrations of the bridge pier is usually weak and easily 
affected by noise, which indicates the necessity of considering uncertainties in ambient vibration-
based scour assessment. Therefore, stochastic system identification and statistical approach are 
necessary to consider the scour assessment by means of ambient vibration. 

To estimate mean and standard deviation of the natural frequency of the target pier, a Fast 
Bayesian FFT [2] is adopted in the real-time monitoring. The identified mean frequencies in a 
normal condition are accumulated, and the probability density function (PDF) of the stable 
distribution is estimated by means of maximum likelihood estimation (MLE) because the stable 
distribution was well fitted to the identified mean frequencies. In order to estimate the probability 
of scour occurrence, the logistic curve is modelled based on the PDF and the Japanese guideline 
[3].   
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Fig. 1 Monitoring railway bridge pier. 

 
Fig. 2 Remote monitoring system. 

Target Bridge Pier and Monitoring System 
The target bridge is a steel plate girder railway bridge with a single railway track, and the span 
length of the bridge is 22.5m. The monitoring pier is one of its piers with the height of 9m and 
width of 3m as shown in Fig.1. The sampling frequency of the sensors is 200Hz. For a real-time 
scour assessment, the remote monitoring system shown in Fig. 2 was deployed at the bridge. A 
long-term vibration monitoring was started in September 2017. Fig.3 shows the sensor deploying 
map for the impact test and ling-term monitoring. 
Reference Natural Frequency of the Target Pier 
Modal properties of the target pier such as frequency, damping ratio and mode vector were first 
identified from the vibration data during the impact test. During the impact test, 13 sensors were 
installed on the pier and connected girders to distinguish the pier-oriented mode with the girder 
modes. Stochastic subspace identification (SSI) [4] was utilized to identify modal parameters for 
the impact test, and the stabilization diagram (SD) [5] was used to decide steady vibration modes.  

Fig. 4 shows the SD, where the horizontal axis indicates the frequency and the vertical axis 
shows the model order. The black dots indicate the modal frequencies associated with each model 
order, and the red circles on it indicate the steadily estimated modes which are satisfied with the 
predefined deviation tolerance of the modal properties. The frequency deviation tolerance was 0.25 
Hz, that for the damping ratio was 0.1%, and the lower bound of modal assurance criteria (MAC) 
was 0.95. Those tolerances were decided by a trial and error since there are no specific rule for 
deciding the tolerance. The vertical blue dashed line in Fig. 4 refers to the dominant mode that 
satisfies the tolerance. Dominant frequency was 9.2 Hz from the impact test as shown in Fig. 4. It 
is relevant to the transversal rocking mode of the monitoring pier as shown in Fig. 5. The frequency 
for the rocking mode is called target frequency in this study. 

For the scour assessment during in-service, it needs vibration data from both normal river water 
(NRW) period and SRW period. This study focuses on microtremor (ambient vibration) of the 
bridge pier as the source of the reference frequency samples. Fig. 6 shows examples of those 
microtremors at the NRW period and during SRW period. Microtremor measurement whose 
amplitude was less than 0.1 gal was observed during the NRW period (see Fig. 6a)) which is 
assumed as a healthy state, while during SRW period it was around 1 gal (see Fig. 6b)) caused by 
rising water and increasing speed of river’s flow.  

For the discussion in the latter chapter, PDF of identified frequencies at NRW period is 
investigated. A histogram of identified frequencies is shown in Fig. 7 with the PDF curve of the 
stable distribution depicted in the blue solid line. It is noted that the previous research [6] figured 
out that tails in the stable distribution match better than those in the normal distribution. The 
parameters of PDF of the stable distribution during NRW period were estimated by means of MLE 
and the values of the equation (1) were obtained. 
  



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 1-7  https://doi.org/10.21741/9781644902455-1 

 

 
3 

𝑋𝑋~𝑆𝑆𝑁𝑁(𝛼𝛼𝑁𝑁 = 1.58,𝛽𝛽𝑁𝑁 = 0.71, 𝛾𝛾𝑁𝑁 = 0.21, 𝛿𝛿𝑁𝑁 = 9.21) (1) 

where 𝛼𝛼𝑁𝑁 ,𝛽𝛽𝑁𝑁, 𝛾𝛾𝑁𝑁,𝛿𝛿𝑁𝑁 represent characteristic exponent, skewness parameter, scale parameter and 
location parameter, respectively. It should be noted that the mean value 𝑓𝑓𝑁𝑁 of the stable distribution 
is given by the equation (2). 

𝑓𝑓𝑁𝑁 = 𝛿𝛿𝑁𝑁 − 𝛽𝛽𝑁𝑁𝛾𝛾𝑁𝑁 tan �𝜋𝜋𝛼𝛼𝑁𝑁
2
� = 9.32 (2) 

The cumulative probability density function (CDF) of the stable distribution is also shown in 
Fig. 8 (blue line) with observed CDF (empirical CDF) curve. It is obvious that the CDF curve of 
the stable distribution matches well with that of observed CDF (orange line) especially at tail of 
the CDF. 
 

a)  b)  
Fig. 3 Sensor deploying location:  

a) for the impact test, and  
b) for the long-term vibration monitoring. 

 

 
Fig. 4 Stabilization Diagram. 

 
Fig. 5 Identified mode shapes (9.2Hz). 

 

a)  

b)  
Fig. 6 Measured microtremors:  

a) normal river water period, and  
b) swollen river water period. 
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Table 1. Scour Index [3]. 

Scour Index Category Assessment 
𝜅𝜅 ≤ 0.70 A1 Scour: repair or reinforcement are needed 

0.70 < 𝜅𝜅 ≤ 0.85 A2 Need to check the progress of scour 
0.85 < 𝜅𝜅 ≤ 1.00 B Low probability of scour 

1.00 < 𝜅𝜅 S Healthy  

Scour Assessment using Scour Index 
The scour index that shown in Table 1 is used to detect scour during SRW period. The scour 
index 𝜅𝜅 is calculated by the equation (3) [3]. 

𝜅𝜅 = 𝑓𝑓𝑠𝑠
𝑓𝑓ℎ

 (3) 

where, 𝑓𝑓𝑠𝑠 is observed frequency during SRW period, and 𝑓𝑓ℎ is the target frequency during NRW 
period under healthy condition. From Table 1, it can be seen that repair or reinforcement are needed 
when the observed frequency is less than 70% of the target frequency under healthy condition. 
Therefore, 70% of the target frequency of healthy condition, 𝑓𝑓𝑎𝑎1, is used as the threshold for scour 
occurrence in this study to make discussions simple. Using the value of equation (2), 𝑓𝑓𝑎𝑎1 is equal 
to 6.57Hz. 
Probability of Scour Occurrence 
During SRW period, the probability of scour occurrence given the identified frequency 𝑓𝑓𝑠𝑠, P(𝜃𝜃𝑆𝑆), 
can be treated as a binary classification. Therefore, the probability of non-scour occurrence given 
the identified frequency 𝑓𝑓𝑠𝑠, P(𝜃𝜃𝑁𝑁), can be calculated by the following equation (4). 

 P(𝜃𝜃𝑁𝑁) = 1 − P(𝜃𝜃𝑆𝑆) (4) 

 
Fig. 9. The logistic curve to estimate the probability of scour occurrence. 

 
Fig. 7 Histogram of observed frequency of the 

pier in normal condition (bars) and PDF of 
the stable distribution (blue line). 

 
Fig. 8  CDF of the observed frequency in 

normal condition (orange line), and CDF of 
the stable distribution (blue line). 
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The P(𝜃𝜃𝑆𝑆) could be close to zero if 𝑓𝑓𝑠𝑠 were over 𝑓𝑓ℎ, while P(𝜃𝜃𝑆𝑆) would be close to 1 if 𝑓𝑓𝑠𝑠 is close 
to less than 𝑓𝑓𝑎𝑎1. Therefore, the logistic regression formulated by the equation (5) is adopted to 
model the probability of scour occurrence.  

𝑞𝑞 = 1
1+𝑒𝑒−𝑧𝑧

 (5) 

where 𝑧𝑧 is the linear predictor of the identified frequency 𝑋𝑋 at the NRW condition as random 
variables. Here, 𝑧𝑧 can be expressed as equation (6) based on the logistic distribution. 

z = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 (6) 

where 𝛽𝛽0 and 𝛽𝛽1 are unknown parameters which can be estimated by means of MLE in this study.  
The parameters of PDF of stable distribution during swollen water period, 𝑆𝑆𝑆𝑆 is shown in the 

equation (7). 

𝑋𝑋~𝑆𝑆𝑆𝑆(𝛼𝛼𝑆𝑆,𝛽𝛽𝑆𝑆, 𝛾𝛾𝑆𝑆, 𝛿𝛿𝑆𝑆) (7) 

Assuming that 𝛿𝛿𝑆𝑆 corresponding to the identified frequency would decrease while other parameters 
would not be changed, the CDF of 𝑆𝑆𝑆𝑆, Ψ(𝑆𝑆𝑆𝑆, 𝑥𝑥) can be written as equation (8)  

Ψ(𝑆𝑆𝑆𝑆, 𝑥𝑥) = Ψ(𝛼𝛼𝑁𝑁 ,𝛽𝛽𝑁𝑁, 𝛾𝛾𝑁𝑁, 𝛿𝛿𝑆𝑆, 𝑥𝑥) (8) 

Based on equation (2), P(𝜃𝜃𝑆𝑆|𝑓𝑓𝑠𝑠) can be expressed as, 

P(𝜃𝜃𝑆𝑆|𝑓𝑓𝑠𝑠) = Ψ(𝑆𝑆𝑆𝑆,𝑓𝑓𝑎𝑎1) = Ψ�𝛼𝛼𝑁𝑁 ,𝛽𝛽𝑁𝑁 ,𝛾𝛾𝑁𝑁 ,𝑓𝑓𝑆𝑆 + 𝛽𝛽𝑁𝑁𝛾𝛾𝑁𝑁 tan �𝜋𝜋𝛼𝛼𝑁𝑁
2
� , 𝑓𝑓𝑎𝑎1� (9) 

Finally, the unknown parameters of the logistic curve can be estimated by means of the MLE and 
the result is shown in the equation (10) and plotted in the Fig. 9. 

P(𝜃𝜃𝑆𝑆|𝑓𝑓𝑠𝑠) = 1
1+𝑒𝑒−(27.61−4.19𝑓𝑓𝑠𝑠) (10) 

Natural Frequencies and Probabilities of Scour Occurrence during SRW Period 
On July 3 in 2019, heavy rainfall was observed at the target bridge region. The water level per five 
minutes from 12:00 September 30 to 12:00 October 1 is shown in Fig. 10a). It should be noted that 
“water level” represents the distance between water surface and lower flange of the bridge girder: 
i.e. as the water surface goes up, the “water level” gets smaller. Monitored ambient vibrations were 
investigated to identify dominant frequency of the target pier during the SRW period by means of 
the fast Bayesian FFT [2]. Plots of the identified frequency per every minute are shown in Fig. 
10b). In the fast Bayesian FFT, the dominant frequency between 7.2Hz and 10.8Hz was identified 
since the target frequency relevant to the rocking mode was around 9.3Hz. 
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a) 

 
b) 

Fig. 10 Observed identified frequencies and water level from 0:00 July 3 to 24:00 July 3: a) 
water level per an hour, and b) identified frequencies 

 
Fig. 11 Time series of the proposed probability of scour occurrence. 

Variation in identified frequencies was quite small during the SRW period, while it was 
scattered during the NRW period. On reason for scattering might be weak signals with low signal 
to noise of the microtremor during the NRW period as shown in Fig. 6a).  

The probability of scour occurrence is estimated using the ambient vibration data monitored 
from 6:00 to 7:00 on July 3th when the water level is the highest. The identified frequency at every 
minute is substituted to the equation (10) and time-series of the proposed probability of scour 
occurrence during the SRW period is summarized in Fig. 11 in which the vertical axis indicates 
the probability of scour occurrence and the horizontal axis does the monitoring time. It can be seen 
that the probabilities are less than 10−4 that means the possibility of scour occurrence is quite low. 
Conclusion 
This study investigates a way of estimating the probability of scour occurrence by means of 
ambient vibration monitoring of the bridge pier during SRW period. The natural frequency of the 
bridge pier was identified with a stochastic system identification method. A way of estimating 
probability of scour occurrence is proposed using the estimated target frequency of the target pier. 
Since the probability of scour occurrence can be treated as a binary classification, this study 
introduces a logistic regression to model the probability of scour occurring. Based on the Japanese 
guideline, threshold of the identified frequency that scour occur is set, and parameters of the 
logistic curve is estimated by means of the MLE. The proposed method is applied to the 
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microtremor data during SRW period, and demonstrated that the probability of scour occurrence 
is quite low. 
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Abstract. This study aims to investigate the applicability of ambient cable vibrations for cable 
tension estimation and the identification uncertainty and effect of EOVs in the long-term SHM of 
cable tensions. An advantage of long-term ambient vibration monitoring is that there is no need to 
close roads for the monitoring campaign once a monitoring system is installed. A disadvantage of 
long-term environmental vibration monitoring is the difficulty in dealing with uncertainties caused 
by environmental and operational variations (EOVs). A Bayesian approach to quantify 
uncertainties in monitoring is thus proposed for the identification of cable tension. Variations of 
the identified cable tension in the short- and long-term monitoring are examined to discuss the 
need for normalization of EOVs in damage detection. Long-term monitoring of the cable-stayed 
bridge showed that it is possible to estimate cable tension using ambient vibration measurements, 
but that the seasonal variation is greater for longer cables than for shorter cables, making it clear 
that a trend component of the seasonal variation needs to be taken into account. 
Introduction 
The cable-stayed bridge, with excellent performance for long-span crossing, has been widely 
constructed around the world. As a crucial component in this structure, the stayed cable is always 
faced with long-term deterioration caused by corrosion, fatigue, etc. For the management and 
maintenance of the cable-stayed bridge, it is of great meaning to conduct the real-time long-term 
SHM in the stayed cables, among which the dynamic characteristics and cable tension are 
acknowledged as two informative features reflecting the condition of cables and bridge. 

Without the request of artificial excitation, ambient-vibration-based long-term SHM offers a 
promising way for realizing remote and economical monitoring of bridges. There have been many 
types of research such as frequency domain decomposition (FDD), stochastic subspace 
identification (SSI), a series of Bayesian operational modal analysis methods (e.g. Fast Bayesian 
FFT), etc., which make the ambient-vibration-based modal analysis efficient and flexible. Further, 
cable tension, as a more intuitional physical feature, has also been investigated in the relation to 
the dynamics of cables [1–3]. 

By examining the estimated cable tension in long-term SHM, it is believed that potential 
damage effects in cables can be traced timely. However, there are still many issues remaining in 
the ambient-vibration-based long-term SHM. One is the low signal-to-noise ratio (SNR) with weak 
excitation which makes the identification uncertainty prominent. Another one is the effect of 
environmental and operational variations (EOVs), which raises the variability of long-term records 
in SHM. Therefore, to make a deep perception of these issues, this study investigates ambient-
vibration-based cable tension estimation and the identification uncertainty and EOVs-induced 
variability in the long-term monitoring of cable tensions with Bayesian approaches. 
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Theoretical background 

Fast Bayesian FFT 
As one of the ambient-vibration-based operational modal analysis methods, a fast Bayesian FFT 
approach [4,5] is introduced here. By associating Bayesian inference with the FFTs of vibration 
response, Bayesian FFT gives a basic form as 

𝑝𝑝�θ�ℱ�𝑘𝑘� = 𝑝𝑝�ℱ�𝑘𝑘�
−1𝑝𝑝�ℱ�𝑘𝑘�θ�𝑝𝑝(θ) (1) 

where 𝜃𝜃 denotes the system parameters of the structure to be identified, and 𝐹𝐹�𝑘𝑘 are the estimated 
FFTs data at different frequencies 𝑓𝑓𝑘𝑘. 

Assuming that the power spectral density (PSD) is complex Gaussian distribution and 
independent at different frequencies, the posterior distribution in Eq. 1 has a linear relationship 
with the likelihood function as follows. 

𝑝𝑝�𝜃𝜃�ℱ�𝑘𝑘� ∝ 𝑝𝑝�ℱ�𝑘𝑘�𝜃𝜃� =
𝜋𝜋−𝑛𝑛𝑁𝑁𝑓𝑓

∏ |𝐸𝐸𝑘𝑘(𝜃𝜃)|𝑘𝑘
𝑒𝑒𝑒𝑒𝑝𝑝 �−�ℱ�𝑘𝑘∗𝐸𝐸𝑘𝑘(𝜃𝜃)−1ℱ�𝑘𝑘

𝑘𝑘

� = 𝑒𝑒−𝐿𝐿(𝜃𝜃)  (2) 

   The theoretical PSD matrix of data at the kth FFT for given 𝜃𝜃 is shown in Eq. 3.  

E𝑘𝑘(θ) = 𝐸𝐸�ℱ�𝑘𝑘ℱ�𝑘𝑘
∗�θ�+𝐸𝐸[𝜀𝜀𝑘𝑘𝜀𝜀𝑘𝑘∗|θ] = ∑ ∑ ℎ𝑖𝑖𝑘𝑘ℎ𝑗𝑗𝑘𝑘

∗𝑚𝑚
𝑗𝑗=1 𝑆𝑆𝑖𝑖𝑗𝑗𝑘𝑘𝜙𝜙𝑖𝑖𝜙𝜙𝑗𝑗𝑇𝑇𝑚𝑚

𝑖𝑖=1 + 𝑆𝑆𝑒𝑒I𝑛𝑛= Φ H𝑘𝑘Φ𝑇𝑇 + 𝑆𝑆𝑒𝑒I𝑛𝑛 (3) 

   The ‘negative log-likelihood function’ (NLLF) of Eq. 2 can be written as Eq. 4. The most 
probable value (MPV) of 𝜃𝜃 can be estimated as,  𝜃𝜃� = arg min𝜃𝜃𝐿𝐿(𝜃𝜃). 

𝐿𝐿(𝜃𝜃) = 𝑛𝑛𝑁𝑁𝑓𝑓𝑙𝑙𝑛𝑛𝜋𝜋 + �𝑙𝑙𝑛𝑛
𝑘𝑘

|𝐸𝐸𝑘𝑘(𝜃𝜃)| + �ℱ�𝑘𝑘∗𝐸𝐸𝑘𝑘(𝜃𝜃)−1ℱ�𝑘𝑘
𝑘𝑘

 (4) 

where, the system parameter 𝜃𝜃 comprises modal frequencies 𝑓𝑓𝑖𝑖𝑖𝑖=1
𝑟𝑟  and modal damping ratios 𝜁𝜁𝑖𝑖𝑖𝑖=1

𝑟𝑟  
denoted in transfer functions ℎ𝑖𝑖𝑘𝑘𝑖𝑖=1

𝑟𝑟  corresponding to each mode, partial mode shapes 𝜑𝜑𝑖𝑖𝑖𝑖=1
𝑟𝑟 , PSD 

matrix of modal forces 𝑆𝑆 = �𝑆𝑆𝑖𝑖𝑗𝑗�𝑟𝑟×𝑟𝑟
, and the PSD matrix of prediction errors 𝑆𝑆𝑒𝑒𝐼𝐼𝑛𝑛. In addition, r 

represents the number of dominant modes in a specified frequency band where the estimation is 
conducted. n is the number of sensors to collect the ambient vibration response. Nf is the number 
of FFT points in the specified frequency band. 

Bayesian cable tension estimation 
The relation between the modal frequency of cable and cable tension can be derived from the free 
vibration differential equation of cable as follows. 

𝑚𝑚
𝜕𝜕2𝑣𝑣(𝑒𝑒, 𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝐸𝐸𝐼𝐼
𝜕𝜕4𝑣𝑣(𝑒𝑒, 𝑡𝑡)
𝜕𝜕𝑒𝑒4

− 𝑇𝑇
𝜕𝜕2𝑣𝑣(𝑒𝑒, 𝑡𝑡)
𝜕𝜕𝑒𝑒2

− ℎ(𝑡𝑡)
𝜕𝜕2𝑣𝑣(𝑒𝑒, 𝑡𝑡)
𝜕𝜕𝑒𝑒2

= 0 (5) 

where 𝑣𝑣(𝑒𝑒, 𝑡𝑡) denotes the vertical vibration deflection, x is the longitudinal coordinate of the cable 
and t denotes time. The symbol m is the mass of the cable per unit length, EI denotes the flexural 
rigidity of the cable and T is the cable tension force. The notation h(t) is the dynamic tension. 

According to [1–3], the influence of ambient vibration-induced dynamic cable tension h(t) and 
the cable sag is generally small and ignorable for simplicity. Assuming that the boundary condition 
is simply supported, the solution of Eq. 5 can be presented as follows. 

�
𝑓𝑓𝑖𝑖
𝑖𝑖
�
2

=
𝜋𝜋2𝑖𝑖2

4𝑚𝑚𝑙𝑙4
𝐸𝐸𝐼𝐼 +

1
4𝑚𝑚𝑙𝑙2

𝑇𝑇 (6) 

where i is mode order and fi denotes the ith modal frequency of the cable; l is the length of cable. 
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Then, when the cable vibration is more similar to a string (the contribution of EI on modal 
frequency is rather small), the equation can be further simplified as follows. 

�
𝑓𝑓𝑖𝑖
𝑖𝑖
�
2

=
1

4𝑚𝑚𝑙𝑙2
𝑇𝑇 (7) 

With identified modal frequencies of the cable, the estimation of cable tension from Eq. 6 and 
Eq. 7 can be treated as a regression problem. A basic form of the Bayesian linear regression (BLR) 
model can be written as follows. 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀, 𝜀𝜀~𝑁𝑁(0,𝜎𝜎2) (8) 

where y is an 𝑛𝑛 × 1 vector of response variable; X is an 𝑛𝑛 × 𝑑𝑑  matrix of predictor variables; 𝑋𝑋 is 
a  𝑑𝑑 × 1  vector of coefficients; ε denotes the iid error term which obeys a normal distribution with 
zero mean and variance 𝜎𝜎2 for each observation; n is the number of observations, and d is the 
number of predictor variables. The Bayesian inference can then be used to obtain the posterior 
distribution of (𝑋𝑋,𝜎𝜎2) as follows. 

 𝑝𝑝(𝑋𝑋,𝜎𝜎2|𝑦𝑦,𝑋𝑋) = 𝑝𝑝(𝑦𝑦|𝑋𝑋)−1 ∙ 𝑝𝑝(𝑦𝑦|𝑋𝑋,𝑋𝑋,𝜎𝜎2) ∙ 𝑝𝑝(𝑋𝑋,𝜎𝜎2) (9) 

Further, the marginal posterior of 𝑋𝑋 can be given as, 

𝑝𝑝(𝑋𝑋|𝑦𝑦,𝑋𝑋) = �𝑝𝑝(𝑋𝑋,𝜎𝜎2|𝑦𝑦,𝑋𝑋)𝑑𝑑𝜎𝜎2 (10) 

When the Jeffreys non-informative prior is given as Eq. 11, 

𝑝𝑝(𝑋𝑋,𝜎𝜎2) ∝
1
𝜎𝜎2

 (11) 

the marginal posterior of 𝑋𝑋 is analytically tractable and follows a d dimensional t-location-scale 
distribution shown in Eq. 12. 

𝑝𝑝(𝑋𝑋|𝑦𝑦,𝑋𝑋)~𝑡𝑡𝑑𝑑 ��̂�𝑋,
(𝑦𝑦 − 𝑋𝑋�̂�𝑋)′(𝑦𝑦 − 𝑋𝑋�̂�𝑋)

𝑛𝑛 − 𝑑𝑑
(𝑋𝑋′𝑋𝑋)−1,𝑛𝑛 − 𝑑𝑑� (12) 

where the three parts in the right hand are the location parameter, scale parameter, degree of 
freedom, in sequence. (∙)′ represents a transposition of (∙). The notations (𝑦𝑦,𝑋𝑋,𝑋𝑋,𝑛𝑛, 𝑑𝑑) are the 
same as Eq. 8, while �̂�𝑋 is the least-squares estimate of 𝑋𝑋 with a form as follows. 

�̂�𝑋 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦 (13) 

Without loss of generality, taking Eq. 6 into the form as Eq. 8, the Bayesian cable tension 
estimation framework can be established as shown in Eq. 14. 

𝑦𝑦 = ��
𝑓𝑓𝑖𝑖
𝑖𝑖
�
2

�
𝑛𝑛×1

,𝑋𝑋 = �𝜋𝜋
2𝑖𝑖2

4𝑚𝑚𝑙𝑙4
1

4𝑚𝑚𝑙𝑙2
�
𝑛𝑛×2

,𝑋𝑋 = �𝐸𝐸𝐼𝐼𝑇𝑇 �2×1
 (14) 

    The posterior distribution of 𝑋𝑋 contributes to a simultaneous estimation of cable tension and 
flexural rigidity, along with the estimation uncertainty. 

Predictive probabilistic model considering ensemble variability 
The Bayesian estimates of cable tensions in long-term SHM is a sequence involving identification 
uncertainty within each estimate, and EOVs-induced variability among different estimates. Under 
the framework of the Bayesian cable tension estimation, the identification uncertainty can be 
clarified by posterior variance. Furthermore, to represent the ensemble variability by integrating 
the identification uncertainty and EOVs-induced variability in long-term SHM, a predictive 
probabilistic model is proposed with a mixture model [6]. 
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Assuming that the long-term SHM is conducted over a rather long period with sufficient data 
sets covering almost all the environmental and operational situations (EOSs) of a bridge in general 
state, the predictive probabilistic model of cable tension at a certain future time (without any other 
information which implies corresponding EOS) is given by a mixture model under the theorem of 
total probability as follows. 

𝑝𝑝�𝑇𝑇𝑓𝑓�𝐷𝐷� = �𝑝𝑝(𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖|𝐷𝐷)𝑝𝑝�𝑇𝑇𝑓𝑓�𝐷𝐷,𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖�
𝑁𝑁𝑠𝑠

𝑖𝑖=1

=
1
𝑁𝑁𝑠𝑠
�𝑝𝑝(𝑇𝑇|𝐷𝐷𝑖𝑖)
𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (15) 

where 𝑝𝑝�𝑇𝑇𝑓𝑓�𝐷𝐷� denotes the predictive probabilistic model of cable tension 𝑇𝑇𝑓𝑓 at a certain future 
time, given the past long-term SHM data sets 𝐷𝐷 = {𝐷𝐷𝑖𝑖}𝑖𝑖=1

𝑁𝑁𝑠𝑠 . The probability of the case that 
unknown EOS in a certain future time corresponds to the EOS in either segment 𝐷𝐷𝑖𝑖 in the past 
long-term SHM is assumed to be equal as 𝑝𝑝(𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖|𝐷𝐷) = 1/𝑁𝑁𝑠𝑠, without any additional information 
indicating corresponding EOS. 𝑝𝑝�𝑇𝑇𝑓𝑓�𝐷𝐷,𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖� represents the predictive distribution of cable 
tension 𝑇𝑇𝑓𝑓 at a certain future time with a definite EOS corresponding to that of 𝐷𝐷𝑖𝑖, and is equal to 
the posterior distribution 𝑝𝑝(𝑇𝑇|𝐷𝐷𝑖𝑖) acquired by Bayesian cable tension estimation at corresponding 
data segment 𝐷𝐷𝑖𝑖. 

The predictive probability model can be regarded as an integration of the identification 
uncertainty in the long-term SHM and the variability due to EOVs, representing the ensemble 
variability of cable tension over a long period of similar length under general bridge condition. 
Then, the damaging effect may be compared with the ensemble variability that offers information 
for the management of cable-stayed bridges. 
Ambient vibration monitoring on a cable-stayed bridge 

Target bridge and monitoring system 
The target bridge is a single-tower cable-stayed bridge shown in Fig. 1. The span length of the 
bridge is about 124 m and the height of the pylon is about 48 m. A short-term ambient vibration 
test was carried out in November 2020. The corresponding sensor setup and structural layout are 
shown in Fig. 2. Ambient-vibration signals from cables at the anchor, cables at the bridge deck, 
bridge deck, and the pylon were collected during the short-term test. Further, the long-term SHM 
of two cables (the longest one (C1) and the shortest one (C5)) at the bridge deck was conducted 
from December 2020 to January 2022, with the ambient vibration signals recorded remotely. 
 

 

Fig. 1. A side view of the cable-stayed bridge. 
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Fig. 2. Layout and sensor setup of the short-term SHM system. 

 

(a)   (b)  
Fig. 3. (a) SVS of bridge and (b) PSD of cable C1. 

Table 1. Results of operational modal analysis of cables by Bayesian FFT. 
Cable [Modal frequency (Hz); standard deviation (Hz)] for each modal order 

1 2 3 4 5 
C1 1.07; 0.0010 2.11; 0.0012 3.18; 0.0009 4.24; 0.0020 5.31; 0.0013 
C5 2.07; 0.0013 4.14; 0.0014 6.26; 0.0031 8.45; 0.0058 10.63; 0.0035 
C8 1.64; 0.0026 3.32; 0.0088 4.96; 0.0040 6.65; 0.0057 8.14; 0.0033 

Operational modal analysis and cable tension estimation 
To get the dynamic characteristics of the bridge and cables, the fast Bayesian FFT was first applied 
for operational modal analysis of the bridge and cables. In this paper, three typical cables (C1, C5, 
and C8 cables as marked in Fig. 2) are selected to simplify the discussion even though all the 
cables were measured during the short-term test. As a pre-step for specifying initial values and 
searching band of optimization algorithm, the singular value spectrum (SVS) of the bridge (see 
Fig. 3(a)) and the power spectral density (PSD) plots of cables (see Fig. 3(b)) were investigated. 
Details about the fast Bayesian FFT with SVS can be found in [4, 5]. In the PSD plot of cables 
shown in Fig. 3(b), the first SVS line of the bridge is overlapped to help eliminate frequencies 
originating from the global modes of the bridge. It can be noted from Fig. 3(b) that some global 
modes of the bridge appearing in the SVS also appear in the PSD of cables, which indicated the 
ambient vibration of stayed cable was mixed with interference from the global vibration of the 
bridge. The mean and standard deviation of the identified frequencies from the ambient-vibration-
based operational modal analysis are summarized in Table 1. 

The proposed Bayesian cable tension estimation is applied to identify cable tensions from 
ambient vibrations. A model selection between Eq. 6 for the simply supported beam theory and 
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Eq. 7 for the string theory was carried out by the means of Bayes factor B1/0 which is the ratio of 
two model evidence with two hypotheses H0 and H1. Therein, H0 denotes the null hypothesis 
meaning that identified modal frequencies support Eq. 6 more, i.e. the effect of the flexural rigidity 
on cable tension identification cannot be ignored, while H1 denotes the alternative hypothesis 
meaning that the data support Eq. 7 more, i.e. the effect of flexural rigidity can be ignored. The 
Bayes factor along with increasing uncertainty in the prior distribution is presented in Fig. 4(a), 
where V is a hyper-parameter of Gaussian-Inverse-Gamma conjugate prior which controls the 
uncertainty in the prior of parameters (EI, T). It indicates that with less prior information about 
cable tension, the identified modal frequencies support the string theory more, i.e., the effect of 
flexural rigidity can be ignored in the subsequent procedure of the Bayesian cable tension 
estimation. The estimated cable tension using the Bayesian linear regression is shown in Figs. 4(b-
d). It is noted that the identification uncertainty in the three cables was different; i.e., the lowest 
identification uncertainty was observed at the longest cable at the bridge deck (C1 cable). 
 

 
(a) Bayes factor for model selection.                (b) For cable C1. 

 
(c) For cable C5.      (d) For cable C8. 

Fig. 4. (a) Bayes factor along with increasing uncertainty in prior distribution of cable tension; 
(b)(c)(d) Prior and posterior estimates of cable tension T and error variance σ2. 

Finite element analysis (FEA) 
As a verification of the ambient-vibration-based operational modal analysis and cable tension 
estimation by field test, a finite element model of the cable-stayed bridge was also created as shown 
in Fig. 5. The simulated cable tensions are shown in Table 2 compared with the ambient-vibration-
based estimates and the design value. From Table 2, it can be noted that the FEA and design value 
match well as the design value was also decided by means of FEA with beam elements during the 
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design stage. The ambient-vibration-based estimates for the cable at the anchor were close to the 
FEA and design values, while the estimates for the cables at the bridge deck were lower than those 
of FEA and design values. A possible reason for this phenomenon may be the complexity of 
ambient vibration for the cable at the bridge deck end. On one hand, the ambient vibration of the 
cable is coupled with the bridge deck. On the other, the vibration model of cable at the bridge deck 
can be viewed as a string with vibrating support, which is kind of different from the above string 
model. These two aspects may further decrease the rigidity of cable at the bridge deck, which is 
not considered in Eqs. 5, 6, and 7. 
 

 
Fig. 5. Finite element model of the cable-stayed bridge. 

Table 2. Comparison of Bayesian cable tension estimates, FEA and design value. 

Cable Sensor 
Bayesian estimates FEA Design 

Tension (kN) Tension (kN) Tension (kN) 

C1 
015 2505 3127 

3120 
115 2494 3140 

C5 
011 1056 1200 

1360 
111 1082 1209 

C8 
001 4374 4256 

4400 
101 4422 4257 

 
Fig. 6. Long-term sequence of Bayesian cable tension estimates (upper plot for C1; lower plot 

for C5). 
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Fig. 7. Ensemble variability involving the identification uncertainty and EOVs (upper plot for 

cable C1, lower plot for cable C5). 

Ambient-vibration-based long-term SHM of cables 
Long-term ambient vibration monitoring was also conducted for the longest and the shortest cables 
at the bridge deck, i.e. C1 and C5 cables. Although an inconsistency between the ambient-
vibration-based cable tension estimates and the FEA was observed for the cables at the bridge deck 
in the last section, the ambient-vibration-based results can still be used as a nominal damage-
sensitive feature for anomaly indication in long-term SHM with its convenience. The long-term 
sequence of Bayesian cable tension estimates is shown in Fig. 6. Observing the sequence of cable 
tension estimates, it can be noted that the identification uncertainty and the effect of EOVs in two 
cables occupied different extents. Further, by using the predictive probabilistic model introduced 
before, the predictive distribution for an unknown future time point is given by Fig. 7 with a 
depiction of ensemble variability. From Fig. 7, it is clearly noted that the effect of EOVs is 
dominant in the longest cable at the bridge deck, while for the shortest cable, the identification 
uncertainty contributes more to the ensemble variability. This observation may offer some 
guidance for the research of seasonal effects in long-term SHM of cable tensions. 
Conclusions 
This paper investigates the Bayesian operational modal analysis and cable tension estimation of a 
cable-stayed bridge using ambient vibration and investigated the identification uncertainty and 
effect of EOVs in long-term SHM of cables.  

For the operational modal analysis, the analysis showed that the interference from the bridge 
vibration to the cables should be noticed, which may further affect the accuracy of identified modal 
frequency and cable tension. 

An ambient-vibration-based Bayesian cable tension estimation method was introduced and 
verified comparing with the design value and FEA. It is noted that the estimates for the cable at 
the bridge anchor are close to the design value as well as FEA, while the estimates for the cables 
at the bridge deck are overall lower than the design value and FEA, which is inferred as a result of 
the different physical models of cables at bridge deck and ground anchor side, respectively. 

The identification uncertainty and effect of EOVs in cable tensions were investigated in the 
long-term SHM. It is noted that the effect of EOVs is more prominent in the longest cable than the 
shortest one, which indicated the longer cables in the cable-stayed bridge may be more sensitive 
to the EOVs and it may be worthwhile to conduct data normalization in these cables. 
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Abstract. The increasing demand for renewable energy has led to the development of several wind 
energy projects. A rising concern is the aging of these structures that must keep their serviceability 
and integrity for a long lifetime. That is why recent studies have focused on monitoring systems 
for data extraction based on accelerometers, fiber optic sensors, and piezoelectric sensors among 
many other sensing technologies. One of the most promising approaches is the use of fiber-Bragg-
grating-based systems taking advantage of their proven benefits such as electromagnetic 
immunity, low size and weight, and ability to embed numerous sensors in a single optical fiber 
line. However, most of the reported studies have addressed the operational assessment of the 
acquisition systems without further deepening the exploitation of the acquired data for structural 
health monitoring purposes. This work aims to data exploitation of strain measurements acquired 
by simulated fiber Bragg gratings (FBG) for damage identification in wind turbine blades made of 
composite materials. A FEM model of a 2.5-meter-long wind turbine blade with 40 virtual FBGs 
strain sensors was used to obtain strain data under normal operational conditions. Then, strain 
measurements were calculated after defining several damages to the blade. Once the data were 
obtained, different data processing techniques following the pattern recognition paradigm were 
tested comparing their performance in terms of accuracy. The results will contribute to designing 
real-time automatic damage identification systems using FBGs strain sensors for composite wind 
turbine blades. 
Introduction 
Wind turbine blades are preponderant in wind turbine performance. However, blades are prone to 
different types of damage which can generate imbalances affecting power generation efficiency, 
and operational and maintenance costs. 1 GW of installed generation capacity could cost between 
0.5 to 1 USD million. In extreme cases, such damages can even cause catastrophic failures of 
turbines themselves or adjacent ones. In the worst scenario, a catastrophic failure can cause a safety 
hazard to persons.  Therefore, early damage detection in wind turbine blades is of great importance 
to optimize maintenance planning and reduce operational costs while increasing safety.  

Structural Health Monitoring (SHM) consists of a variety of strategies for early damage 
identification. These strategies can include machine learning algorithms which are used with the 
aim of “constructing” a baseline from a pristine structural element under regular operational 
conditions based on features related to data gathered from several types of sensors. Based on this 
baseline, newly gathered information can be “compared” to the baseline looking for outliers related 
to damage. This methodology based on physical measurements has been called data-driven SHM. 
In this way, SHM can be considered as the evolution of non-destructive testing, due to SHM 
techniques that can perform condition monitoring for diagnosis which can be performed online 
(real-time) or offline. 
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SHM tasks include signal processing from a structural system under dynamic loads, commonly 
using a variety of sensors embedded or placed on the structure for measuring physical variables 
such as strain, displacements, guided waves, and acceleration among others to identify damage 
occurrence. The availability of a record suggests that the user should make a most accurate and 
precise diagnosis of the structure, this for sure, could change the way that maintenance is made. 
The most common method of diagnosis as previously mentioned includes an unusual signal and 
prognosis of a section of interest.    

There is reported much academic research related to damage detection methodologies, mainly 
based on guided waves, acoustic emissions, machine vision, thermography, vibration analysis, 
strain measurements, etc. [1]. However, according to Du et al [2], who published an exhaustive 
and comprehensive review of damage detection techniques for wind turbine blades, the discussion 
on fault indicators and research prospects of damage detection of wind turbine blades is still an 
open topic in the related research field. 

This paper presents a data-driven general methodology for wind turbine blade damage detection 
based on strain field pattern recognition. First, the methodology is described in detail in the first 
section, in the second section experimental and numerical setup is described, results and discussion 
are presented in the third section and finally, a summary is presented in the fourth section.  
Damage detection methodology 
The fundamental premise behind strain mapping techniques is that damage occurrence produces a 
change in the local and global stiffness of a structure due mostly to damages producing an inertia 
variation promoted by discontinuities of several kinds of damages (i.e. holes, cracks, delamination, 
inclusions, etc.). Therefore, unitary strain changes in the near field of damage, and such changes 
can be detected through discrete or distributed strain measurements gathered using several types 
of sensors. According to Saint-Venant’s principle, such slight changes in the strain field near to 
damage fade away at distances equivalent to a couple of times the damage size. In this way, it has 
been believed that damage detection is only possible if sensors are located very close to damage. 
However, it has been demonstrated that this is not necessarily true. By using adequate pattern 
recognition techniques global and local stiffness changes can be detected in sparse sensors arrays, 
for instance, in wind turbine blades it is possible to detect delamination of typical size for a big 
wind turbine blade by using strain sensors (FBGs) separated more than 1 meter among them [3].    

An additional issue with the arguments mentioned before lies in the fact that not only damages 
can promote changes in the strain field in a structure, particularly in a wind turbine blade. The 
change in the operational conditions also promotes changes in the strain field. Think for example 
the pitch angle and the resultant aerodynamic forces in a wind turbine blade. For example, at fixed 
angular speed, as the incident wind speed increases the pitch angle of the wind turbine blade is 
increased and the resultant aerodynamic force changes in both direction and magnitude. In this 
way, the sectional inertia of the section changes, and therefore, the global stiffness changes. This 
change can be misconstrued as damage by many machine learning algorithms if these do not 
include information related to the operational conditions (wind speed, pitch angle, angular speed, 
etc.) that allows building different models (strain field models), each one representing a particular 
operational condition which can be used in a subsequent stage to compare against uncertain 
condition and discern if a change in the strain field has been promoted by damage occurrence, that 
is, uncoupling the changes in strain field promoted by damage from such promoted by operational 
conditions. This process has been called Optimal Baseline Selection (OBS) and is shown in Figure 
1. The OBS can be performed in a “manual” way if operational conditions can be extracted from 
the wind turbine controller (i.e., pitch angle, angular speed, etc.) or can be extracted in an automatic 
fashion using clustering techniques when the operational conditions are not available.  

As can be seen in Figure 1, the general proposed methodology consists of two stages. In stage 
A, a baseline is built for different operational conditions representing a specific strain field pattern. 
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This is done automatically by using a clustering technique of two-level clustering based on Self 
Organizing Maps (SOM) and a DBSCAN-based method. In a subsequent step, models are built 
for each baseline by using different dimensionality reduction techniques. In stage B, data for 
unknown operation conditions are classified according to their major similarities with baselines 
previously build in stage A, through a process we call “inverse OBS” and in a subsequent step, 
data is projected into the associated baseline model. Damage indices and detection thresholds are 
defined to perform the damage detection process. 
 

  
Figure 1. Scheme of data-driven based strain field damage detection methodology. 

FA+GA-DBSCAN model 
The use of unsupervised pattern recognition algorithms can be used for exploratory analysis to 
obtain specific clusters of data i.e., operational conditions. The model aims to unfold operational 
conditions from a randomized environment. The pattern recognition algorithm used to define these 
specific models is a modified version of Density-Based Spatial Clustering of Applications with 
Noise or DBSCAN. 

DBSCAN has two particularities, the first is the fact that the algorithm is not automatized, it 
employs two parameters to define a cluster in a two-dimensional space, Eps which is related to a 
particular radius and MinPts can be considered as the minimum number of reachable elements in 
a cluster. A Genetic Algorithm GA is selected to define automatically DBSCAN parameters. The 
second is the computational cost of clustering, which is reduced when the dataset is evaluated in a 
two-dimensional space, therefore a two-dimensional projection using the Factor Analysis 
technique is applied to datasets before clustering, this methodology was defined as FA-DBSCAN. 
The previous also allows the identification of operational conditions in a simple visible way which 
is a two-dimensional representation of operational conditions.  

The Factor Analysis model can be represented as 𝑥𝑥𝑖𝑖 = Λ𝑓𝑓 + 𝑒𝑒, where 𝑥𝑥𝑖𝑖 represents the original 
variables, Λ the factor loadings, 𝑓𝑓 common factors and 𝑒𝑒 the specific errors. Factor Analysis is 
also used to realize an outlier detection by a projection of new information to the generated 
baseline. The novel detection mechanism is an index which is represented as follows: 𝐹𝐹𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖 × [𝐼𝐼𝑖𝑖×𝑖𝑖 − (Λ × Λ′)] × 𝑥𝑥𝑖𝑖, where 𝐼𝐼𝑖𝑖×𝑖𝑖 is the identity matrix.  
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SOM-PCA model 
One of the most successful clustering techniques is the SOM. In this work, a SOM-based technique 
is proposed to discriminate operational conditions automatically without any intervention of the 
user. SOM is considered an unsupervised method that allows the conversationally of nonlinear 
relationships among high dimensional data into simple relationships in an interpretable low 
dimensional space.  

It is possible to use (learn) the information obtained with SOM to partition data in a discrete 
way (which is one of the main SOM’s shortcomings). This algorithm has been called the two-level 
clustering technique.  

On the other hand, another dimensional reduction technique used as a modeler (like Factor 
Analysis) is PCA. PCA is used to reduce complex data to a smaller dimension and to reveal simpler 
patterns in data hidden by noise, redundancies, or data complexity. The model is constructed 
through the linear transformation 𝑇𝑇 = 𝑋𝑋�𝑃𝑃𝑟𝑟, where 𝑋𝑋� represents standardized data, 𝑃𝑃𝑟𝑟 the first 𝑟𝑟 
retained principal components and 𝑇𝑇 the scores. From this projection, it is possible to calculate 
different damage indices and thresholds. Perhaps one of the most successful is the so-called 𝑄𝑄-
index which denotes the difference between an observation and its projection into a PCA model. 
The index is given by 𝑄𝑄 = 𝑋𝑋�(𝐼𝐼 − 𝑃𝑃𝑟𝑟𝑃𝑃𝑟𝑟𝑇𝑇)𝑋𝑋�𝑇𝑇.  

A detection threshold for 𝑄𝑄-index can be defined as � 𝜐𝜐
2𝜛𝜛
�𝜒𝜒2𝜛𝜛2𝜐𝜐−1

2 (𝛼𝛼). Where 𝜒𝜒2𝜛𝜛2𝜐𝜐−1
2  is the 

upper 100𝛼𝛼-th percentile of a chi-square distribution with 2𝜛𝜛2𝜐𝜐−1 degrees of freedom and at a 
significance level 𝛼𝛼, with 𝜛𝜛 and 𝜐𝜐 equal to the mean and variance of the 𝑄𝑄-index respectively.  
Numerical setup 
A finite element model was made in ANSYS APDL and was cross-validated with experimental 
and numerical data obtained from a previous work made by Murray et al [4]. 

A mesh convergence study was made to select the appropriate mesh to use in the FE model for 
APDL. Two different element types were considered, the 4 node Shell 181 element and the 8 node 
Shell 281 element. The study showed that both elements can get results like those obtained by 
Murray et al with a margin of error of approximately 5%. 

The FEM study was performed using a 2.5-meter-long wind turbine blade with a 40-thousand-
element mesh to get good results according to the convergence study and the software 
configuration was established to simulate the blade at a macroscopic scale. So, several initial 
conditions were set to simulate the real blade operation, like:  

• Rotational velocity of 40 rad/s, which represents the maximum operating velocity of the 
wind turbine blade. 

• The blade base attachment was set rigid to fix the blade in the rotational disk. 
• Blade lift was set as a pressure profile based on previous CFD analysis (See Figure 2). 
• Drag force also was included in the FEM study with a force all over the body of 108.77 N. 

The simulations were performed for 10 pitch angles starting from -5° to 40° with a 5° interval. 
These values are within the optimal and real blade operation. 

 
Figure 2. Wind turbine blade pressure profile. 
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The value 0.66275 in the previous figure refers to where the mean aerodynamic chord (MAC) is. 
Regarding the virtual sensors, ten of them were located along the longitudinal axis of the blade at 
the extrados surface, approximately at 10% of MAC from the leading edge and trailing edge (See 
Figure 3 and Figure 4). At each sensor location, three strains of the blade were measured in their 
coordinate axis, the longitudinal (Y), transverse (X), and off the plane (Z), replicating a strain 
rosette. 

 
Figure 3. Strain sensor’s location at intrados surface. 

 

 
Figure 4. Strain sensor’s location at extrados surface. 

Each dot in Figure 3 and 4 represents a strain rosette, so in total there are 40 sensors and 120 strain 
values for each pitch angle. Sensors are distributed equally at both extrados and intrados surfaces 
and placed along the longitudinal axis; the tip zone was excluded for sensors since strain 
measurements are not representative of the damage detection methodology. 

To evaluate the performance of the clustering model, six damages were proposed individually, 
and they are located along the intrados surface. The damages were proposed as three ovals and 
three circles, ovals were simulated within the fracture model that APDL has, and the circles were 
defined as damage that might show up during real blade operation [5]. 

The characteristic length of the damages was set as 10% of MAC and the location is distributed 
inside the sensor’s area as shown in Figure 5. 

 

 

(a) 

 

(b) 
Figure 5. Wind turbine blade damages: (a) Ovals and (b) Circles. 

From the FEM model strains at virtual sensor locations were obtained for 10 pitch angles with 
and without different damages. To approximate a realistic data set, data should be grown 
artificially. Since a linear static FEM model was used, the first step in artificial data generation 
consisted of multiplying obtained data by random scalars between 2 to 10 and subsequently, by an 
artificial random gaussian noise which was selected to be ± 10% of the original strain values.  
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Each operational condition defined (pitch angle) had a vector of 𝑉𝑉1×120, with one time instant 
and 120 unitary strain measurements (40 virtual triaxial strain sensors). It was selected that each 
operational condition will have 1000 artificial replicas times 10 pitch angles, thus operational 
conditions matrixes will have a size of 𝐷𝐷10000×120. A similar approach is given to the cases of the 
blade with induced damage under a specific load.  In this way, a data set composed of 10000 strain 
measurements of 40 virtual sensors for baseline, 10000 strain measurements for validation data, 
and 10000 strain measurements for each damage condition, was built. 

This baseline may guarantee a level of confidence for a condition diagnosis of structure which 
should be related to a damaged or undamaged system. The time steps of baseline virtually 
generated 𝐷𝐷10000×120 are also randomly sorted as it should happen in real operation of a wind 
turbine blade due to external factors. 

The damage assessment under the strain mapping technique includes a specific configuration 
of the strain information collected in a matrix form. The data collection method is defined 
considering the information of the pristine and damaged structure. The information is collected in 
a matrix of size 𝐷𝐷𝑚𝑚×𝑖𝑖, the rows 𝑚𝑚 are time steps or the number of samples and, 𝑛𝑛 are the number 
of sensors, which, in this case, measures the unitary strain. 

Results and discussion 
The pipeline methodology called FA+GA-DBSCAN is selected to automatically define 
operational conditions. The resultant baseline consisted of eight clusters.  The representation is 
presented in Figure 6. The selection of these two parameters where automatized using a genetic 
algorithm, and then a dimensionality reduction was performed considering the well-known Factor 
Analysis method. The Factor Analysis model can be represented in terms of covariances according 
to the following equation:  

 
Figure 6. Left: Baseline artificially generated using Gaussian noise. Right: An example for 
damage detection using the FA index, six different levels of damage were detected using the 

generated baseline. 
The use of Factor Analysis for damage detection is performed considering the specific factor 

loadings of the new information. These specific loadings are defined as a correlation number for 
the specific variable being analyzed. As presented in Figure 7 (right), new unknown information 
belonging to six levels of damage can be projected to the baseline, it is evident that these 
projections are far away from the baseline, thus, these can be considered as information related to 
damage on structure.  

By using SOM-based unsupervised clustering it was possible to obtain 10 clusters, each one 
corresponding to one pitch angle. Each individual cluster was used to build a baseline model for 
such pitch angle. In a subsequent step, all damaged data were projected into the baseline models 
by performing an inverse SOM-based process, in which, damaged data are classified according to 
their similitude with baselines. Once damaged data are classified, PCA is used to project such 
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damaged data into its respective model, and a Q index is obtained. This process is graphically 
explained in Figure 1.  

Results are presented in  Figure  where the clusters segregation of SOM is presented at left (10 
clusters can be observed). The result of the Q index for cluster number 2 (baseline model number 
2) is presented at the center; it can be observed that the Q index for all damages is well separated 
from baseline and validation data. At the right of the figure, the performance of both clustering 
(SOM-based) process and Q index damage detection-based can be observed. For this example, the 
clustering technique serves to separate baselines and to assign the most similar baseline to damage 
data, however, it is not enough to perform a damage detection. On the other hand, by using PCA 
and Q index, the performance obtained for damage detection by using a specific baseline to project 
the most similar damage data into such baseline is remarkable (an accuracy of over 98%).  

 

 

 

 

Figure 7. Left: SOM for baselines for all pitch angles. Center: example of Q index for baseline 
number 2. Right: performance results for cluster number 2. 

Summary  
In summary, the strain field of a virtual representation of the blade from a wind turbine under 
dynamic loads was evaluated using two different approaches of data-driven models. The pristine 
representation of the blade was used to define a baseline which was specified by applying Gaussian 
noise to strain measurements of the blade under static loads. This process will define a baseline 
with different time instants and slight variations in loads as it could happen in a structure under 
dynamic loads. Furthermore, six levels of damage were included and the strain information from 
these levels was also considered in a dynamic setting. Two data-driven models were taken into 
consideration for damage evaluation SOM and FA-GA+DBSCAN. These models were capable of 
automatically define the pristine operational conditions with a remarkable accuracy. The 
identification of damage on the blade was satisfactory projecting new information to the baseline 
created.   
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Abstract. This paper presents a patch antenna sensor for simultaneous crack and temperature 
sensing, and its actual performance is tested. The patch antenna sensor consists of an off-center 
fed underlying patch and an overlapping sub-patch, which is tightly attached to the underlying 
patch and allowing the electric current to flow through the integrated patch. The off-center feeding 
of the patch antenna can activate the resonant modes in both transverse and longitudinal directions. 
The resonant frequency shift in transverse direction is utilized for temperature sensing, and the 
crack width can be sensed by the longitudinal resonant frequency shift. Furthermore, this 
unstressed structure of the patch antenna sensor can avoid the problems of incomplete strain 
transfer ratio and the insufficient bonding strength. In this paper, the theoretical relationships 
between the antenna resonant frequencies, the environment temperature, and the crack width were 
studied. Experimental tests were also conducted, the off-center fed patch antenna sensor was 
fabricated and several days of continuous monitoring were performed to test the sensing 
performance of the patch antenna sensor. The experimental results demonstrate the feasibility of 
the proposed patch antenna sensor for simultaneous crack and temperature sensing. 
Introduction 
Structural damage such as cracks will inevitably occur during the long-term service of civil 
engineering structures. Cracks will reduce the bearing capacity and durability of the structure, or 
even lead to a sudden failure of the structure, resulting in casualties and property losses. Therefore, 
it is of great significance to monitor the structural cracks in real time [1]. 

Traditional crack sensing methods such as visual inspections with magnifying lens are time-
consuming and usually inaccurate. In recent years, sensors play an important role in structural 
health monitoring and can provide more accurate sensing of structural cracks. For example, some 
piezoelectric-based sensor and optical fiber-based sensor have been used for crack sensing [2,3]. 
These sensors make it easier to monitor structural cracks in real time. However, these crack sensing 
technologies based on wired sensors usually need numerous wires for power supply and 
information transmission, which make it difficult to install and maintain the sensors. 

In past decades, some antenna-based sensors came into being to avoid the defects of traditional 
wired sensors [4]. Antenna-based sensors utilize the antenna as the sensor to measure the change 
in physical parameters, since the change of monitored parameters will lead to the change of 
electromagnetic parameters of the antenna, and the change of antenna’s electromagnetic 
parameters can be interrogated wirelessly. The antenna-based sensors take advantage of antenna’s 
sensing and signal transmission functions. Furthermore, the electromagnetic waves of the antenna 
sensor can penetrate some coverings, which make it better suited for structural health monitoring. 
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A lot of antenna sensors have been developed, such as the deformation sensor, strain sensor, 
temperature sensor, humidity sensor, bolt loosening sensor, corrosion sensor, and so on [5,6]. 

Currently, some structural crack sensors based on antennas have been developed and proved to 
be feasible in laboratory environment. However, these crack sensors usually focus on crack sensing 
while disregarding the effects of environment temperature [7]. In actual engineering, the 
environment temperature is not constant; thus, the temperature fluctuation will generate inaccurate 
measurements. To improve the sensing performance of antenna-based crack sensors under variable 
temperatures, the temperature effects on antenna should be investigated, and additional 
temperature sensors are needed to measure the environment temperature for the compensation of 
the monitored parameters. 

Since the additional temperature sensors will bring a lot of trouble in practice, to avoid the 
additional temperature compensation sensors, some scholars have proposed antenna sensors for 
simultaneous sensing of temperature and other physical parameters. For example, Tchafa et al. 
proposed a patch antenna sensor for simultaneous strain and temperature sensing [8]. This multiple 
physical variable monitoring sensor enabled strain and temperature sensing by a single antenna 
sensor, additional temperature sensors are no longer needed. However, the proposed sensor based 
on monolithic patch antenna need to be attached to the surface of the structure and stressed, so 
there will be some problems such as the incomplete strain transfer ratio and insufficient bonding 
strength. These problems greatly limit the antenna sensor use in practice. In this regard, Xue et al. 
proposed a series of unstressed patch antenna sensors to avoid the problems of incomplete strain 
transfer ratio, which can detect the cracks or structural deformation by the relative movement 
between two antenna components, making the measurements of structural deformation and crack 
width more accurate [9,10]. 

In this paper, a patch antenna sensor for simultaneous crack and temperature sensing is 
developed, and its actual performance is tested. The proposed patch antenna sensor consists of an 
off-center fed underlying patch and an overlapping sub-patch. The sub-patch is attached to the 
underlying patch and moves as the crack width changes. The off-center feeding can activate the 
resonant modes of the integrated patch antenna in both transverse and longitudinal directions, and 
the resonant frequency shifts in two directions are used for temperature sensing and crack width 
sensing respectively. The theoretical analysis is conducted to study the relationships between the 
antenna resonant frequencies, the environment temperature, and the crack width. To demonstrate 
the effectiveness and feasibility of the proposed sensor, some experimental tests were conducted. 
The patch antenna sensors were fabricated to detect the crack widths, and several days of 
continuous monitoring obtained a series of measurements at different environment temperatures. 
The experimental results show that the sensor can accurately measure the temperature and crack 
width changes. 

This paper is organized as follows. Section 2 introduced the methodology of the proposed patch 
antenna sensor and conducted the theoretical analysis. Section 3 presented the experimental design 
and the experimental results. Finally, the conclusion and future work of the proposed antenna 
sensor are discussed. 

The patch antenna sensor for simultaneous crack and temperature sensing is shown as Figure 
1. The underlying patch is off-center fed and partially covered by the overlapping sub-patch, and 
they are tightly attached to each other so that the electric current induced by interrogation waves 
can flow through the integrated patch. The antenna is dual-resonant since the off-center feeding of 
the patch antenna can activate the resonant modes in both transverse and longitudinal directions; 
thus, it has two fundamental resonant frequencies. The transverse fundamental resonant frequency 
of the patch antenna is only related to the environmental temperature changes. However, the 
longitudinal resonant frequency of the patch antenna depends on the environmental temperature 
and the overlapped length of the underlying patch and the overlapping sub-patch.  
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Methodology and theoretical analysis 

 
Figure 1. The concept of the proposed patch antenna sensor. 

 
Figure 2. The patch antenna sensor installation diagram. 

The patch antenna sensor is installed on the surface of the structure as shown in Figure 2. A 
connecting rod connects the overlapping sub-patch to the fixed plate, the underlying patch fastened 
to one side of the crack while the fixed plate is fastened to the other. As long as the crack width 
changes, the variation causes the relative movement between the two components of the antenna 
sensor. The sensing of the crack width can be achieved by measuring the relative movement 
between the underlying patch and the overlapping sub-patch. Thus, the longitudinal resonant 
frequency shift of the antenna can be used to measure the change of the crack width, and the 
resonant frequency shift in transverse direction is utilized for environmental temperature sensing. 

When environment temperature changes T∆ , and the overlapped length changes oL∆ , the 
fundamental resonant frequencies of the patch antenna under the influence of temperature and the 
overlapped length can be expressed as: 
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Where 10f  represents the fundamental resonant frequency when the patch antenna is resonant 
at the longitudinal direction and 01f  represents the fundamental resonant frequency at the 
transverse direction; c is the speed of light in a vacuum; ε is the relative dielectric constant of the 
dielectric substrate; eL and eW  are the longitudinal electric length and transverse electric length 
respectively; TW∆  and TL∆  are the variations of the integrated patch size in the transverse 
direction and longitudinal direction caused by temperature variations; eε∆  is the variation of the 
dielectric substrate's relative dielectric constant. 

Therefore, the environmental temperature can be determined using the resonant frequency shift 
in the transverse direction, and the temperature compensation of the longitudinal resonant 
frequency can be calculated simultaneously. Then, the resonant frequency shift in the longitudinal 
direction of the patch antenna can be used for the crack width sensing. 
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Experimental study 
A series of Experimental tests were conducted to illustrate the feasibility of the proposed patch 
antenna sensor for simultaneous crack and temperature sensing. The fabricated patch antenna with 
overlapping sub-patch is shown in Figure 3. The dielectric substrate of the antenna was selected 
as Rogers RT/duroid 5880 laminate, and the radiation sheets were made of copper. The patch 
antenna sensor was connected to the vector network analyzer (VNA) through the coaxial line. 

 
Figure 3. The fabricated patch antenna sensor. 

 
Figure 4. The crack extension simulator and experimental setup. 

Figure 4 shows the crack extension simulator and experimental setup. The moveable table could 
be pushed by the screw micrometer rod and moved relative to the fixed table to simulate the crack 
width extension. The simulator simulates crack width extension from 0 mm to 3 mm with a 0.1 
mm incremental step. Figure 5 shows the reflection loss curves S11 of the patch antenna, and Figure 
6 shows the patch antenna's resonant frequency in the longitudinal direction with different crack 
widths. 

   

Figure 5. The S11 curves of the patch antenna sensor with different crack widths. 
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Figure 6. The resonant frequency in the longitudinal direction with different crack widths. 

In order to verify the feasibility of the proposed patch antenna sensor for temperature sensing, 
the patch antenna sensor was installed at a fixed position in the room to monitor environment 
temperature changes over a period of time. Figure 7 shows the experimental setup. The patch 
antenna sensor was connected to the Nano VNA through the coaxial line, and the patch antenna 
senor was placed in a protective box made of acrylic, so as to avoid the interference of dust and 
other factors during long-term monitoring. A thermometer was placed near the patch antenna 
sensor to record the environment temperature and compare it with the measurements of the patch 
antenna sensor.  

 
Figure 7. The environment temperature monitoring experimental setup. 

Several days of continuous monitoring were performed to demonstrate the feasibility of the 
sensor for long-term temperature monitoring. The experimental results show that the resonant 
frequency in transverse direction of the antenna has a good correspondence with the temperature 
variation during the monitoring period, as shown in the Figure 8. To further illustrate the 
environment temperature sensing ability of the patch antenna sensor, the 24 hours temperature 
change in one day was selected to compare with measurements of the patch antenna sensor, shown 
as Figure 9. The results show that the environment temperature sensing according to the transverse 
frequency shift of the patch antenna is feasible. 
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Figure 8. The resonant frequency in the transverse direction with environment temperature. 

 
Figure 9. The patch antenna sensor 24- hour temperature monitoring results. 

Summary 
In this paper, a patch antenna sensor with overlapping sub-patch for simultaneous crack and 
temperature sensing is proposed. The patch antenna sensor is dual-resonant; thus, the patch 
antenna's resonant frequency shifts in transverse direction and longitudinal direction can be used 
to measure the environment temperature and crack width respectively. Theoretical study 
experimental tests were conducted to study the performance of the patch antenna sensor. Despite 
the encouraging results, some significant concerns such as the effective wireless interrogation 
technique still need to be investigated in future work. 
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Abstract. Osseointegrated implants attach prosthetic devices directly to the skeletal system with 
a stable connection, allowing amputees to control prostheses with good proprioception. However, 
periprosthetic cortical thinning can occur if the remaining bone is stress shielded after 
implantation, resulting in aseptic implant loosening, and requiring revision surgery. It is therefore 
important to quantitatively monitor the degree of bone loss and probability of loosening to provide 
evidence for doctors to plan treatment. This computational study investigates the vibration 
behavior of a bone-implant construct by monitoring its transient response over varying degrees of 
bone degradation. The thickness of distal bone is progressively reduced through a revolving 
material removal to simulate cortical thinning due to stress shielding. First, bonded contact is 
adopted to represent the case of the fully osseointegrated implant under bone resorption, leading 
to a linear vibrational response. Next, frictional contact with 0.05 mm over-fit offset is adopted to 
include the non-linear contact behavior when loosening is induced by cortical thinning. The 
torsional mode shape of the bone-implant construct is identified through cross-spectrum analysis. 
The results suggest that the change in the natural frequency of the first torsional mode provides 
the most sensitive indicator of cortical thinning and implant loosening. The findings underpin the 
potential of vibration analysis in the monitoring of bone degradation-induced implant looseness. 
Introduction 
Osseointegration (OI) prostheses provide an alternative treatment to conventional socket 
prostheses for amputees. Instead of using a prosthetic socket to attach artificial limbs, it achieves 
bone anchorage of the limbs through percutaneous implants that are press-fit into the 
intramedullary cavity of residual bone [1-4], thereby improving the comfort level and functionality 
of the prosthetic system, such as providing better control of the prosthetic device with 
proprioception (Osseoperception), reducing skin irritation, and avoiding pressure sores [5-
7].  Despite these benefits, failed implantation can make patients suffer and make revision surgery 
even more difficult. Repair surgery is normally more complicated and invasive, which can bring a 
higher possibility of requiring another replacement surgery [7]. 

 Bone resorption due to a stress-shielding phenomenon can cause long-term implant failures 
[8]. After implantation, the implant will take most of the load because the Young’s modulus of 
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titanium alloy is significantly higher than that of bone, resulting in stress shielding of the bone. 
According to Wolff’s Law, the bone will adaptively change its geometry and mineral density based 
on the altered load field [9-12]. This bone degradation can lead to a reduction of effective contact 
area and contact stiffness; consequently, the micromovement between the bone and implant will 
increase. A micromotion that is higher than 150 µm [13-15] may lead to fibrous tissue interposition 
at the porous coat of implants rather than bone ingrowth, which could further lead to mechanical 
instability and eventually looseness.  

A two-stage surgical protocol and rehabilitation plan can help patients gain implant stability 
gradually [16]. In the first stage, the implant will be hammered into the bone remnant and the 
wound is closed using a stump pressure bandage. Initial stability could be immediately acquired 
after the installation [3, 17]. In the second stage, the adapter of the external prosthesis will be 
connected to the Implant through a cutaneous stoma.  After that, the patients need to perform load-
bearing exercise progressively [3], which is designed to stimulate bone mineralization and prevent 
rapid load increase that might cause large micromotion at the bone-implant contact [2]. A 
secondary stability will be acquired as new bone grows into the micropore of the titanium oxide 
layer of implants during rehabilitation [4, 5].  

Strict monitoring of implant stability can provide evidence for doctors to plan treatment, 
avoiding unsuccessful implantation. It is proposed that effective monitoring technology should be 
noninvasive, not hinder implant integration, permit personalized monitoring, and monitor 
conditions over the patients' everyday life [18]. The vibrometric approach is suitable for satisfying 
these targets. For example, acceleration sensors could be mounted at the extracorporeal part of the 
distal end of implants, thus achieving noninvasive monitoring. The vibration can be excited by 
normal walking activities to accomplish continuous monitoring, and vibration data can be analyzed 
by incorporating a mobile computation module to provide a personalized experience.   

A lot of mechanical vibration characteristics have been investigated to monitor the structural 
integrity of implants non-destructively. The stability of the bone-implant constructs can be 
examined through tracking the frequency shift in dynamic response. Shao et al. [19] conducted in-
vivo experiments with one transfemoral implant patient and found that the fundamental natural 
frequency (NF) of the trans-femoral implant system can reflect the boundary condition of implants. 
They found a reduction in the NF after the first load-bearing exercise and suggested it was due to 
the formation of load-induced micro-fractures at the interface. However, Shao et al. [19] restricted 
their frequency analysis to the fundamental NF.  Cairns, Pearcy [20], on the other hand, extended 
the investigation to higher resonant frequencies by conducting modal experiments on a composite 
femur-implant model. They found larger percentage changes in the second and third bending 
response than the fundamental frequency. Due to different boundary conditions and experiment 
setups used between Shao et al. [19] and Cairns, Pearcy [20], their results cannot be directly 
compared. However, their findings are important contributions to the vibration-based method 
because they show that the resonance of a transfemoral-implant system is correlated to its stability 
as a reflection of the interface stiffness. The frequency shift methods are also applied for 
determining the mechanical properties of the Total Hip Arthroplasty (THA) interface for loosening 
assessment [21-23], whereas the identified frequency band for THA implants may not be 
applicable for transfemoral implants. The above studies only examined the bending response of 
implants. The works by Chiu et al. [24] and Ben et al. [25] expand the capability of the vibration 
method for bone healing assessment by employing a two-sensor strategy to extract both bending 
modes and torsional modes from vibration response. They have shown that the torsional modal 
frequencies are sensitive to stiffness recovery in the case of an internally fixed femur, indicating 
the potential of utilizing torsional responses for transfemoral implant monitoring. 

Harmonic-related vibration characteristics have been utilized to monitor the loosening states of 
THA implants. It has been reported that the number of harmonic spikes will increase as the 
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stiffness of implant systems decreases due to implant failure [26], which is symptomatic of 
increasing nonlinearity in the vibrational response. As a result, the energy distribution in harmonics 
and amplitude of spikes will be influenced. Georgiou [27] conducted an extracorporeal vibration 
test on 23 patients who undertook hip replacement surgeries. The results have shown that 
waveform distortion and resonant frequency of output acceleration signals can deliver a more 
accurate diagnosis of the stability of implants than radiographs. They detect loose states by 
evaluating the amplitude of the first and second harmonics, the number of harmonics and the 
number of resonant frequencies of output signals. More loosening states could be detected through 
Alshuhri’s [28] improvements which compute harmonic ratios in the output signal. 

Although these methods have proved effective, they may not be practical for the monitoring of 
bone degradation-induced transfemoral loosening. Many factors can influence the dynamic 
response of implants, such as implant type, input excitation, sensor location and boundary 
conditions. The identified frequency range or harmonics spikes that are sensitive for hip implants 
may not be suitable for transfemoral implants. Besides, the effect of bone degradation on dynamics 
responses has not been investigated so far, which highlights the innovative aspect of this paper 
since it is critical for the validity of long-term monitoring. The bone mineral density and shape of 
bone will change slowly if aseptic loosening is induced by bone resorption, and these changes can 
complicate the diagnosis of interface loosening. Hence, to develop a more suitable vibrometric 
approach for transfemoral implants, we first need to investigate the effect of bone degradation on 
dynamic responses and identify the vibrational characteristics that are most sensitive to the change 
of boundary condition.   

This paper aims to computationally investigate the potential of monitoring bone degradation-
induced transfemoral implant looseness using vibration signals. This paper studies the transient 
response of a bone-implant construct using cross-spectrum analysis and the results indicate that 
the first torsional mode is the most sensitive to cortical thinning-induced loosening. 
Materials and Methods 
This computational study investigates a simplified femur bone model to explore potential useful 
characteristics arising from loosening and cortical thinning. Muscles, hip joints, and ligaments are 
ignored in the analysis to simplify the dynamic response. The femur bone is assumed to be 
amputated 250 mm above the knee, representing a common case of resection level [29]. As shown 
in Fig. 1a, the femoral shaft is simplified to a hollow cylinder with 25 mm and 35 mm for inner 
and outer diameter separately. Additionally, cortical thinning due to stress thinning will be 
simulated in such a way that the distal shaft is gradually tapered by rotational material removal 
(see Fig. 1b). The percentage of removed bone volume and shaft volume is used to quantify the 
extent of bone loss.  
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Figure 1:(a) The simplified femur with inserted implant and (b) The mesh of a bone-implant 

construct with a 15% bone loss amount. 
The geometry of implants and designed intramedullary length differs across the different 

implants. For Integral-Leg-Prosthesis (ILP) implants, the length ranges from 132 mm to 180 mm, 
while for standard Osseointegrated-Prosthetic-Limb (OPL) implants, the insert length is 160 mm 
and a custom-made implant that is lower than the standard insert length can be designed for patients 
who have insufficient stumps length [29-31]. The Implant diameter varies from 14 to 25 mm [31]. 
In the present work, a cylindrical implant with a smaller insert length (120 mm) is employed 
because the actual effective contact region is smaller than the designed contact. The material of 
implants is titanium alloy due to its good biocompatibility and low rigidity compared with other 
alloys [32]. The material properties of bone and implant are listed in Table 1.  

 
Table 1 Material properties of the bone and implant 

Material Young's modulus (GPa) Poisson's Ratio  
Cortical bone 17.6 0.3 
Spongy bone 13 0.36 

Titanium alloy 110 0.33 
An appropriate contact model that can represent the implant boundary conditions is important 

for the accuracy of the finite element (FE) analysis. For the OPL and ILP implants, friction is the 
main mechanism for connecting bone and implants after the first surgery, whereas bonded contact 
is commonly used in many FE simulations [1, 8, 9, 16, 29]. There is no sliding and separation of 
the contact elements in bonded contact. Hence it is acceptable to use this contact condition when 
the implant can be assumed as fully osseointegrated. Depending on the assumptions and aim of 
the research, frictional contact can be more suitable than bonded contact. Weinans [33] compared 
the stress shielding effect of femoral hip prostheses using bonded and press-fit contact and 
suggested the press-fit stem would lead to a smaller amount of bone loss than fully bonded steam. 
His study shows that the press fit contact is more appropriate when prestressing effects are 
important in FE analysis. In this study, the change of bone geometry will influence the stress field 
of bone and subsequently alter the clamp pressure on the implant. To reflect the looseness resulting 
from the geometry change, the frictional contact condition is more appropriate than bonded 
contact.  

Two cases with different contact conditions between bone and implant are investigated. First, 
bonded contact is employed to represent the case of a fully osseointegrated implant under bone 
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resorption, which is designed to prevent the nonlinear effect originating from loose contact and 
only investigate the consequence of bone resorption. Next, over-fit contact with a 0.4 frictional 
coefficient was employed to explore the nonlinear behavior when cortical thinning is assumed to 
also lead to loosening at the bone-implant interface.  

The value of interference fit is important to implant stability since lacking primary fixation will 
directly hinder the bone osteointegration process [12]. The actual value of performed interference 
fit is unknown because it is highly determined by surgeons’ practical skills. It is believed that the 
actual value is typically lower than a 100 µm because an effective offset larger than this value 
could lead to femoral canal fracture, and it is suggested that a realistic range is from around 0.05 
mm to 0.1 mm [34]. In the present work, an over-fit value of 0.05 mm for the implant diameter is 
assumed, along with a friction coefficient of 0.4, based on the value reported in [35].  

ANSYS2021 Transient Structural (Ansys, Inc) was used to determine the transient response of 
bone implant structure. A global mesh size was determined to be 2.2 mm based on a mesh 
convergence check for the base frequency with a 5% convergence error. An example of the FE 
mesh is shown in Fig. 1b. In all cases, the proximal end of the femur is fixed [1, 36]. To excite all 
vibration modes, impact forces are applied on the distal end of the implant in x, y, and z directions, 
and at the same time, an axial torque is also applied at the distal end of implant. The time profiles 
of all excitation loads are the same, having a very short duration of 1.6e-4s to provide a wide and 
flat frequency excitation. Transient vibration responses are probed through accelerometers placed 
at two locations at the distal part of the implant, as shown in figure Fig. 2. Cross-spectrums 
between the signals probed from two accelerometers are further calculated for determining mode 
shapes and resonance frequencies.  

 
Figure 2. Location of the two accelerometers, shown as A and B, placed diametrically opposite 

each other, to facilitate the identification of torsional modes. 
Results and discussion  
The cross spectra of case 1 and 2 are plotted in Fig. 3 and Fig. 4 respectively. There are nine 
frequencies that can be identified from the frequency peaks in the amplitude of cross power 
spectral density (CPSD). The mode shape of the fifth frequency can be considered as torsional in 
that its corresponding phase angle in the Y-axis direction is 180 degrees, indicating that the two 
accelerometers are moving in the opposite direction.  

The bonded contact condition excludes the possible non-linear effect that results from frictional 
contact. Fig 3 shows that the frequency of modes 1, 2, 5, and 6 increases as the amount of bone 
loss resulting from cortical thinning increases, while the seventh, eighth, and ninth frequencies 
decreases. The first torsional mode (Mode 5) is the most sensitive one to the amount of bone loss. 
This mode shifts from 2475 Hz to 2660 Hz (7.47% relative increment, 185Hz absolute increment) 
as the relative bone loss amount increased from 0% to 22.5%. Less absolute frequency changes 
are observed in mode 8 and mode 9 with 100Hz and 165Hz absolute frequency shifts, respectively. 
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Mode 6 is moderately affected by cortical thinning, with its frequency increasing from 2785 Hz to 
2855Hz (70Hz difference). 

In case 2, the friction stress at the contact will change with deformation during the impact test, 
leading to a nonlinear contact behavior. A nonlinear system can be difficult to predict because a 
small perturbation in the system may change the response significantly [37]. The vibration of rods 
with bilinear hysteresis boundary condition was explored by Balasubramanian et al. [38]. They 
found the resonant frequency of the rod decreases with the level of excitation due to the softening 
property of bilinear stiffness, suggesting that the frequency response of a nonlinear system was not 
invariant and can change with the level of excitation energy. By examining the shape of the 
amplitude spectra in Figure 4, no significant softening or hardening effect could be observed, even 
though the excitation level along the longitudinal axis in this study is much higher than the value 
(780N) [39] recorded during normal walking activities. The vibration response of the bone and 
implant construct with press-fit contact under 22.5% bone loss can be assumed as linear.   

Compared with the results of case 1, the frequency of all modes in case 2 decreases due to 
decreasing stiffness attributable to contact loosening. The effect of bone loss amount on frequency 
shift in case 2 is similar to the effect in case 1.  When bone loss amount increases, the first torsional 
mode (mode 5) still has the largest increment among all the modes. This mode shifts from 2395 
Hz to 2575 Hz (7.52% relative increment, 180Hz absolute increment). 

 

 
Figure 3. Cross-spectrum of case 1 with bonded contact condition 
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Figure 4. Cross-spectrum of case 2 with frictional contact condition. 

In both cases (with and without contact loosening), the first 2 fundamental vibration modes are 
bending modes and no significant frequency shifts can be identified in these modes, indicating that 
they are not sensitive indicators of bone loss. Compared with mode 5 and mode 6, the high-
frequency modes (mode 7, 8, 9) are significant but less affected by bone degradation. Even though 
the higher frequency modes are found to be generally more sensitive than fundamentals 
frequencies, such a phenomenon may not be observed in human limbs because the existence of 
muscles and tissues can damp out high frequencies.  

  The configuration of two-extracorporeal sensors placed 180° apart relative to the bone-implant 
axis (cf. Fig. 2) aims to deliver a non-invasive and continuous implant monitoring. The 
effectiveness of this setup is demonstrated in this paper. The torsional mode (fifth mode) can be 
successfully identified through cross-spectral analysis of transient responses collected by these 
two sensors. The results of this computational study show that when cortical thinning happens, the 
bone-implant construct can have a special pattern of modal shifts. The frequency of some of the 
vibration modes increases as bone loss amount increases. Bone resorptions can change both modal 
stiffness and modal mass of bone. When the modal mass decreases faster than the modal stiffness, 
the natural frequency of the bone-implant construct can increase. The result in this paper also 
indicates that the first torsional mode is the most sensitive to bone loss-induced loosening. These 
findings suggest that a suitable loosening index could be established using the modal information. 
An experimental program to verify the present simulation results is currently under way.  
Conclusion 
This computational study investigates vibration responses of a bone-implant construct under 
progressive bone degradation using a two-sensor setup. The results suggest that cortical thinning 
can influence the dynamic response of the implant in a unique pattern. And the changes in the 
frequency of the first torsional mode can provide a sensitive indicator, which increases by 7.52% 
as the bone loss amount increases by 22.2% regarding the press-fit contact, indicating the potential 
for non-destructive monitoring of bone degradation induced implant loosening using a vibration 
method.  
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Abstract. Researches on grout defects detection in prefabricated structures with rebars connected 
by sleeves are few at present. This study presents a nondestructive grout defects detection method 
based on wavelet packet analysis. An experiment is carried out on a prefabricated concrete frame 
with external sinusoidal excitation applied. Furthermore, structural acceleration responses are 
collected, and defects detection index the percentage of energy transfer (PET) is proposed based 
on wavelet packet analysis to identify the grout defects degree in sleeves and reasonable results 
are obtained. 
Introduction 
Prefabricated structures are constructed widely with advantages of fewer labors, lesser 
environmental pollution and better quality compared with cast-in-situ structures [1,2]. The joint 
connection methods in prefabricated structures mainly include the grout sleeve, the grout anchor 
and the machinery [3], in which grout sleeve connection is the most widely adopted in China. 
However, it is noticed that the grout defects in end sleeve caused by the leakage of slurry, the grout 
defects in middle sleeve caused by incompletely discharging air, or the eccentric defect of the steel 
rebars usually exist in in practical engineering structures that will affect the structural safety [4]. 
Therefore, several researchers carried out studies on detect grout defects with different methods. 

The X-ray technology was used by Zhang et al. to test grouting compactness of sleeves in 
reinforced concrete shear walls, and results indicated that portable X-ray could clearly determine 
the shape of sleeves, the shape and lapping of steel bars, grouted area and hollow area [5]. Based 
on propagation paths of ultrasonic wave, ultrasonic wave amplitude was analyzed by Nie et al. to 
detect the density of grout in steel sleeves [6]. Liu carried out a series of experiments on grout 
sleeve specimens with different types and different grouting compactness based on impact-echo 
method, and results showed that the method was feasible to detect the grouting compactness of 
grout sleeve to some extent, but further research should be explored to improve the accuracy [7]. A 
hole-drilling method combined with endoscopy was proposed by Li and the quantitative 
assessment of the grouting plumpness of sleeve was realized [8]. 

It is noticed that the existing methods for grout defects identification have limits of expensive 
testing equipment, complex operation, or destructive detection. Accordingly, this paper proposes 
a nondestructive method based on dynamic excitation and wavelet packet analysis for grout defects 
identification in sleeves of a prefabricated frame. The experiment is conducted on a prefabricated 
concrete frame with column rebars connected by grout sleeves. By analyzing the structural 
acceleration responses based on wavelet packet, defects detection index the percentage of energy 
transfer (PET) is proposed to identify the grout defects in sleeves and good results are obtained. 
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Theory 
Energy Spectrum Vector. Structural dynamic responses (e.g., the natural frequency, stiffness and 
acceleration) are generated once a structure is exerted external excitation. It is noticed that the 
response signals of a destructive structure are different from a nondestructive structure, resulting 
in the signal frequency components are redistributed. Wavelet packet decomposition is a refined 
signal analysis method that can improve the time-frequency resolution by decomposing the low-
frequency signal and high-frequency signal simultaneously [9]. Through extracting the energy 
value of each frequency band, the characteristic vectors are formed to identify structural defects. 

(1) x represents the structural response signal, which is decomposed by wavelet packet into j 
layers.  

(2) 𝐸𝐸𝑗𝑗𝑖𝑖 represents the energy of i-th node in the j-th layer calculated according to Eq. 1. 

2 2,

1

j

i i k
j j

i

E x
=

= ∑ .                                                                                                                       (1) 

where xj
i,k(k=1,2,…, n) represents the amplitude of discrete point in reconstructed signal; n 

represents the number of discrete points. 
(3) Energy spectrum vector is constructed, as shown in Eq. 2. 
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j

j j jT E E E=  .                                                                                                             (2)                                

Wavelet Function. The wavelet function has characteristics of orthogonality, local property in 
time domain and nondestructive property in signal reconstruction [10]. Accordingly, sym8 is chosen 
in this paper, and the corresponding wavelet function and scaling function are seen in Fig. 1. 

  

(a) Wavelet function (b) Scaling function 
Figure 1. Sym8 function 

Decomposed Level. As the signal decomposed layer increases, structural defects detection 
becomes more sensitive, but it cost longer computing time. Therefore, cost function is defined in 
Eq. 3 to select appropriate decomposition layer to construct a reasonable energy spectrum. The 
reasonable decomposition level meets the condition that the smaller SL�Ej� and shorter computing 
time. 
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Defects Detection Index. Based on wavelet packet decomposition, signal energy in each 
frequency band is extracted and combined to obtain the defect detection index. Li and Sun [11] have 
shown that the changes of energy in each frequency band can effectively identify the defects in 
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frame structure. Therefore, a defects detection index percentage of energy transfer (PET) is 
proposed in Eq. 4. 

2
, ,

2 2
1

, ,
1 1

1 100
2

j

j j

i i
j d j n

i i i
j d j n

k k

E E
PET

E E=

= =

= × − ×∑
∑ ∑

.                                                                                (4) 

where Ej,d
i  represents the energy of i-th node in the j-th layer in destructive structure, Ej,n

i  represents 
the energy of i-th node in the j-th layer in nondestructive structure. 
Experimental Study 
Experimental Model. As presented in Fig. 2, the experimental structure is a 1/2-scaled 
prefabricated concrete frame with two floors, in which column rebars are connected by grouted 
sleeves. The concrete compressive strength is 25 MPa, and the yield strength of longitudinal 
reinforcement and stirrup is 400 MPa. 

 
Figure 2. Experimental model 

Layout of Defects, Excitation and Monitoring Points. Several sleeves in the first floor are not 
grouted compactly due to constructional deviation. Artificial initial sleeve grout defects are in the 
second floor, which is implemented by not grouting at all.  

Fig. 3 presents the layout of defects, excitation points (recorded as EP) and monitoring points 
(recorded as MP) in the second floor. The hollow circle in column represents the sleeve is not 
grouted at all, and the black circle represents the sleeve is intact grouted. There are six designed 
cases totally, and in every case one column is destructive while the other one is nondestructive. To 
be specific, in columns No.2, No.4, and No.6, there are 3, 1, 2 hollow sleeves respectively, and all 
sleeves are intact grouted in columns No.1, No.3, and No.5. Comparing the cases 1-3 in structural 
longitude direction, defects degree in case 1 is the most severe, followed by case 3, and the least 
is condition 2. Comparing the cases 4-6 in structural transverse direction, defects in case 5 is the 
most severe, followed by case 6, and the least is condition 4. Corresponding the six cases, there 
are six EPs totally, which are in the middle of the beam upper surface. 

The monitoring points are on the column facade along the height. Taking case 5 as an example, 
there are both four MPs in the two columns, where MP1-MP4 located in nondestructive column 
No.5, MP5-MP8 located in destructive column No.2. MP1 and MP5 form the pair-wise monitoring 
points, recorded as MP1_5. Similarly, pair-wise monitoring points MP2_6, MP3_7 and MP4_8 
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are obtained. In each case, the distance of MP1_5, MP2_6, MP3_7 and MP4_8 from the column 
bottom are 20 mm, 320 mm, 640 mm, and 960 mm, respectively.  

Experimental Instruments. In the experiment, external sinusoidal excitation with max amplitude 
200 N is applied using the vibration exciter, signal source, and power amplifier. Acceleration 
sensors are patched on the monitoring points, at the same time, the data acquisition system of 
Beijing Oriental vibration and noise technology research institute is used to collect acceleration 
responses with acquisition frequency 1024 Hz. Taking case 5 as an example, the arrangement of 
experimental instruments is showed in Fig. 4. 

 
Figure 3. Layout of defects, excitation and monitoring points 

 
Figure 4. Arrangement of the experimental instrument in case 5 

Results and Analysis 
Acceleration Responses. The variational trend of acceleration responses of all monitoring points 
in cases 1–6 are similar. Taking case 4 as an example, Fig. 5 shows acceleration curves of MP1-
MP8 (all are representative excerpts), in which the blue curves are obtained by MP1-MP4 located 
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in nondestructive column, and the red curves are obtained by MP5-MP8 located in destructive 
column. It is observed that the amplitudes of pair-wise points MP1_5, MP2_6, MP3_7, and MP4_8 
are different, indicating the grout sleeve defects have influenced structural acceleration responses. 

  

(a) (e) 

  

(b) (f) 

  

(c) (g) 

  

(d) (h) 
Figure 5. Acceleration responses of case 4 
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Decomposed Level. Taking the acceleration responses of MP6 in cases 1 and 6 as examples, 
cost function SL�Ej� under decomposed levels 9-15 are calculated according to Eq. 3, as shown in 
Table 1. It is seen that with decomposed level increases, SL�Ej� becomes smaller, while longer 
computing time cost. It is reasonable to adopt decomposed level 13 with relatively smaller cost 
function and shorter computing time. 

Table 1. Cost function SL�Ej� and computing time 
Decomposed level 9 10 11 12 13 14 15 

Case 1 
SL�Ej� 
[×10-3] 

3.10 3.10 3.00 2.80 2.10 1.90 1.20 

Time[s] 1.27 2.91 7.20 19.52 55.25 281.28 1073.49 

Case 6 
SL�Ej� 
[×10-3] 

12.2 12.2 12.1 11.9 11.7 11.0 9.90 

Time[s] 1.27 3.19 7.11 19.36 55.17 278.89 1060.98 

Defects Detection Index. Defects detection index PET is calculated according to Eq. 4 based 
on the acceleration responses of pair-wise MPs, and the indexes of MP1_5, MP2_6 MP3_7 MP4_8 
are recorded as PET1, PET2, PET3, and PET4 respectively.  

Table 2 shows the PET indexes of every case. As cases 1-3 and 4-6 are separately located in 
the structural longitude and transverse direction, cases 1-3 and 4-6 are analyzed individually. 

Table 2. PET values in cases 1-6 
PET [%] Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

PET1 54.17 31.04 42.96 0.88 15.40 2.411 
PET2 20.31 9.07 20.43 0.79 12.59 1.79 
PET3 20.16 6.03 20.15 1.19 11.86 4.05 
PET4 17.25 13.48 24.99 1.24 10.68  4.54 

Firstly, cases 1-3 are analyzed. Compared PET1 in every case, the index 54.17 in case 1 is 
biggest, followed by 42.96 in case 3, and the smallest is 31.04 in case 2. The same law is founded 
in PET3. At the same time, it is noticed that grout defects degree in case 1 is the most severe, 
followed by case 3, and the least is case 2. That is to say, PET1 and PET 3 are increased with grout 
defects degree except for PET2 and PET4. In addition, cases 4-6 are analyzed. PET1 values in case 
4, 5, 6 are respectively 0.88, 15.40, 2.411, and grout defects in case 5 is the most severe, followed 
by case 6, and the least is case 4. Therefore, PET1 value becomes larger with defects degree 
increases, and the same law also exist in PET2, PET3, and PET4.  

In general, defect detection index PET shows a good sensitivity to grout defects except for 
PET2 and PET4 in cases 1-3. Furthermore, total defects detection index PETs is chosen, as 
presented in Eq. 5. 
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(a) PETs in cases 1-3 (b) PETs in cases 4-6 
Figure 6. PETs values in cases 1-6 
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Fig. 6 shows PETs in cases 1-3 and 4-6, it is seen that total detection index PETs is positively 
correlated with column grout defects degree, showing a good grout detection result in every case. 
At the same time, it is noted that parts of sleeve grout in the first floor are destructive, which proves 
that the proposed detective method is not influenced by the defects of another floor obviously. 
Conclusion 
Experimental nondestructive detection on grout defects in a prefabricated concrete frame with 
wavelet packet analysis is carried out in this paper, and the main conclusions are drawn as 
following: 

(1) The acceleration responses of the pair-wise monitoring points, respectively located in 
destructive column and nondestructive column, are different in amplitudes. 

(2) Defects detection index PET cannot well identify the grout defects in individual cases, while 
total defects detection index PETs shows a good grout detection result having positively 
correlation with column grout defects degree in all cases. 

(3) The effect of proposed grout defect detective method is not influenced by the defects of 
another floor obviously. 
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Abstract. As the use of composite materials continues to expand within the aerospace domain and 
elsewhere, the demand for rapid impact damage detection capabilities is also increasing. Line-scan 
thermography (LST) is a promising inspection modality where a light source focused to a line is 
swept over a structural component and sub-surface damage is highlighted as a thermal signature 
detectable via infrared imaging. This paper presents a rapid LST robotic inspection system 
combining ground-based robotics, advanced infrared imaging technology and dynamic image 
processing that is capable of achieving detection of barely visible impact damage in composite 
structures. The robotic system is evaluated experimentally on carbon fibre composite laminate 
specimens containing synthetic flat-bottom-hole defects, at scan speeds ranging from 25 mm/s to 
100 mm/s. A study into the effect of positional instability on the capacity of the inspection system 
to detect damage is undertaken by introducing controlled perturbations in the robot path. Finite 
element modelling is also presented and verified against experimental results. Understanding the 
effect of positional instability on defect detection is important as work progresses towards an aerial 
drone-based implementation of this inspection capability.  
Introduction 
The use of carbon-fibre-reinforced polymer (CFRP) composite components in aircraft construction 
continues to grow, driven by significant performance and sustainment-related advantages relative 
to metals, which include higher strength and stiffness-to-weight ratio and increased resistance to 
corrosion and fatigue [1]. One comparative disadvantage of CFRP is its increased vulnerability to 
impact from events such as accidental tool drop, runway debris and bird strike, which can result 
in barely visible impact damage (BVID). BVID, by definition, is difficult to detect via visual 
inspection yet the degradation caused by low-velocity impact can lead to significant strength 
reduction, and if not managed, eventual component failure [2, 3]. Development of improved 
methods of BVID detection and quantification is of significant interest to aircraft operators, 
especially rapidly deployable methods that minimise aircraft down-time. This need has driven 
investigation of using remotely driven ground and aerial robotic platforms for detecting and 
evaluating structural damage.   

The use of uncrewed aerial vehicles (UAVs) for detection of visible structural damage in 
aircraft is well established. However, such capabilities are currently limited to visible surface 
defects and generally used as a tool to aid routine visual inspection performed by maintenance 
ground crew [4]. BVID detection is currently not achievable using such an approach.  Instead, 
traditional non-destructive inspection (NDI) methods are used, such as liquid penetrant, ultrasonic 
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testing, acoustic emission, eddy current testing and thermography [5], many of which are laborious 
and time consuming to implement.  

Automation and robotic implementation of traditional NDI methods offers scope for improved 
inspection speed and coverage. However, adapting some of these to automation is not 
straightforward. Well-established NDI methods such as ultrasonic testing are relatively slow, 
especially when implemented manually, and because they typically require precise positioning and 
the use of an ultrasonic couplant, are not well suited to rapid wide-area inspection. Active 
thermography, a wide-area non-contact technique, provides a more encouraging basis for ground 
and aerial robotic deployment, as demonstrated in recent studies [6-17].  

Several of these previous robotic implementations involve line-scan thermography (LST), e.g. 
[11-13, 15-17]. LST utilises a focused light source to generate a line of heat which is moved at 
constant speed over the test area. An infrared camera moving in unison with this heat source 
records the temperature response in the wake of the source [12]. The rate of heat dissipation is 
typically lower in regions of BVID, thus causing a corresponding ‘hot spot’, which can be 
highlighted using image processing methods.  

A robotic implementation of LST to the inspection of BVID in polymer composite panels was 
reported previously in [17]. This implementation consisted of several key parts. The first is an 
infrared image processing method called dynamic pulse phase thermography (DPPT), detailed in 
[15], which simplifies the identification of defect signatures in LST data. As its name suggests, 
DPPT is a dynamic adaptation of pulse phase thermography (PPT) [18], whereby raw 
thermographic image frames from an LST inspection are processed via a fast Fourier transform 
(FFT) without the intermediate step of pseudo-static image reconstruction, which is typically 
required by other LST data processing algorithms [13]. In DPPT, BVID and other near-surface 
defects produce a characteristic dipole-shaped signature in the phase spectrum [15]. Another key 
element of this inspection capability is a high operating temperature (HOT) infrared detector, 
which previous work [16] has shown can match the performance of a conventional cooled photon-
detector but with significantly reduced size, weight and power consumption, making it better suited 
to robotic applications [16].   

The present paper reports on new work quantifying the performance of this robotic inspection 
capability, focusing on the effect of scan path instability on defect detectability using LST. Such 
instability is potentially a significant source of performance degradation for LST, especially for 
aerial drone implementation, which is the next step in the development of this capability.  
Experimental Methodology 
Thermographic Inspection Ground-based Evaluation Robot (TIGER) 
The robotic platform used in the present work is called TIGER (Thermographic Inspection 
Ground-based Evaluation Robot), see Fig. 1. TIGER is approximately 295 x 355 x 140 mm in size, 
weighs ~20 kg, and is configured as a four-wheeled vehicle with two DC motors driving the front-
right and back-left wheels, with the remaining two wheels allowed to spin freely. The robot is 
controlled by a Raspberry Pi 4b, which drives both motors, two ILR2250 Micro Epsilon laser 
distance sensors and a FLIR Neutrino LC HOT medium-wave infrared imager detailed previously 
in [14,15]. The luminaire consists of a 150 W quartz-halogen lamp and custom polished aluminium 
reflector designed to produce a line source with a beam width of approximately 20 mm (full-width 
at half maximum) at a focal length of 500 mm.  

A typical BVID signature obtained from TIGER is shown in Fig. 2. In this example, the 
signature corresponds to a 10 J impact on a carbon-fibre laminate scanned at a velocity of 25 mm/s 
and has the characteristic dipole shape mentioned previously. While detection of BVID is the 
ultimate objective of TIGER, this particular study focuses on laminates containing only synthetic 
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flat-bottom-hole (FBH) defects, as these produce signatures with a consistency and predictability 
that is advantageous for the particular objectives of this study.  

 

 

 

Fig. 1: TIGER platform for LST 
experimentation with luminaire, IR 
detector and laser distance sensors 

mounted. 

Fig. 2: At top is a photograph of test panel 
containing BVID with impact regions circled 
and an ultrasonic C-scan image of damage 

caused by a 10 J impact. At bottom is a 
corresponding DPPT signature. 

FBH Test Specimens 
Experimentation was undertaken on two carbon-fibre composite laminates each comprising 16 
plies of M18/1/43% G939 carbon-epoxy biaxial material in a ([0/-45/45/0]4) layup with a cured 
thickness of 3.8 mm. FBH defects of varying diameter and depth were machined into one side in 
the layout illustrated in Fig. 3. For the baseline scans (non-perturbed scan path) these laminates 
were inspected together in the end-to-end arrangement shown in Fig. 3, while for the perturbed 
scans only the panel containing the 10 mm and 5 mm FBH was used.   
 

 
Fig. 3: Underside of two composite panels each containing four FBH defects. Relevant FBH 

dimensions are listed on the right. 
Scan Path Perturbation 
In the present study, perturbations in TIGER’s scan path were limited to a sinusoidal deviation 
perpendicular to the scan motion. This deviation was achieved by creating a difference in the left 
and right motor speeds, in accordance with the forward kinematics equations for a differential 
drive robot [19,20]. For a prescribed scan velocity and desired perturbation amplitude and period, 
the corresponding motor speeds can be determined from Eq. 1-4. The position of the robot during 
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each scan was tracked using measurements obtained from the aforementioned laser distance 
sensors, and then checked against a marked trace of TIGER’s motion. 
 

δ(𝑡𝑡) = Ap ⋅ sgn(sin(𝜔𝜔𝑡𝑡)) sin(2𝜔𝜔𝑡𝑡) (1) 
𝜔𝜔 =

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜆𝜆

𝜋𝜋 (2) 
 

𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)  =  𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛿𝛿(𝑡𝑡) (3) 
𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙(𝑡𝑡)  =  𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛿𝛿(𝑡𝑡) (4) 

 
Here, δ(t) is a time dependent sinusoidal perturbation in the linear scan speed,  vscan, which 
translates to corresponding speed curves for the left and right motors, vleft(t) and vright(t) 
respectively. The amplitude of perturbation is represented by Ap, and the frequency of perturbation 
is represented by ω, which depends on vscan and the wavelength of the perturbation, λ.  

Three specific perturbation cases were examined, defined according to the detector path 
orientation at the moment a defect or set of defects appear mid-frame, as illustrated in Fig. 4. In 
this figure, the red trace represents the centroid of TIGER and the black trace the path of the 
detector mounted 300 mm behind the centroid. A wavelength of 790 mm was selected along with 
an amplitude of 10 mm, corresponding to twice the length of the test panel and the diameter of the 
largest considered FBH, respectively.  

 

 
Fig. 4: Path traces for TIGER and detector at 25 mm/s. Arrows indicate detector direction over 

FBH defects for the targeted perturbation paths.  
 
Results and Discussion 
Scans were first undertaken without perturbing the scan path, to establish a baseline for the 
detection performance of TIGER. While scans were performed at a range of velocities, for the sake 
of brevity, only results corresponding to 25 mm/s and 100 mm/s are presented, as these represent 
practical velocity limits for the present implementation of TIGER. As shown in Fig. 5, all FBH 
defects, including the 5 mm diameter case, are detectible at a 25 mm/s scan speed. At 100 mm/s, 
the deepest defects produce weak but still discernible signatures for the 15 mm and 20 mm 
diameter cases, while shallower defects are detectible at diameters 10 mm and above.  
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Fig. 5: DPPT dipole signatures for decreasing FBH diameters at 25 mm/s and 100 mm/s scan 
speeds, obtained using TIGER. Top and bottom signatures in each image correspond to FBH 

defects 1.5 mm and 1 mm below the surface, respectively (see Fig 3). 
 

DPPT results for the three scan path orientations outlined in Fig. 4 are presented in Fig. 6 and Fig. 
7 for the 10 mm and 5 mm diameter FBH defects, respectively, and correspond to a scan speed of 
25 mm/s. Relative to the baseline signature, the effect of the considered perturbations on defect 
detectability is small enough to be considered insignificant. As expected, the perturbations produce 
a signature rotation and translation consistent with the scan orientation at the moment of defect 
traversal. Interestingly, the ‘Turning Point’ and ‘Left-to-Right' cases produce similar results, which 
is due to a similarity in the detector’s scan path over the processing time-window. A slight increase 
in background noise is observed in the DPPT perturbation results relative to the baseline scans, 
especially evident in the 5 mm case. This could potentially be due to the velocity of the heat source 
no longer being constant as it moves in an arc over the defects, or from vibrations induced in the 
system during turning of the robot, which caused noticeable wheel slippage.  

While only modest changes in defect signature were observed in this study, the perturbations 
applied were of relatively small amplitude and large wavelength compared to the defect size. This 
constitutes a significant limitation in the present study as aerial implementations of this inspection 
capability are likely to also contain higher amplitude and broader wavelength perturbations. It is 
surmised that relatively high amplitude and short wavelength components should cause more 
significant signature degradation than observed here.  Unfortunately, such components were not 
able to be studied due to limitations in the present experimental arrangement. A fixed Cartesian 
robot without these limitations has been developed and will be used to undertake a more 
comprehensive perturbation study, the results of which will be reported elsewhere. 
 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 50-58  https://doi.org/10.21741/9781644902455-7 

 

 
55 

  
Fig. 6: DPPT dipole signatures for 10 mm diameter FBH defects for three perturbed scan path 
orientations (see Fig. 4) compared to baseline scan. Top and bottom signatures correspond to 

FBH defects located 1.5 mm and 1 mm below the surface respectively. 
 

 
Fig. 7: As in Fig. 6 but for 5 mm diameter FBH defects. 

 
It was remarked previously that synthetic FBH defects are advantageous for a perturbation study 
of this kind because of their consistency and predictability. Predictability is important from the 
viewpoint of being able to supplement experimental investigation of the effects of path instability 
with numerical investigation using predictive modelling, which has the advantage of being able to 
consider perturbation scenarios that would be difficult to reproduce experimentally. To this end, 
appropriate multi-physics simulations were undertaken to determine whether the perturbation 
effects visible in Fig. 6 and Fig. 7 could be reproduced in corresponding model predictions.  

Using the COMSOL 5.5 software package, the FBH panel from Fig. 3 containing the 10 mm 
and 5 mm FBH was modelled with an additional material buffer of 50 mm in the y direction, to 
account for times where the detector field of view (FOV) travelled off the panel. Material 
properties used for this simulation can be found in previously reported work [16]. Fig. 8 (left) 
shows a surface temperature map of the modelled FBH panel corresponding to a time when the 
detector FOV was centred over the 10 mm defect. This surface data was then remapped in 
MATLAB to introduce a simulated “Right-to-left” path orientation (from Fig. 4) to match the 
experimental case. A comparison of the DPPT results for the modelled dipole to one obtained from 
TIGER is given to the right of Fig. 8. The TIGER result shows a translation of the lower dipole in 
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the scan direction relative to the upper dipole. This offset is not reflected in the simulation since it 
did not account for the physical rotation of the camera and instead considered only the x and y axis 
translation in the given path. Notwithstanding, the predicted dipole signatures generally correlate 
well with the corresponding experimental results, providing confidence that modelling can in 
future be used to make predictions of the effect of path variation on the thermal signature of a 
defect. 

 
Fig. 8: (Left) Multi-physics model prediction of surface temperature distribution for a panel with 
10 mm and 5 mm diameter FBH defects (from Fig. 1) scanned at 25 mm/s with a 20 mm peak-to-
peak perturbation amplitude. Yellow line is a trace of TIGER’s centroid. (Right) Comparison of 

FBH signatures for 10 mm diameter FBH from simulated and experimental scan results.  
 

Conclusions 
A ground-based robotic line-scan inspection platform has been evaluated on composite laminates 
containing synthetic flat-bottom-hole defects under perturbed scan path conditions to determine 
the effect of robot path instability on defect detectability. The study focused on FBH defects of 
varying diameter and depth inspected under three perturbed path configurations. In each 
considered case, the scan path perturbations resulted in rotations and translations of defect 
signatures, which correlated with the detector path on approach to the respective defects. No 
significant signature degradation was observed that might impair detectability. The scope of this 
perturbation study was limited by experimental constraints that have since been removed, 
permitting a more extensive study to be undertaken, the results of which will be reported in due 
course. A predictive modelling capability was also developed and validated against experimental 
data. This tool will be used to inform future experimentation.  
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Abstract. The performance of track conditions must be thoroughly assessed to ensure the safe 
operation of the train that travels through the track. The Track Quality Index (TQI) is used to 
determine the condition of the railway track. The TQI value is a statistical summary of track 
geometry parameters measured over a specified track length. There are several methods used to 
analyze TQI including the Indonesian Railway standard (PT. KAI). The KAI’s analysis method of 
the TQI is a sum up of four parameters which are alignment, longitudinal level, cross-level, and 
track gauge. Moreover, TQI is used to determine the speed limit allowed for the train to pass 
through the track. A multibody dynamic system simulation was recently performed as a reference 
to compare track quality assessments based on driving safety and vertical loads on rails, in which 
one of the outputs is the speed limit. This result shows that the speed limit based on the multibody 
system is slightly lower at certain segments compared to the TQI.  
Introduction 
In the last two decades, the train has become one of the most popular modes of land transportation 
in Indonesia, appealing to people of all socioeconomic backgrounds. As a mode of transportation, 
trains are quite efficient as they have used less land per passenger as well as environmental impact 
compared with other modes of land transport [1]. Therefore, improving the service quality should 
be considered to maintain passenger satisfaction. This is closely related to the importance of 
monitoring the railway track and rolling stock condition [2]. One of the parameters of user 
satisfaction is the absence of delays and travel time that can compete with private transportation.  
Where the delay will have an impact on the quality of its railway capacity [3]. The travel time will 
be related to the running speed of the train. The higher the speed needed, the better railway track 
condition needed.  

Track Quality Index (TQI) is one of the methods that provides the possibility to assess the 
performance indicators of a railway line. In addition, TQI can also summarize and display the 
condition of most train tracks which can be used to monitor track quality degradation [4]. 
Meanwhile, technological innovations significantly impact developments in transportation 
maintenance, especially railway maintenance. The Multibody System (MBS) is one of the software 
that is used to represent the railway condition such as critical speed, passenger comfort, derailment, 
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wear, and fatigue. It has been widely utilized to analyze the dynamic behavior of rolling stock 
running on arbitrary tracks while arbitrary maneuvers [5].  

Further research is needed on the application of TQI in Indonesia. In this study, analysis was 
carried out in a comparative way using quantitative and descriptive methods. The results of speed 
recommendations based on TQI analysis are compared with vehicle responses from multibody 
dynamics simulation. It is essential to comprehend the value of railway quality in each approach 
as well as the factors that could affect it. 
Experimental Objective  
The Operational Areas or Daerah Operasional (DAOP) of the railway in Java are divided into nine 
operational areas. This study is conducted on Java at several points of train track locations in 
Operational Area Seven (Daerah Operasional (DAOP) VII). The trajectory point under review 
starts from Kertosono - Mojokerto at KM 82 - KM 86. In addition, this location was chosen 
because this segment has expanded to being a double track [3], [6]. The detailed location of this 
case study is shown in Fig. 1. 

 

 
Fig. 1 Operational Area Seven Location (Kertosono – Mojokerto) 

Source: Google Maps 
Literature Review 
Track Quality Index (TQI) Method  
The railway track’s quality and evaluation of its condition will relate to its maintenance. As a basis 
for determining the quality of railways and evaluating their condition, a standard value is needed 
to evaluate the quality of railways called the Track Quality Index (TQI) [4], [7]. The safety risks 
from the trackside and the rail maintenance method on the train depending on the track's 
maintenance and the speed limits of the trains operating on the track [8]. In measuring the track 
quality index, several parameters of the geometry of the railway are needed that affect the 
measurement of the quality of the rail, including the lift, the alignment, the height, the width of the 
track, twist, curvature, and warp [7], [9]–[11].  

In Indonesia, the quality index is obtained by adding up 4 (four) measurement parameters, 
namely crosslevel, alignment, profile, and track gauge. To get the data of these geometric 
parameters, measurements are needed by the train. The measuring train used by PT. Kereta Api 
Indonesia is the EM-120 type [12]. The calculation segmentation depends on the method used, 
including 25-40 meters at every 200 meters [8], [13]. In addition, the quality index can also be 
used to monitor track degradation and summarize most railway track conditions. The rail quality 
index is calculated by taking the standard deviation of the parameters in each segment that has 
been determined. 
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The track quality index is calculated using the standard deviation of each parameter in this 
approach. Eq. 1. is used to calculate its value. 

 

𝑆𝑆𝑆𝑆 = �∑𝑋𝑋𝑋𝑋2−𝑋𝑋𝑋𝑋
2
𝑛𝑛

𝑛𝑛−1
 (1) 

 
Where SD represents Standard Deviation, Xi represents the current value of the data, while n 

represents the number of values in the data.  
The track quality index value is calculated by adding the standard deviation values of each track 

geometry parameter, as shown in Eq. 2. 
 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆2 + 𝑆𝑆𝑆𝑆3 + 𝑆𝑆𝑆𝑆4  (2) 
 
The standard deviation values of the four geometric parameters, namely cross-level, alignment, 

profile, and track gauge, are represented by the values SD1, SD2, SD3, and SD4.  
In calculating the quality of railway, the necessity for a limit is employed to derive the quality 

index. Table 1 shown the speed limit standard implemented by PT. Kereta Api Indonesia based on 
the TQI value calculated using KAI’s method.  

 
Table 1 The standard Track Quality Index assessment [14] 

Number TQI Total Speed (km/hour) Category 
1 <20 100-120 Very Good 
2 20-35 80-100 Good 
3 35-50 60-80 Moderate 
4 >50 <60 Poor 

 
Multibody Dynamic Testing Method 

Technological advances have greatly influenced developments in the field of transportation. 
Assistive applications are being developed to maximize productivity. Especially in the multibody 
dynamics simulation which uses Universal Mechanism (UM). The Universal Mechanism (UM) is 
a software system in the form of modeling the dynamics of railway vehicles by representing 
vehicles with a system of rigid and/or elastic bodies (Multibody System, MBS). This software has 
been made to simulate trains to the computer from the kinematic and dynamic processes of 
different mechanical systems [15]. Examples of bogies of a locomotive model can be seen in Fig. 
2.  

 

 
Fig. 2 Model of Bogie and Locomotive [16] 
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Universal Mechanism Simulation 
Throughout this simulation stage, dynamic testing is performed to analyze 2 (two) aspects: 

driving safety and railway load. Dynamic testing is carried out at various speeds in accordance 
with the universal mechanism standard. Dynamic test simulations were also conducted on 15 
straight railway segments with a track length of 1 km per segment. In addition, each railway 
segment will have a different KAI standard TQI value. 

Driving safety is obtained from the large value of the lateral force on the railway wheel device. 
The simulation variable used is the combination of the right wheels’ lateral forces, which are added 
to the left wheels’ lateral force to obtain the lateral force of each wheel. All simulation results 
analyzed are the lateral forces of the wheels on each bogie. The simulation results are compared 
to the limit of driving safety. The driving safety limit is determined by estimating the lateral load 
weight exerted by the railway wheels on the rails, which can be accomplished using Eq.3 [17]. 

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦𝑦𝑦𝐷𝐷𝑦𝑦𝐷𝐷𝐷𝐷 = 𝛼𝛼 �10 + 𝑃𝑃0
3
� (3) 

Where α is a traction unit, and P0 is the axle load. In addition, the driving safety limit and P0 are 
stated in kN. 

The load assessment on the railway can be done by using the maximum vertical force that 
occurs on the wheels. The simulation variable is the vertical force on each wheel. The vertical style 
of the trained model has 8 wheels on each set. The results of the simulation of the vertical forces 
obtained are compared with the maximum and minimum limits of the vertical forces. The track 
loading limit is determined by calculating the weight of the vertical forces applied by train wheels 
to the rail. This can be achieved by using Eq.4 [17]. 

𝑇𝑇𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑦𝑦𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦𝐷𝐷𝑦𝑦𝐷𝐷𝐷𝐷 = 90 + 𝑇𝑇0  (4) 

Where Q0 is a static load on each wheel of the train. Furthermore, the track loading limit and 
static load are expressed in kN. 
Result and Analysis Discussion 
TQI Analysis 

The data used was obtained from the measuring train. The measuring train is computed in 
segments, which are 200 m long and have 800 data in every segment. The track quality index is 
calculated by adding the standard deviation values of each track geometry parameter using Eq. 1 
and 2 above. After obtaining the standard deviation calculation results, the track quality index 
value can be calculated using the existing method. The TQI value is shown in Table 2.  

As seen in Table 2 above, the TQI value for all segments is below 20, which means that the 
train is allowed to pass at speeds between 100-120 km/hour at that segment. 
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Table 2 TQI values of Kertosono-Mojokerto 
INDONESIAN STANDART 

Trip Segment KM TQI Category Speed Limit 
Ktsn-Mjkt I 82+000 - 82+200 16,1146425 < 20 100-120 km/h 
Ktsn-Mjkt II 82+200 - 82+400 15,8793248 < 20 100-120 km/h 
Ktsn-Mjkt III 82+400 - 82+600 11,2537936 < 20 100-120 km/h 
Ktsn-Mjkt IV 82+600 - 82+800 14,9633809 < 20 100-120 km/h 
Ktsn-Mjkt V 82+800 - 83+000 19,4361028 < 20 100-120 km/h 
Ktsn-Mjkt I 84+000 - 84+200 9,96042939 < 20 100-120 km/h 
Ktsn-Mjkt II 84+200 - 84+400 10,5794153 < 20 100-120 km/h 
Ktsn-Mjkt III 84+400 - 84+600 7,97946557 < 20 100-120 km/h 
Ktsn-Mjkt IV 84+600 - 84+800 18,9112343 < 20 100-120 km/h 
Ktsn-Mjkt V 84+800 - 85+000 16,8108981 < 20 100-120 km/h 
Ktsn-Mjkt I 85+000 - 85+200 10,0887644 < 20 100-120 km/h 
Ktsn-Mjkt II 85+200 - 85+400 6,84086827 < 20 100-120 km/h 
Ktsn-Mjkt III 85+400 - 85+600 10,2196279 < 20 100-120 km/h 
Ktsn-Mjkt IV 85+600 - 85+800 12,835213 < 20 100-120 km/h 
Ktsn-Mjkt V 85+800 - 86+000 9,07318428 < 20 100-120 km/h 
 

The Driving Safety Limit and the Load on Track Result 
Dynamic testing is carried out to analyze two aspects, which are driving safety and the load on the 
railway. Dynamic testing was carried out at several different speeds, 60 km/hour; 80km/hour; 100 
km/hour, and 120 km/hour. In addition, the lateral and vertical loads that occur on the wheels were 
also tested. The maximum lateral load limit deemed to be safe at a certain speed is 25.671kN. 
Meanwhile, the maximum vertical load allowed is 94.273 kN. 
 

Table 3 Lateral and Vertical Load Simulation Results of DAOP VII (Kertosono - Mojokerto) 

Trip Segment KM Lateral Load 
(kN) Speed Limit Vertical load 

Testing (kN) 
Speed 
Limit 

Ktsn-Mjkt I 82+000 - 82+200 

26,80520898 80 km/h 119,3827656 100 
km/hour 

Ktsn-Mjkt II 82+200 - 82+400 
Ktsn-Mjkt III 82+400 - 82+600 
Ktsn-Mjkt IV 82+600 - 82+800 
Ktsn-Mjkt V 82+800 - 83+000 
Ktsn-Mjkt I 83+000 - 82+200 

15,75104199 100 km/h 106,2932344 80 km/hour 
Ktsn-Mjkt II 83+200 - 83+400 
Ktsn-Mjkt III 83+400 - 83+600 
Ktsn-Mjkt IV 83+600 - 83+800 
Ktsn-Mjkt V 83+800 - 84+000 
Ktsn-Mjkt I 84+000 - 84+200 

16,31691406 100 km/h 115,829125 100 
km/hour 

Ktsn-Mjkt II 84+200 - 84+400 
Ktsn-Mjkt III 84+400 - 84+600 
Ktsn-Mjkt IV 84+600 - 84+800 
Ktsn-Mjkt V 84+800 - 85+000 
Ktsn-Mjkt I 85+000 - 85+200 

27,56689844 80 km/h 99,75774219 80 km/hour 
Ktsn-Mjkt II 85+200 - 85+400 
Ktsn-Mjkt III 85+400 - 85+600 
Ktsn-Mjkt IV 85+600 - 85+800 
Ktsn-Mjkt V 85+800 - 86+000 
 
Based on the 100km/hour simulation, there were several segments that went over the vertical 

and/or lateral load limit. For that reason, it is recommended to reduce the speed limit to below 
100km/hour in those segments. 
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The results of lateral and vertical load testing as load limits on the rails and speed limits on each 
track tested can be seen in Table 3. 

 
Table 4 Final Speed Limit Results by DAOP VII Simulation DAOP VII (Kertosono - Mojokerto) 

Trip Segment KM Parameters Speed Limt 
Ktsn-Mjkt I 82+000 - 82+200 

Load on rail 100 km/hour 
Ktsn-Mjkt II 82+200 - 82+400 
Ktsn-Mjkt III 82+400 - 82+600 
Ktsn-Mjkt IV 82+600 - 82+800 
Ktsn-Mjkt V 82+800 - 83+000 
Ktsn-Mjkt I 83+000 - 82+200 

Load on rail 80 km/hour 
Ktsn-Mjkt II 83+200 - 83+400 
Ktsn-Mjkt III 83+400 - 83+600 
Ktsn-Mjkt IV 83+600 - 83+800 
Ktsn-Mjkt V 83+800 - 84+000 
Ktsn-Mjkt I 84+000 - 84+200 

Load on rail 100 km/hour 
Ktsn-Mjkt II 84+200 - 84+400 
Ktsn-Mjkt III 84+400 - 84+600 
Ktsn-Mjkt IV 84+600 - 84+800 
Ktsn-Mjkt V 84+800 - 85+000 
Ktsn-Mjkt I 85+000 - 85+200 

Driving safety, 
Load on rail 80 km/hour 

Ktsn-Mjkt II 85+200 - 85+400 
Ktsn-Mjkt III 85+400 - 85+600 
Ktsn-Mjkt IV 85+600 - 85+800 
Ktsn-Mjkt V 85+800 - 86+000 
 
Meanwhile, the results of driving safety limits and railway loads on the DAOP VII (Kertosono 

- Mojokerto) are shown in Table 4. 
 
Comparison of Speed Limit Calculation Results for Each Method 
 

 
Fig. 3 Comparison of Speed Limits of the Three Methods on the DAOP VII Railway (Kertosono - 

Mojokerto) 
At this stage, the comparison is carried out as a whole and at several points. As illustrated in 

Fig. 3, the TQI value shows the calculation of the TQI for railways using the KAI’s method and 
UM train simulation. The result using the KAI’s method dominated by the "Very Good" category 
for the railway span with a speed limit of 100 km/hour - 120 km /hour and followed by the "Good" 
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category with a speed limit of 80 km/hour - 100 km/hour in one segment. Furthermore, in the 
calculations using the Universal Mechanism (UM) train simulation, the speed is dominated by 80 
km/hour and followed by 100 km/hour in several segments. With this comparison, it is found that 
the suitability of the average speed limit approach with TQI the KAI’s of the UM simulation is 
around 80.58%. Therefore, considering safety, it has been recommended that operating speed at 
Kertosono - Mojokerto in the range of 80 km/hour - 100 km/hour. 
Conclusion 
From the analysis above, it can be seen that the travel speed limit using the simulation is lower in 
some segments compared to when using the TQI analysis. This might happen because the TQI 
speed analysis is based on the standard deviation, meanwhile, the UM analysis method is based on 
a combination of track condition values, which are influenced by lateral and vertical forces that 
occurs on the wheels. Therefore, in determining the speed limit on the Indonesian Railway, it is 
necessary to consider the influence of lateral and vertical loads. 
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Abstract. After destructive natural disasters, it is necessary to quickly grasp the damage situation 
for the initial response. In recent years, studies on the method of the automatic evaluation of 
building damages due to disasters using the convolutional neural network (CNN), which is a deep 
learning methodology for image recognition, were conducted. In these studies, it was clarified that 
a large number of images are necessary to train the CNN with sufficiently high accuracy. However, 
the number of images of damaged building is limited. Therefore, in the present study, we used the 
generative adversarial network (GAN) to automatically generate a large number of imitation 
images of damaged and undamaged buildings and trained the CNN using imitation images to 
obtain a higher accuracy rate of the CNN. Then, the validity of the CNN for judgment of 
“damaged” and “undamaged” using imitation images was confirmed. In addition, photographs of 
actual buildings were input to the trained CNN as test data. 
Introduction 
In order to properly allocate people and equipment for emergency activities and emergency 
response after natural disasters such as earthquakes, it is essential to quickly evaluate the building 
damages after disasters. Usually, the emergency risk judgment and damage classification of 
buildings are visually determined by experts after disasters. However, it tends to take a long time 
to grasp the damage level of all buildings affected, because of the shortage of experts in rapid risk 
assessment and the widespread distribution of the damaged area. For example, in the case of the 
2016 Kumamoto earthquake, damage inspection by May 16 was done for 41,907 buildings, which 
is only approximately 30% of the total number of damaged buildings inspected by June 16 [1]. It 
is difficult to grasp the whole picture of building damages only by human inspection in a short 
period just after massive earthquakes. 

To solve this problem, several studies aiming to shorten the damage assessment period using 
the convolutional neural network (CNN [2]), which is a methodology of deep learning for image 
recognition, have recently been conducted. In these studies, the degree of damage of buildings is 
automatically determined from photographs of the exterior [3]. For training of the CNN, a large 
amount of image data is essential to improve the accuracy of judgment. However, preparing a large 
amount of building damage images is difficult because destructive disasters rarely occur. In order 
to solve these problems, Fujiu et al. [4], Yamaguchi et al. [5], and the present authors [6] have 
used 3DCG models to generate a large number of images of buildings. The present authors pointed 
out that the assessment accuracy of CNNs trained by 3DCG- imitation images was low because 
the similarity between 3DCG building models and actual buildings was low. Time and effort are 
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required to replicate various types of damaged buildings in detail in 3DCG that are comparable to 
those in actual buildings. 

Therefore, in the present study, we use the generative adversarial network (GAN [7]) to easily 
generate many imitation images with high similarity to actual building images and used these 
images to train the CNN for building damage assessment. In addition, to validate the proposed 
method,  photographs of actual  damaged and undamaged buildings, were input to the trained CNN 
for building damage assessment. 
Generation of imitation images of damaged and undamaged buildings using the generative 
adversarial network (GAN) 
In this study, the GAN is used to generate numerous imitation images of damaged and undamaged 
buildings. The network structure of the GAN used in the present study is shown in Figure 1. The 
GAN is a neural network consisting of two parts. One is the generator, which generates imitation 
image data, and the other is the discriminator, which judges whether the image is a real image. 

The model used for image generation in the present study is FastGAN [8], which is one of the 
least computationally intensive GANs and can generate images with relatively little image data. In 
the process of sequential up-sampling, the generator uses the skip-layer excitation module to fuse 
the most recent feature map with those of four lower levels, improving stability without increasing 
the computational complexity. 

 

 
 
The mutual learning process of GAN is generally expressed by the following equation: 

 
min
G

max
𝐷𝐷

𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑥𝑥)] + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑧𝑧(𝑧𝑧) �log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� (1) 
 
where 𝑉𝑉 is the objective function, 𝑥𝑥 and 𝑧𝑧 are input data, and noise variables, 𝐷𝐷(𝑥𝑥) and 𝐺𝐺(𝑧𝑧), are 
the output of the discriminator and generator, respectively, 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑝𝑝𝑧𝑧 are distributions of 
training data and the noise variables, respectively, and 𝔼𝔼 represents the expected value. The 
generator learns to minimize the objective function so that it generates data that the discriminator 
cannot distinguish from the training data. On the other hand, the discriminator maximizes the 
objective function so that the discriminator can classify the training data and the generated data 
with high accuracy. 

In the present study, two types of GANs are constructed to generate images of damaged and 
undamaged buildings by preparing two types of photographs. The photographs of damaged 

Figure 1. Network structure of the generative adversarial 
network (GAN) based on FastGAN [8].  
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buildings for training were taken after the 1995 Kobe earthquake, the 2011 Tohoku earthquake 
(including tsunami damage), and the 2016 Kumamoto earthquake, in Japan. Some of the 
photographs of undamaged buildings used in the training are of actual undamaged buildings taken 
in urban areas and some were obtained from the Internet. The sizes of images used in the present 
study were modified to 512 × 512 pixels. A total of 4,040 photographs, consisting of 1,995 and 
2,045 photographs of damaged and undamaged buildings respectively, were given to the GAN. 
The photographs in Figure 2 show examples of input data. The batch size was set to 10. The 
gradient accumulation was set to 4. The learning rate was set to 0.0002, and the number of epochs 
(number of trials) was set to 150,000. 

The photographs in Figure 3 are examples of imitation images. In the images with 1,000 epochs, 
trees and debris are reproduced fairly well, but the building images are completely unacceptable. 
In the image with 100,000 epochs, trees, roads, and buildings are created fairly well, and the 
images are relatively similar to photographs of the actual items. However, the overall images are 
not excellent, suggesting that learning is still insufficient. When the number of epochs reaches 
150,000, buildings, debris, and trees are clearly represented, and the imitation images are 
approximately equivalent to photographs of actual items. Therefore, we use the generated images 
by the GAN with 150,000 epochs to train the CNN, which is described below. 

 

 
 

Photographs of damaged buildings Photographs of undamaged buildings 

Figure 2. Actual building photographs input for the generative adversarial 
network (GAN). 
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Training and validation of the convolutional neural network (CNN) for damage evaluation 
using imitation images of buildings 
In this section, the CNN model used in the present study is introduced. Then, the results of CNN 
training and validation for damage evaluation using imitation images of buildings will be 
presented. 
Overview of the CNN 
We construct the CNN, which takes advantage of the fact that many data have local features, as 
proposed by LeCun et al. [9], to determine whether a building is damaged. 

In the present study, we use Caffe [10], a deep learning framework, and AlexNet [11] as the 
CNN architecture. The structure of AlexNet in Figure 4 consists of five convolutional layers, three 
pooling layers, and three fully connected layers. Image data were previously resized to 256 × 256 
pixels, converted to normalized RGB values, and input to the CNN. The training data were 
classified into two categories, “damaged” and “undamaged,” with “damaged” set to 0 and 
“undamaged” set to 1, and the learning rate was set to 0.01. 

The convolutional layer detects local features of the image data by convoluting the input image 
with filters. The pooling layers are used to achieve invariance to small movements, thereby 
transforming the input data into a more manageable form. AlexNet uses max pooling in the pooling 
layer, which is a function that outputs the value of the largest component of the input. The fully 
connected layers combine the image data from which the feature portions were extracted in the 
convolutional and pooling layers into a single node and outputs the values transformed by the 

Figure 3. Examples of damaged and undamaged building images generated by the 
GAN: (a) 1,000 epochs, (b) 100,000 epochs, and (c) 150,000 epochs. 

(a) 

(b) 

(c) 
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activation function. The output of the last of the three layers, the fully connected layer, contains a 
SoftMax function that transforms the output score of each image into the probability between 0 
and 1. 

 

 
 
Convolutional neural network training using imitation images generated by the GAN 
The CNN was trained and validated using a total of 300,000 imitation images of buildings, 150,000 
each of images of damaged and undamaged building generated by the GAN. Here, 200,000 images 
were used for training, and the remaining 100,000 images were used to verify the training results. 
The training results in Figure 5 show that the accuracy of the validation data for 10 epochs was 
99.56%, and the loss function value was 0.012. This indicates that the learning process progressed 
well. The accuracy of the validation data for the first epoch was 98.28%, and the loss function 
value was 0.045. One possible reason for this is that the training data of 200,000 images were 
sufficient. 
 

 
 
  

Figure 4. The structure of the CNN based on AlexNet [11].  

Figure 5. Convolutional neural network training and 
validation result with building imitation images.  
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Validation of CNN using photographs of actual buildings 
In this section, photographs of actual damaged and undamaged buildings were input to the trained 
CNN as test data to examine the validity of the damage assessment of the CNN trained by images 
generated through the GAN. 
Validation using photographs of actual buildings and evaluation indices 
A total of 1,000 photographs of actual buildings, 500 each for damaged and undamaged buildings, 
were input as test data to verify the accuracy of the classification results. 

The test results in Table 1 suggest that the model developed in the present study is generally 
suitable for determining both damaged and undamaged buildings for photographs of actual 
buildings. However, 57 of 500 (11.4%) photographs of damaged buildings were determined to be 
of undamaged buildings, whereas 102 of 500 (20.4%) photographs of undamaged buildings were 
determined to be of damaged buildings. Figure 6 shows examples of photographs of actual 
buildings that were misclassified. The damaged buildings tended to be determined to be 
undamaged when the building experienced story collapse, the damage was of a small to moderate 
level, or there was little debris. The undamaged buildings appear to be judged to be damaged when 
electric wires and trees were included in the photographs. 

 

 
 

 
Next, the indices for evaluating the test results are examined more specifically. The evaluation 

indices are accuracy, precision, recall, and F-measure, which are calculated by the following 
equations: 

Table 1. Convolutional neural network test results for photographs of actual 
buildings. 

Figure 6. Examples of photographs in which the acutual building were misclassified: (a) 
through (c) are photographs of damaged buildings judged to be undamaged buildings, 

and (d) through (f) are photographs of buildings judged to be damaged. 

(a) (b) (c) 

(d) (e) (f) 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇
(2) 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
(3) 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
(4) 

𝐹𝐹 −𝑚𝑚𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃 =
2 × 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙

(5) 

 
where TP (true positive) is the number of damaged buildings determined to be damaged by the 
CNN, TN (true negative) is the number of undamaged buildings determined to be undamaged, FP 
(false positive) is the number of undamaged buildings judged to be damaged, and FN (false 
negative) is the number of damaged buildings judged to be undamaged. 

In Figure 7, all the indices are higher than 0.8. In particular, recall was higher than precision. 
Although the ratio of damaged buildings judged to be damaged was high, relatively many 
undamaged buildings were also judged to be damaged. Precision, which is the ratio of the number 
of photographs of correctly classified damage to the number of photographs of improperly 
classified damaged, was 0.81, indicating that the proportion of false positives was low. Therefore, 
F-measure, the harmonic mean of precision and recall, is also generally reasonable. The accuracy 
was 0.84, which means that all of the predicted results showed good agreement with the correct 
results. These results indicate that the CNN trained by the imitation images generated by the GAN 
was assessed validly. 

 

 
 

Visualization of the evidence of predictions using Grad-CAM 
In deep learning, the judgment of constructed models is often regarded as a black box, and it is 
often difficult to explain the evidence for the judgment. Therefore, in order to examine the cause 
for the judgments of misclassification of photographs of actual buildings by the trained CNN, we 
applied gradient-weighted class activation mapping (Grad-CAM [12]). This is a technique to 
visualize the important regions in the image, based on the idea that the areas that contribute most 
to output values of the predicted class are important for classification. In general, the gradient of 
the output value in the predicted class of the final convolutional layer is used. 

Figure 8 shows visualization examples of misclassified by applying Grad-CAM to photographs 
of damaged and undamaged buildings. First, in visualization of discriminative regions in 
photographs of actual damaged buildings, there were cases in which the gradient of the concepts 

Figure 7. Indices for evaluating the test results. 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 67-75  https://doi.org/10.21741/9781644902455-9 

 

 
74 

was large not only for the target building in the image, as in Figure 8(b), but also for buildings 
other than the target building and the sky, as in Figures 8(a) and 8(c). Next, in visualization of 
discriminative regions in photographs of actual undamaged buildings, in Figures 8(d) and 8(e), the 
gradient in the center of the photograph is larger, indicating that this region corresponds to the 
building, respectively. On the other hand, in some cases, such as Figure 8(f), the overall gradient 
was small and the evidence for the predictions was unclear. Therefore, for more accurate 
judgments, it is considered effective to apply a method such as semantic segmentation [13] to both 
the training and test images to mask the areas other than buildings and focus only on buildings. 
Conclusions 
In the present study, we firstly generated imitation images of buildings using the GAN, which is 
an image generation method based on deep learning, to easily generate a large amount of exterior 
image data of the damaged and undamaged buildings. Then the generated images are used as the 
input data for training a CNN that determines damage to buildings caused by a natural disaster. 
The accuracy of the assessment based on indices such as accuracy, precision, recall, and F-measure 
are investigated. Finally, the evidence of predictions of the CNN was investigated through Grad-
CAM. 

We found that images generated by GAN with 1,000 and 100,000 epochs were generally 
distorted and poorly learned, whereas the imitation images at 150,000 epochs had a quality almost 
equivalent to photographs of actual items. 

The accuracy rate when the validation data were input to the CNN trained by the imitation 
images generated by the GAN was 99.56% for 10 epochs. This result indicates that the training 
was successful. Furthermore, the accuracy rate of the validation data for the first epoch was 
98.28%, presumably because the training data of 200,000 images was sufficient. 

Furthermore, when the CNN was tested using photographs of actual buildings, the model 
developed in the present study is generally suitable for determining both damaged and undamaged 
buildings. The CNN tended to classify undamaged buildings with electric wires and trees as 

Figure 8. Examples of visualization of the evidence of predictions using Grad-CAM to 
photographs of acutual buildings that were misclassified: (a) through (c) are photographs 

of damaged visualized areas of interest, and (d) through (f) are photographs of 
undamaged visualized areas of interest. 

(a) (b) (c) 

(d) (e) (f) 
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damaged ones. Whereas the damaged buildings with story collapse, small to moderate damage, 
and little debris were classified as undamaged. 

In addition, when Grad-CAM was applied to the CNN, we found that some images had a large 
gradient for the target building, but in other cases, the gradient of the predictions for other buildings 
was larger or the overall amount of the gradient was smaller. In the future study, to improve the 
accuracy of the CNN, it is considered to be effective to mask the areas other than buildings and 
have the CNN focus only on buildings. 
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Abstract. This work presents a damage imaging method exploiting full-field guided ultrasonic 
waves excited by a thermoelastic-effect laser. From the high spatial resolution data produced, a 
spatial gradient–based image processing technique was developed using gradient vectors to extract 
features sensitive to defects. Localized mechanical impedance changes in the damaged area induce 
a local distortion of the waveform, which was quantified by the variation of the gradient vectors 
in the scanning area as time evolves. Such variation was accumulated over time with an 
analytically derived optimal statistical threshold filter to generate a gradient-orientation map for 
damage imaging. The proposed algorithm is shown to detect distinctive damage patterns when 
tested experimentally on a 3 mm aluminum plate with multiple simultaneous simulated defects. 
Compared to conventional techniques like local wavenumber estimation, the generation of the 
accumulated orientation map involves no filtering process in the frequency or wavenumber 
domain, but it comes at the expense of less accurate shaping of the defect. A spatial covariance 
analysis was adopted to locate damage from the results as well as to evaluate the correlation among 
different kinds of defects. 
Introduction 
Ultrasonic guided waves are a very common technique used for defect detection and localization 
in plate-like structures due to their propagation coverage and scattering sensitivity to such defects 
[1-3]. Various architectures to excite and detect ultrasonic waves have been implemented, and 
more recently, laser ultrasonic methods have evolved as a powerful approach because full-field 
(spatio-temporally dense) interrogation and imaging are possible in relatively rapid inspection 
timeframes by taking advantage of reciprocity assumptions. The resulting rich information field 
(space-time-frequency) may be processed in several ways to achieve defect detection/localization, 
including various multi-dimensional Fourier analysis, wavelet or other time-frequency analysis, 
compressed sensing, matched filtering, optimization strategies, and others [4-12]. 

Beyond these approaches applied to high-resolution laser ultrasonic data, the potential of 
employing spatial gradient analyses in these imaged data sets has only been recently explored [13]. 
In the image recognition field, spatio-temporal gradient orientation correlation metrics may be 
used to recognize a moving object in video data [14]. In the present application space, the 
hypothesis becomes that defect scatterers may be reflected changes in spatial gradient field as time 
progresses. This work reports on the use of gradient vectors at each point to indicate local 
waveform distortions presumably induced by highly localized defect scatterers. The derivation of 
the proposed method involves no frequency tuning or wave mode decomposition, so it is 
computationally efficient and requires little manual oversight in practice. Additionally, the process 
removes the complex wave patterns of guided waves and visually enhances the distortion caused 
by the defects for more intuitive identification and interpretation. In this approach, the measured 
ultrasonic waveform imaged (UWI) data are stored in the angle-radius (φ-R) polar domain through 
a circle laser scanning pattern that allows the evaluation of spatial covariance analysis for fast 
detection. UWI data in the polar coordinate space can be converted to Cartesian coordinates for 
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more intuitive visualization and interpretation. First, the experimental setup to obtain the full-field 
ultrasonic wavefield data from the specimen with and without artificial defects is discussed, and 
then the spatial gradient analysis method applied to UWI data is presented. Finally, results and a 
summary are presented. 
Experimental Architecture 
Fig. 1(a) shows a schematic diagram of the laser ultrasonic interrogation system. This system 
consists of a laser scanning system incorporated with a signal conditioning device, a data 
acquisition (DAQ) module, a contact sensor, and a computer used for signal processing and 
operation control. The laser scanning system has a two-dimensional laser scanner and a diode-
pumped solid-state Q-switched Nd:YAG laser. The Q-switched laser is composed of a laser 
controller and a laser head with an output beam of 527 nm wavelength and pulse repetition rates 
(PRR) from single-shot to 1 kHz. The 2D laser scanner is used to synchronize the 2-axis 
galvanometer scanner (Fig. 1(b)) with the Q-switched laser to maneuver the laser impinging point 
rapidly on a target at a PRR according to the preset scanning pattern coordinates. A circular 
scanning pattern was considered, and the ultrasonic waves were generated and obtained at each 
coordinate of (R,θ ) in the polar coordinate space. The scanning radius ranges were set from 20 
mm to 220 mm with an interval of 1 mm, and the angular interval was set to 0.78°. 

During the scanning process, a laser pulse impinges at a scan point, and the corresponding 
ultrasound is generated at the local point based on the thermoelastic principle. The generated 
ultrasound is then signal-conditioned through a contact sensor and digitized in the DAQ module 
as shown in Fig. 1(a). In the DAQ module, the generated ultrasound is digitized synchronously 
with the PRR of the laser scanning system by receiving a triggering signal from the laser controller 
after the laser pulse is emitted. In the digitizing process, the ultrasound is sampled for K number 
of data points at sampling time interval Ts and stored in a computer. The digitizing process is 
repeated as the scanning process is performed. In this paper, the K was set to 2000 at the sampling 
interval of Ts = 0.1 µs. All digitized data are represented in the form of a three-dimensional r-θ-t 
tensor, indexed by radial direction (j=1…N), circumferential direction (k=1…M), and time 
(i=1…K), respectively, with N=201 and M=460 in this work; we thus denote the symbol  to 
indicate pixel intensity at (radial, circumferential) location (j,k) at time point i from the polar scan. 
Standard polar transformations may be used to return data to the Cartesian domain as needed.  

The test specimen was a 3 mm thick aluminum plate. Four damage locations were considered 
in this article and denoted as L1, L2, L3, and L4 as indicated in Fig. 1(b) by the yellow circles. 
Three different simulated defect classes were deployed as shown in Fig. 1(c). Defect D1 is a 400 
mm2 plasticine mass attached at the rear scanning surface, which acted as a damper to attenuate 
the waves in its path. Defect D2 is a metallic screw, and the screw tip was polished flat and bonded 
to the rear scanning surface with a 5 mm diameter circular contact area between the tip and plate. 
Defect D3 is a 260 mm2 surface area aluminum strip of a feeler gage. During the bonding process, 
a 20-mm-width Teflon sheet was sandwiched between the surface of the plate and strip to simulate 
a disbond.  

Three simulated damage cases with the defects (D1–D3) at specific locations (L1–L4) as shown 
were considered. First, a single damage case was conducted where each defect was set and tested 
individually at corresponding locations. After that, a multi-location damage case was considered 
with three pieces of plasticine set at locations L1, L2, and L4 simultaneously. To compare the 
inter-defect correlation with spatial covariance analysis, the plasticine at L1 was replaced by a 
metallic screw while keeping the rest of the conditions unchanged. Finally, a multi-class damage 
case was studied by including all the three types of defects located at L1, L2, and L3, respectively. 
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Fig. 1 (a) Laser ultrasonic interrogation system configuration, (b) 3 mm aluminum plate defect 
inspection configurations, and (c) detailed examples of the three defect classes. Figs. 1(b) and 

(c) were reproduced with permission from Ref. [13]. 
Spatial Gradient Analysis 
Given any pixel measurement , radial and circumferential gradients,  and , must 
be evaluated. To estimate the partial derivatives, a scale factor d that defines the neighborhood of 
pixels around the j-k location is needed; the size governs the usual trade-off between image spatial 
resolution (lower d) and signal-to-noise (higher d). Thus, we can use central differences to get the 
gradients directly, since are inherently collected in the polar domain, as in Eq. (1): 

 

                            (1) 
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The two gradient vectors have a magnitude A and orientation phase angle P determined by 
 

                                                                                                          (2) 

 
The value of d = 2 was used in this work. The values of Aj,k,i under the null hypothesis (no 

defects) were used as a statistically rigorous filter. Under the assumption of Gaussian pixel 
intensity noise with zero mean and standard deviation σ, and assuming nearest-neighbor pixel-to-
pixel correlation to be ρ, it is readily shown [13] that the probability density of the gradient 
magnitudes is Rayleigh-distributed as 

 

                                                                                           (3) 

 
Thus, by setting a confidence value α, Eq. (3) may be integrated from 0 up to a critical gradient 

magnitude threshold ε such that the integral equals α, resulting in . 
Experiments on the defect-free specimens resulted in estimates of σ=0.04 and ρ=0.1. For a given 
α, only data for which Aj,k,i > ε were retained. These statistically filtered datasets are denoted with 
prime marks, i.e.,  and . The feature of interest going forward will be just the gradient 
orientation data, , as it is far more sensitive to local scattering effects than the magnitude of 
the gradient vector. The idea becomes that  will change in time as the wavefront encounters 
a defect; the magnitude of this orientation change would be given by 

         
                                                                                                          (4) 

 
It is natural to hypothesize that regions with different material properties or geometries may 

have significant gradient orientation variation compared to adjacent undamaged areas, i.e., the 
local area affected by the defect would have a larger time-accumulated variation in its gradient 
orientation, given by , where imax

 is the integration upper limit. This limit is 
the most “tweakable” parameter in this approach, as integrating too long brings in the complexity 
of reflected wave interactions and integrating too little doesn’t accumulate maximal change in the 
feature. It was found that 60 µs provided a good balance. Baseline subtraction of the reference 
state is still employed in this case, resulting in a final test feature given by 

 
                                                                                                              (5) 

 
A spatial orientation covariance method was introduced in [11] to localize the defects whereby 

a covariance matrix Cj,k of the Fj,k features was formed by averaging over columns (the radial 
direction) to find the orientation-to-orientation covariance structure. Thus, the angular orientation 
Fd of the damage location to the center of the plate was first determined by localizing the point 
with the largest variance along the angular direction, extracted from the diagonal values of the 
covariance matrix. The radius of the damage location was then determined by searching the 
maximal amplitude in the gradient orientation map along the radius line at the angle Fd obtained 
in the previous step. Furthermore, the column elements at each Fd could be extracted for damage 
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characterization revealed by the correlation between various damage patterns when multiple 
defects were present. 
Results 
Each defect type was placed independently at its corresponding location as indicated above, and 
the procedure was applied. Figs. 2-4 show the results for D1, D2, and D3, respectively. In all cases, 
the procedure gave unique, statistically unambiguous indications of the defect location. Each 
figure shows, from left to right, the gradient map, the covariance matrix, and the variance “slice” 
from the covariance matrix, all used to inform and highlight the defect location.  While localization 
of the defect was very clear, characterization of the defect was more ambiguous; defects D1 and 
D2 were not in any way “directly imaged” by the gradient map approach, but interestingly, D3 
(the delamination) was very clearly highlighted. The square Teflon insert in Fig. 4(c) is exactly 
indicative of the actual size. While this method was originally designed to localize and not 
characterize defects, clearly some aspect of the scattering—depending on the scatterer 
characteristics—directly affect the time-accumulated orientation gradient can directly encode 
some measure of scattered response, revealing geometric structure of the defect. 
 

 
Fig. 2. (a) Accumulated gradient orientation map, (b) covariance matrix, and (c) variance subset 

for defect D1. Reproduced with permission from Ref. [13]. 
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Fig. 3. (a) Accumulated gradient orientation map, (b) covariance matrix, and (c) variance subset 

for defect D2. Reproduced with permission from Ref. [13]. 
 

 
Fig. 4. (a) Accumulated gradient orientation map, (b) covariance matrix, and (c) variance subset 

for defect D3. Reproduced with permission from Ref. [13]. 
 

Next, a simultaneous multi-defect test including all three scatterers D1, D2, and D3 located at 
L1, L2, and L3, respectively, was conducted. Fig. 5 shows the same information as Figs. 2-4 for 
this damage case. From the diagonal values of the covariance matrix in Fig. 5(b), the angular 
directions of three defects were determined to be 50o, 125o, and 220o with radial locations 164 mm, 
160 mm, and 132 mm, all of which were correct to within the spatial sampling of 1 mm. The 
covariance map demonstrates that no correlation appears in the off-diagonal area, since the defects 
share little scattering similarity.  

As a final damage scenario test, three identical pieces of plasticine denoted D1 were placed at 
locations L1, L2, and L4. The algorithm correctly located the three defects just as in the defect-
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diverse previous test as Fig. 6 shows, but the correlation map reflects the similarity of the defects. 
The three concentrated amplitudes observed in the off-diagonal areas of the covariance map (high 
correlation) revealed that nominally identical defects would result in high covariance between their 
angles as well due to their similarity. This would make sense since the approach does, in some 
way, reflect unique scattering properties. This is a topic of further study. 

 

 
Fig. 5. (a) Accumulated gradient orientation map, (b) covariance matrix, and (c) variance subset 

for all different defects simultaneously. Reproduced with permission from Ref. [13]. 

 
Fig. 6. (a) Accumulated gradient orientation map, (b) covariance matrix, and (c) variance subset 

for simultaneous placement of nominally identical defects. Reproduced with permission from 
Ref. [13]. 

Conclusions 
Laser ultrasonic imaging of the wavefield spatial gradients was proposed for damage visualization 
and (primarily) localization in this work. The accumulated gradient orientation field or, combined 
with a covariance formation technique, revealed a distinctive localization of defects and in some 
cases provided clear imaging of the size. The proposed method was tested on a 3 mm aluminum 
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plate with both individual and simultaneous artificially introduced defects. The residual gradient 
orientation map showed the ability to detect these defects even under the impact of reflected waves. 
For the multiple simultaneous defect case, the covariance lines at each angle were extracted which 
indicated similarity (defect-to-defect correlation) among different types of defects. The approach 
consistently provided unique, correct localization, and depending upon the scatterer, it also 
provided clear imaging of the defect geometry itself. More work is needed to understand how 
accumulated gradient behavior can reflect consistent scattering patterns for the case of 
characterization. 
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Abstract. This paper reports on the potential use of relaxor ferroelectric single crystal (RFSC) 
transduction to improve the sensitivity of the thin film multi-element Lamb wave sensor called 
LAMDA (linear array for modal decomposition and analysis). The previously reported LAMDA 
sensor was created using a high-density multi-element polyvinylidene fluoride (PVDF) electro-
polymer sensing array. The electromechanical coupling factor 𝑘𝑘 = 𝑑𝑑 √𝜀𝜀𝑇𝑇 ∗ 𝑠𝑠𝐸𝐸⁄ , which is 
proportional to the piezoelectric coefficient d, is considered important for an ultrasonic receiver 
such as LAMDA. Comparing the PVDF piezoelectric coefficient d31 ≈ 14 pC/N with that of a 
recent RFSC [011] Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (or Mn-PMN-PZT) having d32 ≈ -1100 pC/N, 
suggests the replacement of the PVDF array with a RFSC array could lead to a significant 
improvement in the sensitivity of the LAMDA sensor and consequently broaden the scope of its 
potential application to structural health monitoring. To this end, multiphysics modelling has been 
performed which indicates a five-fold increase in signal voltage output from a Mn-PMN-PZT 
based RFSC LAMDA compared with the original PVDF LAMDA. Model predictions for both 
RFSC LAMDA and PVDF LAMDA sensors will be reported, compared, and discussed. 
Introduction 
A new sensing approach for detecting acoustic emission (AE) called linear array for modal 
decomposition and analysis or LAMDA was recently reported [1]. LAMDA is capable of 
determining the AE source location and potentially also the type of damage via modal signature 
analysis [2, 3]. LAMDA, which builds on earlier work in acoustic-wave-mode separation [4-6], 
incorporates a flexible multi-element array coupled with a high-bandwidth interrogation device 
[7]. Each individual element in the array is a longitudinal piezoelectric d3y-mode element, where 
the most sensitive piezoelectric axis being either  y= ‘1’ or ‘2’ direction is approximately aligned 
with the mechanical disturbance, and ‘3’ is the direction of the generated electric field being 
normal to the surface to which the LAMDA sensor is applied. The initial LAMDA studies 
employed a 55 µm thick polyvinylidene fluoride (PVDF) sensor for piezoelectric transduction of 
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acoustic plate waves generated by an AE event such as mechanical impact [1, 8]. The electrical 
response produced by a LAMDA sensor (i.e. in response to the acoustic plate waves) can be used 
to locate and potentially quantify a mechanical impact, including any resulting structural damage 
[2]. LAMDA is thus a powerful new approach for structural health monitoring [9].  

The piezoelectric coefficient of the material used to manufacture the LAMDA sensor plays a 
key role in determining the magnitude of the resulting electric response [10]. For ‘PVDF LAMDA’ 
the important piezoelectric coefficient is 𝑑𝑑31 ≈ 13.6 pC/N [11]. In comparison, a recently 
developed piezoelectric material known as relaxor ferroelectric single crystal (RFSC) offers 
significantly higher piezoelectric coefficients, one such example being  [011] Pb(Mg1/3Mb2/3)O3-
Pb(Zr,Ti)O3 (or ‘Mn-PMN-PZT’) with 𝑑𝑑32 ≈ −1100 pC/N [12]. With the PVDF 𝑑𝑑31 being almost 
80 times smaller than the RFSC 𝑑𝑑32, a significant improvement in sensitivity might be expected 
when using RFSC transduction within the LAMDA sensor (henceforth ‘RFSC LAMDA’). Since 
the LAMDA sensors are electromechanical in nature, the electromechanical coupling factor 𝑘𝑘 is 
expected to play a defining role in determining its sensitivity [10]. The electromechanical coupling 
factor is defined as  𝑘𝑘 = 𝑑𝑑 √𝜀𝜀𝑇𝑇 ∗ 𝑠𝑠𝐸𝐸⁄  , where 𝜀𝜀𝑇𝑇 is the permittivity and 𝑠𝑠𝐸𝐸 is the mechanical 
compliance [13]. The electromechanical coupling factors important for this work are: (i) 𝑘𝑘31𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑑𝑑31 �𝜀𝜀33𝑇𝑇 ∗ 𝑠𝑠11𝐸𝐸⁄  for PVDF LAMDA, and (ii) 𝑘𝑘32𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑑𝑑32 �𝜀𝜀33𝑇𝑇 ∗ 𝑠𝑠22𝐸𝐸⁄  for RFSC LAMDA [14].  
 

    
  

Figure 1. Plan view of 16-element LAMDA sensor (a) PVDF, and (b) RFSC prototype currently 
being manufactured. 

Fig. 1 shows plan view photographs of (a) the existing PVDF LAMDA, and (b) the prototype 
RFSC LAMDA currently being manufactured. Modelling was performed for both LAMDA 
sensors shown in Fig. 1 using commercially available software (COMSOL Multiphysics Version 
5.6) in order to understand the benefit, if any, that RFSC transduction would provide when 
compared with the original PVDF approach.  
Model details 
This section focuses on describing the model geometry used for comparing the PVDF LAMDA 
and RFSC LAMDA sensors. The modelled geometry comprised a linear array of 16 rectangular 
piezoelectric elements attached to a circular aluminium plate, 1.6 mm thick with a radius of 
70 mm. An infinite element domain was added by extending the radius of the aluminium plate by 
5% - this domain minimises the energy of any plate-boundary reflected waves in the model, 
reducing interference with the modelled piezoelectric response and also shortening the time taken 
to generate a solution. The elements of the PVDF LAMDA and the RFSC LAMDA sensors were 
assumed to have identical physical dimensions. As shown in Fig. 1 the individual elements were 
1 mm long, 5 mm wide, 55 µm thick, and separated by 0.27 mm. The modelled acoustic impulse 
source was located at the centre of the aluminium plate, with the nearest LAMDA sensing element 

(b) (a) 

1 mm 

5 mm 
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positioned approximately 30.5 mm away. This acoustic source-to-sensor distance was chosen to 
ensure the sensor was located in the acoustic far-field region, minimising the effects of near-field 
Lamb wave interference. Each modelled sensing element was electrically grounded at the interface 
between it and the aluminium plate. The effect of an adhesive bondline between the LAMDA 
sensor and the aluminium plate was ignored [15]. 

 
(a) 

 
(b) 

 

 
  

 
Figure 2.  (a) Full model geometry showing the aluminium plate, circumferential infinite element 

domain, and region ‘A’ with LAMDA sensor and plate, (b) the model geometry after half-plate 
symmetric reduction and with model mesh applied, (c) a magnified view of region ‘A’ containing 
region ‘B’ with LAMDA sensor and aluminium plate, and (d) a magnified view of region ‘B’ with 
model mesh applied and with the individual elements numbered 1-16. The piezoelectric sensing 

elements are represented as orange domains, the aluminium is light-grey, and the dark-grey 
circumferential domain is the infinite element domain. 

Fig. 2a is a schematic of the modelled geometry comprising a circular metal plate with a 
LAMDA mounted in the region designated as ‘A’. To reduce the degrees of freedom in the model 
(and hence reduce the model solve time) the geometry shown in Fig. 2a was split along the 
horizontal x-axis using a symmetric boundary condition. The lower half of the model depicted in 
Fig. 2b was used for solving and generating results. Additionally, a box 1.6 mm thick, 21 mm long, 
5 mm wide, and centred on the LAMDA sensing element was added to the model. The box was 
used during the model meshing sequence to increase the mesh density in the region of the LAMDA 
sensor. Fig. 2b illustrates the resulting half-plate symmetric geometry, and Fig. 2c is a magnified 
view of region ‘A’ (magenta outlined square in Fig. 2a). Mapped onto Fig. 2d is the mesh used to 
model the LAMDA sensor. The material parameters used in the model are listed in Appendix A. 
Table A1 contains the material properties used to model the aluminium plate, with Tables A2 and 
A3 providing the electromechanical properties for PVDF and the RFSC Mn-PMN-PZT 
respectively. The in-plane piezoelectric coefficient for RFSC is largest in the 2-direction (i.e. 𝑑𝑑32), 
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whereas for PVDF it is largest in the 1-direction (i.e. 𝑑𝑑31). The orientation of the piezoelectric 
material was defined in the model as a rotational system that was pre-defined depending on the 
material being modelled, with the largest piezoelectric coefficient parallel to the x-axis (horizontal 
axis in Figs. 2 and 3). Fig. 3 indicates the crystalline orientation of the PVDF and RFSC elements. 

 
(a) 

 
(b) 

Figure 3. Crystalline orientation for the individual elements of the (a) PVDF LAMDA and, (b) 
RFSC LAMDA sensors. 

Modelled acoustic impulse 
This section focuses on the modelled mechanical impulse used to produce surface acoustic (Lamb) 
waves in the aluminium plate. The mechanical impulse was applied normal to the centre of the 
plate as a pair of coupled point forces, located at the top and bottom of the plate centre, that were 
equal in direction and magnitude [16]. This impulse force selectively generated the asymmetric 
A0 wave, being the wave-type that produced the largest voltage response in the LAMDA 
piezoelectric elements. The impulse function used was the Hann-Windowed wave defined in Eq. 1,  

𝐹𝐹(𝑡𝑡) = 𝐹𝐹0  sin2 �𝜋𝜋𝜋𝜋
𝑅𝑅

(𝑡𝑡 − 𝑡𝑡0)� sin{2𝜋𝜋𝜋𝜋(𝑡𝑡 − 𝑡𝑡0)}  , (𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝐿𝐿 + 𝑡𝑡0)   (1) 
where  𝐹𝐹(𝑡𝑡) is the impulse force at time 𝑡𝑡 for a wave of 𝐶𝐶 cycles, 𝐹𝐹0 is the impulse amplitude, 𝑡𝑡0 
is a time delay, and 𝜋𝜋 is the centre frequency (see Appendix B for details). The time delay allows 
for the inclusion of a quiescent period in the simulation to prevent instantaneous model stresses. 
In this study a delay of 𝑡𝑡0 =  50 nanoseconds was used. The number of cycles chosen was 3.5, and 
the solver was run for three centre frequencies, 100, 200, and 500 kHz. The amplitude of the 
impulse force was set to 0.5 N, which due to the halving of the plate geometry corresponds to a 
1 N force for the full geometry. Fig. 4a is an example of the applied impulse wave force-time 
history corresponding to a centre frequency of 500 kHz (and includes the additional  
𝑡𝑡0 =  50 nanoseconds of delay). 

In the present work, for the impulse force described by Eq. 1, the bandwidth was defined as 
twice the centre frequency to cycle-number ratio,  

𝐵𝐵 = 2 ⋅ 𝜋𝜋
𝑅𝑅
 ,      (2) 

with the equivalent bandwidth indicated by a dotted horizontal line in Fig. 4b for an impulse with 
a centre frequency of 500 kHz. Eq. 3 was used to find the effective maximum frequency of the 
impulse, 

𝜋𝜋𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 𝜋𝜋 ⋅ �1 + 2
𝑅𝑅
�      (3) 

The effective maximum impulse frequency is important since it was used to define the solver time-
step. The black-dashed vertical line Fig. 4b is an example of the maximum frequency used for an 
impulse with a centre frequency of 500 kHz. 
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(a) (b) 
 
Figure 4. (a) Example of the modelled impulse force using Eq. 1, with a centre frequency of 500 
kHz. (b) Fast Fourier Transform of (a) with the impulse frequency bandwidth indicated by the 
horizontal red dotted line, and the effective maximum frequency shown by the vertical black 

dashed line. 
Model mesh 
This section describes the mesh structure used in the model. The centre frequency of the impulse 
force was used to determine the mesh size for a particular model. Specifically, the maximum mesh 
size was 1/5th of the A0 wavelength of the chosen centre frequency [17], with the A0 wavelength 
for the particular centre frequencies (100, 200, and 500 kHz) determined using a commercially 
available database [18]. Note that the wavelength of the centre frequency was used to determine 
mesh size since that is the frequency that contains the bulk of the acoustic energy (i.e. Fig. 4b). 
A sweeping mesh was applied to the region designated as the infinite element domain (Figs. 2a, 
2b) [19]. One hundred elements in the radial direction for the infinite element domain was 
sufficient to minimise boundary wave reflection. A sweeping mesh of hexahedral elements was 
applied to the LAMDA sensor and also to the boxed region of the aluminium plate (see Fig. 2d, 
region ‘B’), with a free triangular mesh applied to the remainder of the plate. Applying the 
sweeping mesh to region ‘B’ kept the total degrees of freedom within the range of 850k to 910k 
depending on the selected centre frequency.  
Model solver 
This section describes the conditions used in the multiphysics model solver. A time-dependent 
solver was used, for which both the solver time-step and maximum solve-time were adjusted based 
on the chosen centre frequency. Mechanical impulses with a higher centre frequency create Lamb 
waves that travel faster across the plate and past LAMDA sensor, and thus did not require as long 
a solve-time. The maximum solve time was predefined for each centre frequency, being 75, 45, 
and 30 µs for centre frequencies 100, 200, and 500 kHz respectively.  

Regarding the time-step, the solver was set to strictly solve with a predefined time-step defined 
by Eq. 4. One full solve for a single modelled system (e.g. a solve with PVDF sensing elements 
and a centre frequency of 200 kHz) was found to take just under 2 hours using a high-end laptop 
PC. 

𝑡𝑡𝑠𝑠 = 60
𝜋𝜋𝑚𝑚𝑚𝑚𝑚𝑚

      (4) 
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Results and discussion 
This section will present and discuss model predictions for PVDF LAMDA and RFSC LAMDA 
sensors, including the modelled voltage signals generated by a passing A0 wave and their relative 
amplitudes.  

Examples of the modelled voltage waveforms generated by the PVDF LAMDA and RFSC 
LAMDA sensors are given in Fig. 5. In particular, Fig. 5 shows the voltage generated by element 
‘1’ (Fig. 2d) in response to the A0 Lamb wave created by a 3.5 cycle impulse at 500 kHz.  The 
waveforms for PVDF and RFSC are alike, displaying a similar number of peaks and near-identical 
peak timings for the main acoustic pulse. The main difference between the waveforms is that there 
is significantly more voltage generated by the RFSC element compared with the PVDF element. 
Specifically, the positive maximum-peak ratio was RFSC/PVDF = 0.19 V/0.037 V ≈ 5.1, with a 
peak-to-peak ratio of RFSC/PVDF ≈ 5.4. A similar improvement is seen across the range of 
modelled frequencies, 100 kHz to 500 kHz. An obvious difference between the waveforms plotted 
in Fig. 5 is their sign. At any particular point in time the PVDF and RFSC voltage waveforms are 
opposite in sign due to the difference in sign between PVDF d31 and RFSC d32 (Appendix A). 
Another difference is the small ripple in the RFSC waveform near 22 µs, possibly due to reflections 
from other elements in the RFSC LAMDA array, or from the walls due to imperfect absorption at 
the infinite element domain boundary (Fig. 1).  

 
 

Figure 5. Model results for a 3.5 cycle impulse at 500 kHz showing average surface voltage 
versus time for the leftmost sensing element numbered ‘1’ in Fig. 1d. PVDF element ‘1’ and 
RFSC LAMDA element ‘1’ are compared, and the maximum and minimum values are shown. 

Time ‘T1’ is the time taken for the main acoustic cycle to arrive at LAMDA sensor element ‘1’, 
and time T2-T1 is the time length for the two main pulse cycles. 

Due to the dispersive nature of Lamb wave propagation, as the centre frequency increases the 
group velocity of the wave increases and the pulse length decreases. Fig. 6 illustrates these effects, 
with the time T1 (Fig. 5) taken for the A0 pulse to travel the 30.5 mm from the plate centre to 
element ‘1’ decreasing as frequency is increased. The modelled pulse duration T2-T1 decreases in 
a similar fashion. These modelled results indicate that the multiphysics model is behaving as 
expected. 

RFSC 
PVDF 

T2 
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Figure 6. Model results for a 3.5 cycle impulse at different frequencies. Times T1 and T2 are 

defined in Fig. 5, with time ‘T1’ being the time taken for the main pulse cycle to arrive at 
LAMDA sensor element ‘1’, and time T2-T1 is the time length for the two main pulse cycles. 

Fig. 7 depicts the modelled response of the 16-element LAMDA array (Fig. 1d) for a 3.5 cycle 
500 kHz impulse excitation of the plate. Fig. 7a shows the response of the elements for the PVDF 
LAMDA, and Fig. 7b the response of the elements for the RFSC LAMDA.  
 

 
(a) 

 
(b) 

 
Figure 7. Model results for a 3.5 cycle 500 kHz impulse depicting the output voltage versus time 
for the 16 elements of the LAMDA sensing array shown in Fig. 1d, for (a) PVDF LAMDA, and 

(b) RFSC LAMDA. 
As indicated previously, the voltages produced by RFSC LAMDA are significantly greater than 

those of the PVDF LAMDA (i.e. Fig. 5). Fig. 7 shows the modelled propagation of a 3.5 cycle 
500 kHz A0 wave across the region containing the 16 elements that form the LAMDA sensor (i.e. 
region ‘B’ in Fig. 2c, and Fig. 2d). To aid this comparison, the scale of the colour legend for PVDF 
LAMDA in Fig. 7 is 5X smaller than that used for RFSC LAMDA (i.e. ±0.04 V versus ±0.2 V). 
Fig. 7 indicates, as expected, that the A0 pulse propagation through the Al plate and across the 16 
elements is similar for PVDF LAMDA and RFSC LAMDA. The main difference is the ~5X 
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increase in signal voltage produced by the RFSC sensing elements. This improvement is 
significant, however is smaller than the signal increase that might be expected with a simple 
comparison of piezoelectric coefficients for RFSC and PVDF, being  𝑑𝑑32 ≈ −1100 pC/N and 
𝑑𝑑31 ≈ 13.6 pC/N respectively.  

As mentioned earlier, it is anticipated that the electromechanical coupling factor 𝑘𝑘 will play an 
important role in determining the relative sensitivities of the two LAMDA sensor types [10]. Using 
parameters listed in Appendix A, the electromechanical coupling for PVDF LAMDA is 𝑘𝑘31𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑑𝑑31 �𝜀𝜀33𝑇𝑇 ∗ 𝑠𝑠11𝐸𝐸⁄ = 0.0845, while for RFSC LAMDA 𝑘𝑘32𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑑𝑑32 �𝜀𝜀33𝑇𝑇 ∗ 𝑠𝑠22𝐸𝐸⁄ = 0.876. The ratio 
of electromechanical coupling for RFSC compared with PVDF is 𝑘𝑘32𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅/𝑘𝑘31𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10.4. As 
mentioned, the model predicted increase in sensitivity for RFSC LAMDA was ~5X, approximately 
half of that expected when comparing the electromechanical coupling of RFSC and PVDF. The 
difference is likely due to the mechanical compliance of the aluminium plate 14.5x10-12 1/Pa 
versus that of PVDF and that of RFSC, being 378.1x10-12 1/Pa and 69.3x10-12 1/Pa respectively, 
i.e. the mechanical strain in the PVDF elements will be dominated by the surface-strain in the 
aluminium plate, whereas the RFSC elements are less compliant by a factor of ~5.5 so will 
experience comparatively less strain. This compliance effect, and also the manufacture and 
characterisation of the RFSC LAMDA shown in Fig. 1b, will be reported in future work. 
Conclusion 
Multiphysics modelling has been performed for a Lamb wave sensor called LAMDA. The 
objective of the work was to investigate whether a LAMDA sensor based on relaxor ferroelectric 
single crystal (RFSC LAMDA) Mn-PMN-PZT will outperform the existing sensor based on 
polyvinylidene fluoride (PVDF LAMDA). For the purposes of modelling, both sensors were 
assumed to have identical geometry, with each sensor consisting of 16 piezoelectric elements and 
having dimensions 1 mm long, 5 mm wide, 55 µm thick, separated by 0.27 mm. For ultrasonic 
sensors such as LAMDA, the electromechanical coupling factor 𝑘𝑘 = 𝑑𝑑 √𝜀𝜀𝑇𝑇 ∗ 𝑠𝑠𝐸𝐸⁄  is considered to 
be an important parameter. For the two materials of interest in this work, the coupling factors are 
𝑘𝑘32𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅 = 0.876 and 𝑘𝑘31𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.0845, with the ratio between them being 𝑘𝑘32𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅/𝑘𝑘31𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10.4. 
This suggests that a LAMDA sensor based on RFSC could potentially be one order of magnitude 
more sensitive than a sensor based on PVDF.  Using a normalised 3.5 cycle 500 kHz acoustic plate 
impulse, the multiphysics model comparison predicts that the RFSC LAMDA will produce a peak 
voltage response ~5X greater than the PVDF LAMDA. This is somewhat less than the factor of 
10.4X suggested by the ratio of coupling factors, and is likely due to the difference in mechanical 
compliance between the aluminium plate and that of PVDF versus that of RFSC, i.e. the PVDF 
elements are 5.5X more compliant than the RFSC elements. RFSC LAMDA is currently being 
manufactured, the results of its experimental testing will be reported elsewhere. 
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Appendix A 
Table A1 lists the modelled mechanical properties used for the aluminium plate shown in Fig. 2. 
Tables A2 and A3 list the electro-mechanical properties for the transducer materials used in the 
PVDV and RFSC LAMDA sensors. 

Table A1. Mechanical properties for modelled aluminium plate. 

Mechanical Property Value for Aluminium 
Density (kg/m3) 2700 

Mechanical Compliance (10-12 1/Pa) 14.5 
Poisson’s Ratio 0.33 
Table A2. Electrical and mechanical model parameters for PVDF. 

Electrical Mechanical 
d31 (pC/N) 13.58 S11 (10-12 1/Pa) 378.1 
d32 (pC/N) 1.476 S12 (10-12 1/Pa) -148.2 
d33 (pC/N) -33.8 S13 (10-12 1/Pa) -172.4 

ε11 7.4 S22 (10-12 1/Pa) 378.1 
ε22 9.3 S23 (10-12 1/Pa) -172.4 
ε33 7.74 S33 (10-12 1/Pa) 1092 

  S44 (10-12 1/Pa) 1110 
  S55 (10-12 1/Pa) 1110 
  S66 (10-12 1/Pa) 1428 
  Density (kg/m3) 1780 

Table A3. Electrical and mechanical model parameters for the RFSC Mn-PMN-PZT. 

Electrical Mechanical 
d31 (pC/N) 405 S11 (10-12 1/Pa) 16.2 
d32 (pC/N) -1100 S12 (10-12 1/Pa) -25.4 
d33 (pC/N) 820 S13 (10-12 1/Pa) 14.9 
d24 (pC/N) 145 S22 (10-12 1/Pa) 69.3 
d15 (pC/N) 1997 S23 (10-12 1/Pa) -43.6 

ε11 2891 S33 (10-12 1/Pa) 37 
ε22 861 S44 (10-12 1/Pa) 19.5 
ε33 2570 S55 (10-12 1/Pa) 179 

  S66 (10-12 1/Pa) 26.8 
  Density (kg/m3) 7900 
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Appendix B 
The expression for a Hann-Windowed wave centred about 𝑡𝑡 = 0  is defined by Eq. B1, 

ℎ(𝑡𝑡) ≜ 𝐴𝐴0 cos2 �𝜋𝜋𝜋𝜋
𝐿𝐿
�        �|𝑡𝑡| ≤ 𝐿𝐿

2
�      (B1) 

where the amplitude defined by 𝐴𝐴0 is typically 1
𝐿𝐿
  , with 𝐿𝐿 being the window length/duration.  

A translation of 𝜋𝜋
2
 can manipulate this expression to begin at 𝑡𝑡 = 0  and end at window length 𝑡𝑡 =

𝐿𝐿 . The resulting simplified expression is defined by Eq. B2. 
ℎ(𝑡𝑡) ≜ 𝐴𝐴0  sin2 �𝜋𝜋𝜋𝜋

𝐿𝐿
�     (0 ≤ 𝑡𝑡 ≤ 𝐿𝐿)      (B2) 

For a wave of 𝐶𝐶  cycles, centred around a frequency 𝜋𝜋, the resulting window length 𝐿𝐿 is defined 
by Eq. B3, 

𝐿𝐿 = 𝐶𝐶 ⋅ 1
𝜋𝜋
         (B3) 

where 1
𝜋𝜋
 is the period for one cycle. Substituting B3 into B2 and simplifying generates the resulting 

expression shown by Eq. B4,  
ℎ(𝑡𝑡) ≜ 𝐴𝐴0  sin2 �𝜋𝜋𝜋𝜋𝜋𝜋

𝑅𝑅
�     (0 ≤ 𝑡𝑡 ≤ 𝐿𝐿) .    (B4) 

The generalized expression of a traveling wave is given by Eq. B5, 
𝑦𝑦 = sin  {2𝜋𝜋𝜋𝜋𝑡𝑡} .       (B5) 

Multiplying Eq. B5 with the derived expression for the Hann-Windowed wave shown in Eq. B4 
gives us the resulting expression for the impulse wave in Eq. B6, 

𝑦𝑦(𝑡𝑡) = 𝐴𝐴0  sin2 �𝜋𝜋𝜋𝜋𝜋𝜋
𝑅𝑅
� sin{2𝜋𝜋𝜋𝜋𝑡𝑡}     (0 ≤ 𝑡𝑡 ≤ 𝐿𝐿) .   (B6) 

Finally, a time delay 𝑡𝑡0 is applied to prevent instantaneous stresses in the model that can produce 
solver errors, the result of which is defined by Eq. B7, 

𝑦𝑦(𝑡𝑡) = 𝐴𝐴0  sin2 �𝜋𝜋𝜋𝜋
𝑅𝑅

(𝑡𝑡 − 𝑡𝑡0)� sin{2𝜋𝜋𝜋𝜋(𝑡𝑡 − 𝑡𝑡0)}      (0 ≤ 𝑡𝑡 ≤ 𝐿𝐿) . (B7) 
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Abstract. This paper reports on the use of relaxor ferroelectric single crystal for harvesting 
aeroacoustic energy from the floor of a structural cavity. In particular, this work examines the 
optimisation of the single crystal transducer geometry to maximise the energy harvested. The 
transducers used are 0.175 mm thick [011] poled Mn-Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (or Mn-
PMN-PZT) single crystal fibre composite (or SFC). In this study, the SFCs are bonded to the floor 
of an experimental cavity within a low-speed wind-tunnel with an airspeed of ~ 60 m/s. Air 
flowing over the cavity creates an oscillatory pressure cycle that is used as a source of harvestable 
energy. Detailed multiphysics modelling and parametric optimisation were performed, with model 
predictions well matched to wind-tunnel experimental results. In particular it is shown that, due to 
the cavity geometry, an SFC mounted on the cavity floor perpendicular to the wind-tunnel flow 
produces ~4 times more power than an SFC mounted parallel. 
Introduction 
Structural health monitoring (SHM) technologies for aerospace are maturing rapidly, and now 
have the ability to generate the variety, volume, and velocity of data to support digital twins [1-7]. 
The SHM sensors must withstand environmental instability (e.g. fluctuations in temperature and 
operational loads etc.), while adding as little mass as possible to maintain aircraft performance [8]. 
Furthermore, SHM sensors are typically positioned in less accessible locations on an aircraft [9]. 
Due to these reasons, powering SHM sensors for autonomous operation remains an issue [10]. One 
proposed solution has been to generate power through harvesting waste energy from the host 
structure [11], with earlier work exploring the use of relaxor ferroelectric single crystal (RFSC) 
transduction for harvesting energy from kilo-hertz frequency aircraft structural vibration [10, 12]. 
In one example involving energy harvesting from the mechanical vibration present on a helicopter 
transmission, the predicted electrical power available was greater than 11 mW [10]. This amount 
of harvested vibration energy is viable for powering SHM sensors due to the decreasing power 
requirements of modern microelectronics [13].   
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In this paper, an alternative fluid-flow based harvesting approach is examined, in particular the 
vibration produced by airflow across a structural cavity [14, 15]. In principle, as shown in Fig. 1a, 
air flowing over a cavity typically creates vortices at the cavity’s leading edge. The vortices travel 
downstream producing a transient high-pressure zone in front of the cavity aft wall, generating an 
acoustic pressure wave that propagates upstream. This pressure wave acts as feedback creating 
further vortices at the leading edge, which travel downstream to continue the cycle. This oscillatory 
pressure-cycle is a source of aeroacoustic energy which produces local structural deflections from 
which energy can be harvested [16]. In practice, the energy harvested could then be used to power 
local SHM sensors, for example within the wheel-well or payload-bay of an aircraft. 
Principles of operation 
The primary goal of this work was to use single crystal fibre composite (or SFC) transducers to 
harvest airflow-induced strain energy from the floor of a structural cavity. Figs. 1b and 1c are 
photographs of two spring-steel plate arrangements that were employed as the floor of a structural 
cavity. Bonded at the middle of the plate was an SFC transducer with a Mn-Pb(Mg1/3Nb2/3)O3-
Pb(Zr,Ti)O3 (or Mn-PMN-PZT) piezoelectric element 50 mm long, 25 mm wide, and 0.175 mm 
thick. The piezoelectric 2-direction of the crystal, which has a large piezoelectric coefficient d32 = 
-1100 pC/N, is parallel to the 50 mm edge of the SFC transducer.  

 

 
(b) 

 
(c) 

Figure 1. (a) Schematic of the wind-tunnel experiment with airflow left-to-right over a cavity, 
and with the floor of the cavity having length ‘L’. Photographs of the SFC transducer (orange) 
and the spring-steel plate arrangement (blue), which forms the floor of the structural cavity: (b) 

‘SFC-parallel’ with the SFC bonded parallel to the long direction of the plate, and (c) ‘SFC-
perpendicular’ with the SFC bonded perpendicular to the long direction. 

As will be detailed later, a SFC/spring-steel plate arrangement was mounted at the bottom of a 
structural cavity using 25 mm wide double-sided foam tape. Aeroacoustic pressure variations 
within the cavity produced periodic deflections of the spring steel plate, producing strain in the 
SFC transducer from which energy could then be harvested. Multiphysics modelling of the 
SFC/plate arrangement was performed to guide design optimisation of the energy harvester. 
  

(a) 
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Modelling 
This section will discuss the multiphysics model that was developed to understand the behaviour 
of the SFC transducer and spring-steel plate arrangement that was employed as the floor of the 
structural cavity examined in this paper. This model was used to determine the optimal geometry 
for maximising the energy harvested from the floor of the structural cavity.  

The model was produced using commercial software (COMSOL Multiphysics version 5.6), 
with the main elements being a SFC transducer adhesively bonded at the centre of a 0.381 mm 
thick, 250 mm long x 132 mm wide spring-steel plate. The adhesive bondline between the SFC 
and the spring-steel plate was modelled as a 0.3 mm thick layer. Double-side foam tape 1.2 mm 
thick and 25 mm wide, used to attach the spring-steel plate to the floor of the cavity, was included 
in the model and located along the edges of the plate. Fig. 2 is a schematic of the modelled 
geometry and mesh. A fixed constraint was applied along the top face of the tape, and an electrical 
ground was located at the interface between the adhesive and the SFC transducer. Table 1 
summarises the material parameters for the modelled spring-steel plate, bondline adhesive, and 
double-sided tape. The electromechanical parameters for the SFC transducer material are given in 
Table 2.  

 
 

Figure 2. Example geometry and mesh for a multiphysics model corresponding to Fig. 1b. The 
orange domain is the modelled SFC transducer, the blue domain is the visible spring-steel plate, 

and the double-sided foam tape is the light grey domain.  
The model was configured such that the adhesive bondline, the SFC transducer, and modelled 

piezoelectric-material axes were all capable of being rotated by a specified angle θ shown in Fig. 
3. The model was run through a sweep of various angles θ to determine which SFC orientation 
produced the largest output voltage. For modelling purposes a 1 N point force was applied at the 
centre of the bottom face of the steel plate and in the direction of the positive z-axis indicated in 
Fig. 3 (i.e. normal to the page). It is noted that the 1 N point force was roughly equivalent to the 
peak pressure expected on the spring-steel plate in the wind-tunnel, however since the modelled 
voltages are relative with respect to θ the exact magnitude of the modelled point force is of no 
consequence. The model-predicted average surface voltage across the top face of the SFC 
transducer was recorded as a function of θ, and will be discussed later. It is worth noting that the 
model was stationary and had ~210k degrees of freedom, and the typical run-time for one instance 
was 30 seconds on a modern laptop. 

 
Table 1. Model parameters assumed for spring-steel, bondline adhesive, and double-sided tape. 
 Density (kg/m3) Young’s Modulus (Pa) Poisson’s ratio 
Spring-steel 7850 205 x 109 0.28 
Bondline adhesive  1420 2.5 x 109 0.34 
Double-sided tape 175 3.54 x 105 0.3 
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Table 2. Electromechanical parameters assumed for the modelled SFC transducer, with 
piezoelectric coupling d, relative permittivity Ɛ, and compliance s. 

Electrical Mechanical 
d31 (pC/N) 405 s11 (10-12 1/Pa) 16.2 
d32 (pC/N) -1100 s12 (10-12 1/Pa) -25.4 
d33 (pC/N) 820 s13 (10-12 1/Pa) 14.9 
d24 (pC/N) 145 s22 (10-12 1/Pa) 69.3 
d15 (pC/N) 1997 s23 (10-12 1/Pa) -43.6 

ε11 2891 s33 (10-12 1/Pa) 37 
ε22 861 s44 (10-12 1/Pa) 19.5 
ε33 2570 s55 (10-12 1/Pa) 179 

  s66 (10-12 1/Pa) 26.8 
  Density (kg/m3) 7900 

 
Figure 3. Orientation of the SFC transducer and the piezoelectric material axes, showing the in-

plane rotation θ.  
Experimental 
This section will present a brief overview of the wind-tunnel structural cavity and energy 
harvesting arrangements used to validate predictions from the multiphysics model detailed earlier.  

SFCs were bonded to the centre of the spring-steel plates using a structural adhesive (Clickbond 
CB359). An SFC/spring-steel plate arrangement was mounted at the bottom of a structural cavity, 
with the long direction of the plate parallel with the wind-tunnel airflow. In Fig. 1b, designated as 
‘SFC-parallel’, the SFC is oriented parallel to the long direction of the plate, corresponding to θ = 
0o. In Fig. 1c, ‘SFC-perpendicular’ has the SFC oriented perpendicular to the long direction of the 
plate, i.e. rotated through θ = 90o. The SFC and spring-steel plate arrangements were 
experimentally tested by mounting them on the floor of the structural cavity shown in Figs. 4a and 
4b. The cavity itself was located at the bottom of the wind-tunnel testing section, which was 4 ft 
wide by 3 ft high (Fig. 4a). 

The cavity was geometrically variable (Fig. 4c), however for the purposes of comparing the 
experimental results with the model predictions a single cavity length-to-depth ratio (L/D) was 
chosen. Specifically, an L/D = 1.75 was used, with L = 266 mm and D = 151.6 mm. The cavity 
width was fixed at 210 mm. The wind-tunnel has a maximum airspeed of 70 m/s (Mach 0.2), with 
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an airspeed of 60 m/s chosen for experimentation. Air temperature within the wind-tunnel did not 
exceed 40oC during testing.  
 

       
(a) (b)    (c) 

Figure 4. Photographs of (a) the cavity location within the wind-tunnel, (b) the cavity with 
spring-steel plate floor with SFC bonded underneath, and (c) schematic of wind-tunnel cavity 

with variable geometry. 
Results and discussion  
In this section, the model predictions and the experimental characterisation of the SFC/spring-steel 
plate arrangements are reported and compared. In particular, the discussion will focus on the SFC-
parallel (θ = 0o) versus the SFC-perpendicular oriented (θ = 90o) arrangements. 

Fig. 5 plots the modelled open circuit voltage for a SFC/spring-steel plate arrangement, for a 
range of SFC orientations 0o < θ < 90o. For an SFC orientation of θ = 0o (i.e. SFC-parallel) the 
open circuit voltage produced is smallest. The voltage increases as θ increases towards 90o (i.e. 
SFC-perpendicular), where it reaches a maximum value. The modelled voltage extrema are listed 
in Table 3, with the maximum voltage for the SFC-perpendicular arrangement with θ = 90o being 
~2.1 times greater than the minimum for the SFC-parallel arrangement θ = 0o. Since electrical 
power is proportional to voltage squared, if all else is equal, then the SFC-perpendicular 
arrangement should generate ~4.4 times the energy compared to that generated by the SFC-parallel 
arrangement. 
  

 
Figure 5. Model predictions of average open circuit voltage for SFC transducer rotation θ 

(Fig. 3). 
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Table 3. Extrema for the modelled open circuit voltages produced by an SFC transducer for the 
SFC-parallel and SFC-perpendicular arrangements (based on Fig. 5).  

 

 SFC-parallel SFC -perpendicular 
Average surface voltage (V) -4.99 -10.47 

The results of the experimental characterisation of the L/D = 1.75 cavity geometry described in 
the previous section are given in Fig. 6 for both the SFC-parallel and SFC-perpendicular cavity 
floor arrangements. Fig. 6 plots a sweep of the applied resistive load versus the average electrical 
power generated, with the maximum power generation occurring when the resistive load matches 
the electromechanical impedance of the SFC/plate harvesting arrangement. The SFC-
perpendicular arrangement generates a maximum power of 19.6 µW with an optimum resistive 
load of 19.3 kΩ, which is ~3.3 times greater than the 6.0 µW produced by the SFC-parallel 
arrangement with a 9.6 kΩ load. The measured increase in harvested power of 3.3X (between the 
perpendicular and parallel arrangements) correlates reasonably well with the 4.4X predicted by the 
model.  

 
Figure 6. Measured average-power generated by a SFC transducer as a function of resistive 
load and for a wind-tunnel cavity with L/D = 1.75. For both arrangements, the interpolated 

maximum average power is indicated by a black cross (i.e. ‘SFC-parallel’ arrangement shown in 
Fig. 1b, and ‘SFC-perpendicular’ shown in Fig. 1c). 

The increase in energy harvested by the SFC-perpendicular arrangement, compared with the 
SFC-parallel, can be understood by examining the modelled in-plane strain distributions for the 
SFC transducer. The strain distribution within an SFC directly correlates with the piezoelectric 
charge generated, thus determining the amount of mechanical-to-electrical energy transduction. 
Fig. 7 details the modelled principal strain distribution within the SFC for both the SFC-
perpendicular and SFC-parallel arrangements. Note that for clarity the underlying spring-steel 
plate and adhesive bondline are not shown.  

figure). 
The modelling reveals three important details in the SFC strain distribution:  
(i) As indicated by the longer arrows, the SFC-perpendicular arrangement exhibits a larger and 

more uniform strain distribution in the piezoelectric 2-direction of the SFC. As mentioned 
previously, the 2-direction is parallel to the long direction of the SFC transducer and possesses a 
large d32 (Table 2), so the SFC-perpendicular arrangement with a larger and more uniform strain 
distribution should generate a greater amount of piezoelectric charge.   

(ii) The SFC-parallel arrangement has a less uniform strain distribution, meaning that more of 
the SFC electrode area is behaving like a parasitic parallel capacitor soaking up charge from the 
strained region and thus lowering the effective voltage on the SFC electrode (i.e. VSFC = QSFC/CSFC 
reduces as CSFC increases).  
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(iii) For the SFC-parallel arrangement, the direction of the principal strains in the lower-strained 
SFC regions are rotated  90o with respect to the principal strains in the higher-strained region. This 
means that the higher-strained regions are in tension in the 2-direction with d32 = -1100 pC/N, 
whereas the lower-strained regions are in tension in the 1-direction with d31 = +480 pC/N; this will 
result in charge cancellation due to the differing signs of d32 and d31. For these three reasons, the 
aggregate charge generated by the SFC-perpendicular arrangement is expected to be significantly 
greater than that for the SFC-parallel arrangement. Future work will examine the optimisation of 
the SFC geometry to maximise the in-plane strain and its uniformity. 

(a) (b) 
 

Figure 7. Plot of the modelled principal strain distributions for the (a) SFC-parallel, and (b) 
SFC-perpendicular arrangements. The arrow lengths are proportional to the amplitude of the 
modelled SFC transducer strain. The model assumes an arbitrary 1 N load normal to centre of 

the SFC/spring-steel plate arrangements (with the underlying spring-steel plate not shown in this  
Conclusion 
This paper reports on an approach for harvesting energy from the floor of a structural cavity 
arrangement using relaxor ferroelectric single crystals. Airflow across the cavity generates an 
aeroacoustic structural response from which energy is harvested using a [011] poled Mn-PMN-
PZT single crystal fibre composite (SFC) transducer. The SFC transducer was bonded to a 
0.381 mm thick, 250 mm long x 132 mm wide spring-steel plate. The plate was mounted to the 
floor of a structural cavity with dimensions length L = 266 mm and depth D = 151.6 mm, with 
L/D = 1.75. The cavity width was fixed at 210 mm. Multiphysics modelling of the orientation of 
the SFC transducer was performed, indicating that the SFC transducer bonded perpendicular to the 
long direction of the cavity floor was optimal. Model predictions were validated via low-speed 
wind-tunnel testing, with the maximum power harvested being 19.6 µW from a 60 m/s airflow 
over the structural cavity. The modelled in-plane strain distributions within the SFC transducers 
were examined, with the principal strains found to be larger and more uniform when the SFC was 
bonded in the perpendicular arrangement.  
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Abstract. Residents need to change their habitual behaviors following living space changes, such 
as moving or remodeling, and that may occur mental stress. This stress is a major problem, 
especially for the elderly, who are less able to cope with changes in their environment. To reduce 
this stress, a system that reflects the living information of the original houses in new houses, where 
habits can be retained in the new environments is needed. Many studies have been conducted to 
quantify life information as a habitual model using data mining and pattern recognition methods. 
“Process Mining” is a theory developed to visualize and improve processes in the business field 
and applied to lifestyle information, and it is possible to create a habit model. In recent years, 
several studies on habit models using process mining have been reported. However, there are no 
studies in which these process mining-based habit models have been adopted to design 
architectural spaces such as living spaces. Therefore, the purpose of this study is to investigate the 
relationship between habit and architectural space by utilizing a process mining-based habit model. 
Specifically, we propose the automatic extraction and visualization of habit behaviors through 
process mining and the use of habit models. The data acquisition experiment was conducted in an 
experimental smart home. This smart home is a mobile trailer house built by a multi-company 
project and is equipped with many sensors that can automatically acquire many daily living data. 
Subjects were recruited randomly and lived alone in this smart home for one week. An input matrix 
was created from the acquired data set and process mining was adapted to create habit models. In 
this study, two habit models were created: (1) a habit model based on behavioral information and 
(2) a habit model based on location information. Each input matrix consisted of (1) 16 types of 
behavior record data manually entered by the subject and (2) ground reaction force data in the 
house divided into 7 areas. We investigated the relationship between habitual behaviors and spatial 
conditions by integrating these two models. 
Introduction 
People experience a great deal of stress when their living environment changes, such as when they 
move or renovate their homes [1]. The elderly often renovate their homes as their bodies age. 
While physical aspects such as functionality and accessibility are often considered during such 
home renovations, it is also important to reflect on personal experiences such as personal habits 
[2]. In other words, reflecting on personal life information from the previous home during the 
design phase of a new home and tailoring the home design to the residents will reduce this stress 
and allow for a smooth home move. Barry developed a set of guidelines for designing spaces that 
reflect his habits for the renovation of his father's house [3]. While these guidelines reflect personal 
experience and help smooth home changes, they are problematic in that they do not quantitatively 
automate the acquisition of habitual behaviors or the stages of interior space design. On the other 
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hand, although many studies have been conducted to automatically create optimal space design 
[4], there are still no studies that automatically form indoor spaces using habit information as input. 
Since actual individual habits are complex, it is considered difficult to incorporate habit 
information at the spatial design stage. Therefore, in order to spatial design with habit as an input, 
it is first necessary to quantitatively clarify the relationship between architectural space and habit. 
In recent years, several studies have reported on the application of “process mining” to lifestyle 
information to create a habit model. Process mining is a theory for visualizing and improving 
processes in the business field. Dimaggio et al. created habit models by applying process mining 
to log data obtained from PIR (Passive Infra-Red) sensors [5]. Ma'arif created habit models by 
applying labeled events [6]. These studies only used data from a single type of sensor acquired in 
the smart home, were aimed at creating habit models, did not discuss the use of habit models, and 
did not utilize them in spatial design. 
Therefore, the purpose of this study is to investigate the relationship between habits and 
architectural space by utilizing habit models created using process mining. This study uses 
experimental data from a smart home located in Japan, where habit models were created by 
applying process mining to data acquired from multiple types of sensors. This study is positioned 
as the first step in the construction of a space design system using the habit model as input.  
Materials and methods 
・Experimental setup and subjects 
The data acquisition experiment was conducted under the experimental environment of a smart 
home that simulates a living space, called the "Mirai no ie”. This smart home was built for the 
verification of cutting-edge systems as a part of a collaborative project. As shown in Figure 1, this 
smart home is a mobile trailer house, and the experimental environment was designed for a single 
person living alone. This smart home is equipped with many sensors, including IoT home 
appliances, and can automatically acquire daily life data such as the usage status of home 
appliances and physiological data of the subjects. In addition, subjects can control door locks and 
lightings from their smartphones. 
Subjects were required to live alone in this smart home for one week. Subjects did not have to stay 
in the house all day but could go to school or work as usual and lead a natural life. Subjects were 
also given a tablet and tasked to press “start” when they performed an activity in the home and 
“end” when they completed the activity. The experiments were approved by the ethical committee 
of Keio University Faculty of Science and Technology (approval number: 2020-73) and the 
Kanagawa Institute of Industrial Science and Technology (ethical committee on Research 
Development and Demonstration of Robots for Human Subjects). 
 

  

Figure 1. Photos of the exterior and interior of the smart home named “Mirai no ie”  
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・Data analysis: Process mining 
In this study, an input matrix was created using two types of data from the acquired data, activity 
and location information, and a habit model was created by applying process mining. 
 

- Extraction of Event Logs 
Activity information was data manually entered by the subjects. Subjects were given a tablet and 
tasked to press “start” when they performed an activity in the house and “end” when they finished 
the activity. The tablet displayed “start” and “end” buttons for the 16 activities shown in Table 1. 
The location information was obtained from the ground reaction force sensors (Locationfloor, 
Toppan Inc., Tokyo, Japan) installed all over the floor in the smart home. These sensors are 
integrated with flooring and can detect the resident’s positions. In this study, the entire house was 
divided into seven zoning areas as shown in Figure 2, and the data was stored. The ground reaction 
force data continued to be stored automatically if the subject was in the house. 
 

Table 1.  16 different activities displayed on the tablet 

TV: watching TV Cook: cooking a meal 
Outing: getting out of the house Medicine: taking the medicine 
Smartphone: using a smart phone Laundry: doing laundry 
Toilet: using the toilet Sleep: going to bed 
Work: doing work Preparation: preparation for outing  
Hygiene: brushing teeth, washing hands, etc.  Exercise: exercise one's body  
Bath: taking the bath Eat: eating food 
Cleaning: cleaning home Dishwashing: washing the dishes  

 

 

Figure 2. The locations of the ground reaction force sensors and defined seven zoning areas 

 
- Event Log Filtering 

Because the amount of data in the location information recorded automatically is huge compared 
to the manually input activity information, filtering was performed on the location information log 
data to align the granularity of the event logs. Specifically, time frame filtering was created based 
on the time from the start to the end of the activity information, and location information data was 
reduced. 
 
  

Sofa Kitchen Washing 

Toilet 

Workspace 
 

Closet 

Entrance 
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- Creation of Input Matrix 
To perform process mining, three columns are required: Subject ID, Timestamp, and Event log. In 
this study, both the activity data and location data were included in the Event log columns as shown 
in Table 2. This means that the event log includes the start and end of each activity, as well as 
location information. 

Table 2. Input Matrix Example 

Subject ID Timestamp Event log 
1 2020-12-08 09:31:44 TV_start 
1 2020-12-08 09:31:54 Sofa 
1 2020-12-08 09:51:31 TV_end 
⋮ ⋮ ⋮ 

 
- Creation of habit model 

Process mining was applied to the input matrix to create a habit model. This study used Heuristic 
Miner, one of the process mining algorithms. Heuristic Miner can create process models by 
considering the frequency and is suitable for irregular data such as human habit models [7].  
Heuristic Miner calculates the degree of dependence, meaning the connection between each event 
[8]. The degree of dependence is calculated between 0.00~1.00, and the closer to 1.00, the stronger 
connections. Only those with this degree of dependence exceeding the threshold value were 
formed as habit models. 
Among the several formats for displaying process models, we used the Heuristic Net to visualize 
the created habit models. Since Heuristic Nets are models of connected only event logs, they are a 
suitable representation method for visualizing complex human habits. The activity and location 
information in the event logs are represented by transitions, respectively, and the processes that 
exceed the threshold values are connected in the model. This model extracts only the processes 
that exceed the threshold value, and it is possible to create habit models with different granularity 
by changing the threshold value. 
The open source pm4py (Fraunhofer Institute for Applied Information Technology FIT, Sankt 
Augustin, DE) was used to execute the process mining [9]. We also used Anaconda3 (Anaconda 
Inc., Austin, TX, USA) to perform the analysis. 
 
・Evaluation 
After Process mining, to investigate the relationship between activities and location, from the 
created habit model, we extracted only those parts of the model where there was a connection 
between activity and location information for each subject. This is necessary because the initial 
habit model also has activity-to-activity processes, so we extracted only the processes that 
location-activity in the habit model. 
 
Results and discussions 
The subjects were 4 students (M:2, F:2) aged 22.5±0.5, and the data acquisition experiment ran 
from November 17, 2020, to December 15, 2020. They lived in this smart home alone for a week 
and collected data from check-in to check-out. Process mining was applied to the input matrix to 
extract processes for each subject’s data. 
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・Habit models 
A habit model was created for each subject. As an example of a habit model, Figures 3 display 
subject A’s habit models at two threshold values; (1) 0.80 and (2) 0.50. In Figures 3, we can see 
the connections between each activity and location and read the visualized personal habits. 
Comparing (1) and (2), at higher threshold, the number of event logs extracted and the number of 
paths connecting them are reduced, making the habit model simpler. In other words, the application 
of the Heuristic Miner algorithm requires the determination of the threshold value according to the 
purpose of the study since granularity of the habit model changes significantly depending on the 
threshold value. This method has the potential to approach a variety of problems such as daily 
monitoring of the elderly and personal habit change by adjusting the threshold value of the habit 
model. 
In this case, a threshold value of 0.50 is appropriate because the purpose of this study is not to look 
at the connection between specific activities and location data, but rather to conduct a broad survey. 
In addition, duration of this experiment was only one week, and the number of data was small. 
Usually, the degree of dependence on Heuristic Miner increases as the number of data increases, 
so a high threshold value should not be set in this case; 0.5 is appropriate. 
 
・Relationship between habit and architectural space 
Table 3 shows the names of the activity associated with location information and their degree of 
dependence that extracted from the habit model when the threshold value is 0.50. These activities 
indicate that they took place at the corresponding locations. Activities with high degrees of 
dependence are more strongly tied to the location. 
Focusing on the seven areas we can see that multiple activities were taking place in each area. For 
example, focusing on subject A, the type of activity performed in the workplace area and in the 
washing area is different. This means that this subject has a habit of performing certain activities 
in certain architectural spaces. This suggests the need to design spaces that are tailored to habits. 
At the same time, the values of the dependence differ for each activity, allowing us to see each of 
the activities with the strongest ties to each area. 
A comparison of the results of the 4 subjects shows that some results were common, and some 
were not in the relationship between habits and architectural space. For example, focusing on the 
workplace area, we see that all subjects are performing “work” activity, but only subjects B and C 
were performing “smartphone” activity at workspace. Furthermore, a common activity to all 
subjects is “hygiene” activity in the washing area and “cook” and “eat” activities in the kitchen 
area. On the other hand, there was no common activity to all in the toilet, sofa, entrance and closet 
areas, but individual characteristics were evident. The fact that individual differences appeared in 
the relationship between activity and location information while living in the same house strongly 
suggests the need to create architectural spaces that are tailored to the habits of each resident. 
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(1) Threshold value is 0.80 

 

(2) Threshold value is 0.50 
Figure 3. An example of a subject A’s habit model of Heuristic Net in Pm4py 
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Table 3. Activity information and the degrees of dependence strongly related to the 7 areas 
(Threshold value is 0.50) 

Area Subject A Subject B Subject C Subject D 

workplace 

work 
dishwashing 

0.80 
0.75 

work 
hygiene 

0.90 
0.75 

preparation 
hygiene 

0.80 
0.75 

  

eat 
preparation 
cook 
cleaning 

0.66 
0.66 
0.50 
0.50 

eat 
cook 
sleep 
toilet 
outing 
preparation 

0.66 
0.50 
0.50 
0.50 
0.50 
0.50 

sleep 
toilet 
smartphone 
outing 
work 
dishwashing 
bath 
laundry 
eat 
cook 

0.66 
0.66 
0.66 
0.66 
0.66 
0.66 
0.50 
0.50 
0.50 
0.50 

work 
hygiene 
bath 
outing 
smartphone 

0.50 
0.50 
0.50 
0.50 
0.50 

washing 

hygiene 
bath 
toilet 

0.83 
0.80 
0.80 

  hygiene 
preparation 

0.83 
0.75 

bath 0.75 

preparation 
laundry 

0.66 
0.50 

sleep 
hygiene 

0.50 
0.50 

bath 
work 

0.50 
0.50 

TV 
cook 
hygiene 
preparation 

0.66 
0.66 
0.50 
0.50 

toilet 

toilet 0.80 bath 0.75     
bath 
hygiene 
cleaning 
work 

0.50 
0.50 
0.50 
0.50 

cook 0.50 toilet 
smartphone 

0.66 
0.50 

bath 
smartphone 

0.50 
0.50 

sofa 

preparation 
exercise 

0.75 
0.75 

  smartphone 0.75   

cook 
work 
bath 
TV 
smartphone 

0.66 
0.60 
0.50 
0.50 
0.50 

dishwashing 
eat 
bath 

0.66 
0.50 
0.50 

eat 
exercise 
hygiene 
TV 
sleep 
bath 
preparation 

0.66 
0.66 
0.66 
0.66 
0.50 
0.50 
0.50 

smartphone 
cook 
eat 
work 
TV 

0.66 
0.66 
0.66 
0.50 
0.50 

kitchen 

cook 
dishwashing 

0.83 
0.80 

eat 
cook 

0.83 
0.83 

eat 
toilet 
bath 
cook 

0.88 
0.80 
075 
0.75 

eat 
cook 
hygiene 

0.75 
0.75 
0.75 

smartphone 
work 
laundry 
eat 
preparation 
cleaning 
medicine 

0.66 
0.66 
0.60 
0.50 
0.50 
0.50 
0.50 

laundry 
hygiene 
bath 
toilet 

0.66 
0.66 
0.50 
0.50 

smartphone 
laundry 
hygiene 
outing 

0.50 
0.50 
0.50 
0.50 

TV 
work 
preparation 
outing 

0.66 
0.50 
0.50 
0.50 

entrance 

        
  outing 

eat 
work 

0.50 
0.50 
0.50 

outing 0.50 outing 0.50 

closet 
        
  work 0.50   outing 0.50 

*Cells of high degrees of dependence are colored in blue. 
**Bold shows common activities through all subjects. 
 
Conclusion and Future plan 
By applying process mining to the data acquired in the smart home, a model of habits was created, 
and investigated the relationship between habits and architectural space. In particular, we applied 
process mining by incorporating both activity and location information in the same input data. 
From the created habit model, we visualized where and which activities are performed in the house, 
and the results showed that the relationship between habits and architectural space differs from 
person to person, suggesting the need to create architectural space tailored to each person's habits. 
In the future, we will construct a space design system using the created habit model as input. 
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Abstract. This paper focusses on the development of a data-driven damage detection method to 
quantify fatigue crack in metal plates using Lamb waves and its reliability using a probability of 
detection (POD) technique. The guided Lamb waves are generated and sensed using an array of 
direct-write (DW) polyvinylidene fluoride (PVDF) annular comb shaped transducers designed to 
explicitly generate a desired guided wave mode in the test specimen. The annular comb design 
helps generate a single desired wave mode in the specimen thereby suppressing the energy of other 
wave modes that can be generated simultaneously. The guided wave responses are obtained 
through a simulation study and are recorded at different progressions of crack. A damage index 
(DI) is constructed as a function of crack size that can effectively track the change in ultrasonic 
response variations and for diagnosing fatigue crack in the metallic specimens. This DI is then 
further used in the POD model to estimate the crack detection probability. The POD curves can be 
helpful to check the reliability of the proposed inspection system as well as identify the critical 
experimental parameters that can significantly influence the crack detection results. 
Introduction 
Non-Destructive testing (NDT) systems utilize scattered, permanently attached transducers at 
critical regions of structural failure, and employ diagnostic methods or algorithms to extract the 
health-related sensitive information from the captured data [1]. Ultrasound based NDT has 
gathered lot of attention by researchers worldwide as they can be excited and sensed by cheap 
sensors. However, the ultrasonic guided waves are highly dispersive and therefore a careful 
selection of the frequency-mode pair is vital in developing an effective NDT system. Further, the 
physics of guided wave propagation could be quite complicated if effective actuation and reception 
strategies are not adopted [2]. 

Forsyth et.al. [3] discussed the theoretical foundations for evaluating the effect of multiple 
inspections, and examine data from the experiments against this framework to demonstrate the 
effectiveness of POD from multiple tests. Meeker et.al [4] reviewed the basics of POD and 
discussed how it can be effectively applied to NDT studies by modification and extension of pre-
existing methods for estimating POD. Virkkunen et.al [5] presented a comparison between â versus 
a and hit/miss for two entirely different data sets and found both models may yield drastically 
different results, if the true hit/miss output is based on an individual judgement and not on an 
automated signal threshold. Adam et.al [6] discussed the relationship between NDT and POD and 
a case study is further presented for the development of POD curves using a model-assisted 
formulation. Mishra et.al [7] studied the acousto-ultrasound based SHM technique quantified as 
"in-situ NDE" through a POD method based on a model assisted approach in the context of fatigue 
crack detection. 

The present study focusses on the NDT of an Al 6060 specimen to evaluate the crack presence 
and its progression using ultrasonic guided waves. Firstly, a suitable frequency-mode pair was 
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identified through the dispersion diagram best suited to detect the crack. Next, a DI was 
constructed as a function of crack size to quantify the damage progression. Lastly, a POD curve 
was constructed to check the reliability of the proposed inspection system as well as the probability 
with which a crack of given size can be detected. Finally, findings from the present study were 
summarized. 
Methodology 
The present study focusses on the crack detection and tracking its progression using the desired 
ultrasonic guided wave mode generated using the 3-electrode annular comb array design of PVDF 
transducers. A similar array is used on the opposite side to receive the ultrasonic guided waves. 
Thus, the propagating ultrasonic waves can be received in pulse-echo as well as pitch catch 
configurations. The data is collected for intact state of the specimen and during several 
progressions of fatigue crack.  Further, a DI is constructed through the received time domain 
responses to quantify the crack which is further used in the POD model to predict the probability 
with which each crack size can be detected. The background of the POD model is illustrated in the 
following sub-section. 
Probability of detection model 
Let ‘𝑎𝑎’ be the actual crack size, ‘𝑎𝑎�’ be the calibrated crack size, and ‘𝑥𝑥’ and ‘𝑦𝑦’ be the natural 
logarithm of the actual and calibrated crack size respectively. The linear relationship between ‘𝑥𝑥’ 
and ‘𝑦𝑦’ can be represented as [8], 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝜖𝜖;                                                                                                                        (1) 

Where ‘𝜖𝜖’ is the error between the fitted data and actual data, and has normal distribution with 
mean 𝜇𝜇 = 0 and ‘𝛿𝛿2’ as its variance. The standard normal variate can be written as; 

𝑍𝑍 = 𝑦𝑦−(𝛽𝛽0+𝛽𝛽1𝑥𝑥)
𝛿𝛿

; which has a standard normal distribution as,                                                         (2) 

𝜙𝜙(𝑧𝑧) = 1
√2𝜋𝜋

𝑒𝑒
−𝑍𝑍
2

2

                                                                                                                        (3) 

The cumulative distribution function (CDF) of a standard normal distribution is; 

𝑄𝑄(𝑧𝑧) =  ∫ 𝜙𝜙 (𝑍𝑍) 𝑑𝑑𝑧𝑧∞
𝑧𝑧                    (4) 

Thus, the POD of any given crack size can be obtained as follows,                                                                                                                   
POD (𝑥𝑥) = POD (𝑦𝑦 > 𝑦𝑦𝑡𝑡ℎ) = 𝑄𝑄 �𝑦𝑦𝑡𝑡ℎ−(𝛽𝛽0+𝛽𝛽1𝑥𝑥)

𝛿𝛿
�                                                                             (5) 

Where, 𝑦𝑦𝑡𝑡ℎ  is the lowest size of crack that can be detected. The complement of the Standard CDF 
is, 

𝑄𝑄[−𝑍𝑍] = 1 − 𝑄𝑄[𝑍𝑍]                                                                                                                       (6) 

POD (𝑎𝑎) = POD (𝑦𝑦 > 𝑦𝑦𝑡𝑡ℎ) = 1- 𝑄𝑄 �
𝑥𝑥 − �

𝑦𝑦𝑡𝑡ℎ−𝛽𝛽0
𝛽𝛽1

�
𝛿𝛿
𝛽𝛽1

� = 1- 𝑄𝑄 �
log𝑒𝑒 (𝑎𝑎) − �

𝑦𝑦𝑡𝑡ℎ−𝛽𝛽0
𝛽𝛽1

�
𝛿𝛿
𝛽𝛽1

�                             (7) 

Thus, mean = �𝑦𝑦𝑡𝑡ℎ−𝛽𝛽0
𝛽𝛽1

� and standard deviation = 𝛿𝛿
𝛽𝛽1

. These can be further used to estimate the POD 
curve as a function of actual crack size.  
Numerical study 
In the present study, the ultrasonic guided waves are obtained using a 2D Finite element (FE) set 
up. For this purpose, 3-electrode annular comb array design of PVDF transducers is modeled and 
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time-domain data is collected in pulse echo and pitch catch configurations. The materials used in 
the simulation and their mechanical properties are presented in the following subsection. 
Material description and defects 
The specimen used for the present study is a 2.286 mm thick Aluminum plate with notch of 
different sizes to simulate crack progression as shown schematically in Fig.1. The crack size is 
increased as a function of the percentage of plate thickness. The overall dimensions of the plate 
specimen and the sensors are shown in Fig.1. 

 
Fig.1 Schematic of the specimen model (Note: All dimensions are in mm and figure not to scale) 

 
Table 1 Mechanical properties of Al 6060 material 

Material Thickness 
(mm) 𝝆𝝆(Kg/m3) 𝑬𝑬(GPa) 𝝂𝝂 [-] 𝑽𝑽𝑳𝑳 (m/s) 𝑽𝑽𝑻𝑻 (m/s) 

Al6060 2.286 2700 70 0.33 6197.82 3122 
 

Dispersion curves & wave structures of the Al6060 specimen: 
The propagation of different wave modes in the considered Al6060 specimen at different 
frequencies can be obtained using the dispersion curves. Therefore, dispersion curves are firstly 
obtained for a 2.286 mm thick Al plate and are shown in Fig.2. It can be seen that the 𝑆𝑆1 Lamb 
mode at 1.75 MHz excitation frequency is a good choice from the design perspective of the PVDF 
sensor as well as the wave-structures of this mode show good sensitivity to the surface and 
embedded damages except the midplane of the specimen. The excitation applied to the PVDF 
sensors is a 10.5 cycles gaussian modulated sine wave signal that is centered at 1.75 MHz 
frequency. This time-domain excitation signal and its frequency spectrum is shown in Fig.3.  

             
                                               (a)                                                                                             (b)                                                             
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           (c) 

Fig.2 Dispersion Curves of the Al specimen (a) Phase velocity (b) Group velocity (c) Wave 
structures 

 

                                 
                                                     (a)                                                                 (b) 

Fig.3 The Excitation signal used in FE simulations (a) Time domain (b) Frequency domain 
 

Finite Element model  
In the present study, the guided wave responses were excited and sensed using a array of PVDF 
sensors with a spacing between each element as one-wavelengh and is shown schematically in Fig. 
1. The spacing between each element is calculated from the Phase velocity dispersion curve 
(Fig.2(a)). In order to excite a dominant 𝑆𝑆1 Lamb mode at 1.75 MHz excitation frequency, the 
wavelength should be 3.42 mm. However, it should be noted that, the excitation line with 
wavelength 3.42 mm also shows possible generation of other Lamb modes but those modes should 
be excited with lesser energy at this frequency. On the receiver side, in-plane and out-of-plane 
time domain responses are recorded on the sensor surface for different percents of notch depths 
with respect to plate thickness. Further absorbing boundary conditions are enforced at the start and 
end of the plate across its thickness direction. The results are discussed in the following section. 
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Results and discussions 
The results of FE simulations conducted at 1.75 MHz for an intact Al specimen is presented firstly 
in this section. The wave propagation for an intact specimen is shown in Fig.4. It can be seen that 
the PVDF sensors spaced at 1.71 mm excite a dominant 𝑆𝑆1 Lamb mode. Further, time-domain 
waveforms at the intact condition of the specimen recorded in a pulse echo configuration are shown 
in Fig.5 for the in-plane and out-of-plane motion. It shows a pure generation of 𝑆𝑆1 Lamb mode 
with no potential reflections from damage. 

 
 

  

  

  
                                                                                                                   

Fig.4 Wave propagation at different time instants in a intact Al specimen 

   
                                   (a) In-plane                                                 (b) Out-of-plane  

Fig.5 Time domain waveforms for a healthy Al specimen received at exciter (pulse echo) 
 
The time-domain signals recorded at intact state in the pitch-catch configuration for in-plane and 
out-of-plane motion are shown in Figs.6(a) & 6(b) respectively. It can be seen that for a pitch-
catch configuration, multiple wave modes are generated. To understand which modes are 
generated, a short time Fourier transformation (STFT) of both in-plane and out-of-time time 
domain signals is conducted and theoretical dispersion curves are overlapped on top of it. The 
results are shown in Figs.7(a) & 7(b) respectively. It shows that 𝑆𝑆1 wave is dominantly generated 
with relatively slower velocity modes 𝑆𝑆0 and 𝑆𝑆2 being generated simultaneously and with lesser 
energy at 1.75 MHz excitation frequency. 

PVDF sensors 

𝑆𝑆1 
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                               (a) In-plane                                                   (b) Out-of-plane 

Fig.6 Time domain waveforms for an intact Al specimen (pitch catch) 

 
                                      (a) In-plane                                          (b) Out-of-plane 

Fig.7 STFT of Time domain waveforms for an intact Al specimen (pitch catch) 
 

The FE simulations are further conducted with increasing notch size in the Al specimen and time-
domain signals recorded in the pulse echo and pitch-catch configuration for in-plane and out-of-
plane motion. The time domain signals for pulse echo configuration in presence of damage (10% 
and 20% of plate thickness) are shown in Fig.8. It can be seen that for a damaged specimen, wave 
reflections take place from the damage and are captured in the pulse echo configuration. For 
brevity, only the results of intact state and damaged state where damage severity is 10% and 20% 
of plate thickness is presented for demonstration purposes. Thus, an index needs to be defined that 
can quantify the difference between the intact and damage state time domain signals. The damage 
index (DI) used in the present work is shown in Eq.8 as follows, 
 
𝐷𝐷𝐷𝐷 = ∑ [𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝑡𝑡(𝑛𝑛)−𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝐵𝐵𝐵𝐵𝐶𝐶𝑒𝑒(𝑛𝑛)]2𝑁𝑁

𝐶𝐶=1
∑ [𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝐵𝐵𝐵𝐵𝐶𝐶𝑒𝑒(𝑛𝑛)]2𝑁𝑁
𝐶𝐶=1

                                                                                                  (8) 
 

𝑆𝑆0 

𝑆𝑆2 

𝑆𝑆1 

𝑆𝑆2 

𝑆𝑆0 
𝑆𝑆1 
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Where 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑡𝑡 is the time domain signal at the current state of the specimen and 𝐸𝐸𝐵𝐵𝑎𝑎𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵𝑛𝑛𝐶𝐶 is the 
time domain signal at the intact state of the specimen, and 𝑛𝑛 are the number of samples. The DI is 
then evaluated using the in-plane time domain responses recorded at intact and damaged states for 
different severity through Eq.8. and is presented in Fig.9(a) that shows the damage severity 
(normalized) as a function of growing crack size. 
 

           
                              (a)                                                                        (b)   

Fig.8 Time domain waveforms for an Al specimen with growing crack 
 

 
                           (a) Linear fit to data                                          (b) POD 

Fig.9 POD with increasing crack size at 152.4 mm in wave propagation direction from origin 
 
It can be seen that around the mid plane a temporarily decrease in the DI is observed which is 

basically because of the wave structure of the 𝑆𝑆1 Lamb mode as shown in Fig. 2(c) that is relatively 
in-sensitive around the midplane of the plate. Ideally, a stable increase in the DI should be 
achieved. However, this majorly depends on the wave mode used for inspection. Next, a linear fit 
is applied to the calculated DI’s which yields the parameters in Eq.1, as well as the variance of the 
residual data set. Finally, using Eq.7, the POD curve is constructed for the in-plane and out-of-
plane time domain data responses. The discrepancy between the POD curves constructed for the 
in-plane and out-of-plane time domain data is mainly because of the difference in the sensitivity 

Damage induced waves 
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of the wave structures of 𝑆𝑆1 Lamb mode for in-plane and out-of-plane motion. Overall, the crack 
size quantification probability is relatively same. 
Summary 
This paper presents the development of a damage quantification and reliability estimation 
technique in an Al plate specimen using Lamb waves excited through an array of annular comb 
shaped sensors and POD. Dispersion curves of the Al plate specimen were firstly obtained to 
identify the most suitable frequency-mode pair for inspection from a practical perspective. Based 
on the dispersion and wave structure analysis, S1 Lamb mode at 1.75 MHz was found suitable to 
inspect the growing crack in the Al specimen. Time domain responses were recorded at the intact 
and damage states of the Al specimen in pulse echo and pitch catch configurations which were 
finally analyzed using a DI and POD to quantify the crack and estimate reliability. Following are 
the concluding remarks from the present study: 

1. The employed 𝑆𝑆1 Lamb mode was able to detect the growing crack in the Al specimen. 
2. The DI constructed based on the recorded data could be helpful to quantify the crack size. 
3. The POD curves can be helpful to determine the reliability of the proposed inspection 

method. 
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Abstract. In recent years, the rapid aging of the population and the high incidence of fall accidents 
have been problems. Although conventional physical function assessments have been conducted 
by interviews with physicians or physical fitness tests, research and developments have been 
recently conducted on a system to be used in medical facilities by using motion capture systems 
or inertial measurement units to enable detailed and easy assessment. However, contact sensors 
constrain people’s movements during measurements. Furthermore, they may feel nervous during 
measurement at experimental sites or hospitals, and this causes different movements from usual. 
Thus, we have been suggesting a physical function assessment system that realizes the 
measurement of natural daily activities by introducing non-contact sensors into the living space. 
In conducting physical function evaluation in a living space, it is necessary to consider the set of 
conditions, such as sensor placement, from the viewpoint of privacy protection. In addition, 
because of the wide variety of living space designs, the determination of sensor positions is 
currently tailor-made to take into account measurable motion and privacy, so there is room for 
optimization. However, to begin with, there are few examples of measurement in actual living 
spaces, and standards of home-based sensing such as the actual measurable indices, and installation 
conditions are unclear. Therefore, the purpose of this study was to propose an optimization system 
for the placement of sensors in the living space for physical function evaluation. We proposed a 
system that simulates the amount of data on walking motions that can be obtained under each 
condition and the optimal placement of the RGB-D sensors based on that data. In this study, sensor 
placement was optimized based on the following three evaluation items: (1) residents do not feel 
discomfort, (2) walking motions can be measured, and (3) the sensor does not interfere with 
residents’ walking. The system was validated using floor plan information published in CASAS 
Smart Home Data sets, and we discussed its usefulness and issues. 
Introduction 
In recent years, the world’s population has been aging, and it is essential to prepare for the 
economic and social problems that accompany this aging. The use of sensing technology is thought 
to be useful for improving the health problems of the elderly, and many studies have been 
conducted to use sensors to monitor and evaluate the health conditions of the elderly[1] [2]. In this 
study, we focused on physical function evaluation, which is useful for early detection of the decline 
of physical function and disease. It is considered that the physical function evaluation can be used 
for effective physical therapy intervention and improvement of the living environment. Physical 
function evaluation has conventionally been conducted by a physician’s interview and physical 
fitness tests[3]. However, in recent years, studies have been conducted on systems that provide 
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diagnoses in detail and easily by acquiring joint positions and ground reaction forces using sensors. 
In previous studies, physical function evaluation was conducted by calculating indices such as 
walking speed and body inclination from gait measurements under experimental conditions using 
optical and depth sensors[4] [5]. However, contact-type sensors may put a burden on the person 
during measurement, and when measuring at an experimental site, the person may move differently 
than usual due to nervousness[6]. Therefore, it is desirable to conduct physical function evaluation 
naturally from daily life activities by introducing non-contact sensors in the living space. 

However, more detailed data acquisition is required to conduct physical function evaluation in 
a living space than in a monitoring system to detect anomalies such as falls, so more consideration 
must be given to the setting of conditions such as sensor placements. Whereas monitoring systems 
using non-contact sensors only need to understand residents’ rough movements, such as a 
silhouette, physical function evaluation requires detailed data about how the residents move their 
bodies. Kinetic approaches such as using force plates can measure the balance of the center of 
mass when walking, but considering the cost and the difficulty of installation, it is not practical to 
introduce such a system into a living space. Therefore, kinematic approaches, such as using RGB 
cameras, are appropriate for physical function evaluation in living space, and it is reasonable to 
use RGB-D sensors which are added depth sensors for more accurate joint position estimation. 
When installing RGB-D sensors in living space, it is necessary to consider not only the ability to 
measure movement, but also the discomfort caused by cameras to the residents and the difference 
in the amount of measurable movement according to the floor plan. However, there are still few 
examples of measurements in actual living spaces to conduct physical function evaluation, and the 
criteria for sensor installation are still unclear. Thus, this study proposes a system that optimizes 
the placement of sensors for physical function evaluation based on the floor plan information. 
Materials & Methods 
Dataset 
In this study, we used CASAS (Center for Advanced Studies in Adaptive Systems), which is 
publicly available on the web page of Washington State University, for the purpose of acquiring 
floor plans of houses and walking logs of residents to be used as input for the system[7]. This data 
set contains a variety of data on the residents’ lives over a long period of time in the living space 
where multiple sensors are installed. The floor plan used in this study is shown in Figure 1. The 
house was equipped with motion, temperature, and door sensors, and one subject lived in the house 
for approximately two months. In this study, walking trajectories are simulated under two 
conditions: one in which the bias in the amount of movement between areas is taken into account 
based on the ON/OFF information of the motion sensor, and the other in which the amount of 
movement is equalized. The position of the motion sensor used is indicated by the red point in 
Figure 1. 
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Figure 1. Floor plan 

Evaluation items for placement in the system 
In the system proposed in this study, the scores of each sensor placement were calculated in 
consideration of the following three items: (1) residents do not feel discomfort, (2) walking 
motions can be measured, and (3) the sensor does not interfere with residents’ walking. The details 
of each of these items are described below. 

 
(1) Residents do not feel discomfort 

Because RGB-D sensors capture clear images of residents, the residents may feel uncomfortable 
due to the awareness that their private lives are captured. Thus, we considered that only the flow 
spaces such as corridors are appropriate for the sensor installation positions, and excluded rooms 
from the calculation of sensor installation positions in this system to avoid installing sensors into 
spaces where people stay for a long time. 

 
(2) Walking motions can be measured 

In most of the previous studies of physical function evaluation using non-contact sensors, 
straight walking movements were evaluated. The reason is that straight walking is easy to measure 
physical function evaluation indices such as body balance during the movement. Therefore, sensor 
positions where straight walking can be often measured are appropriate. Our system was set to 
calculate the amount of walking as one of the evaluation values. 
 
(3) The sensor does not interfere with residents' walking 

The RGB-D sensors used in many previous studies are put on the floors, for reasons that easy 
to measure the residents’ feet and easy to install and remove. Therefore, our system assumed to 
use the floor-mounted type sensors. The use of the floor-mounted type sensors is concerned to 
obstruct residents’ walking. Thus, we lower the score according to the amount of walking in the 
area where the sensor position is overlapped to highly evaluate placing the sensors close to walls 
or obstacles and are not to be interfered with walking. 

 
Proposed system 
To validate the system proposed in this study, a floor plan from the CASAS database was used to 
calculate the sensor placement considering the evaluation items described in the previous chapter. 
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The system flow is shown in Figure 2. First, an image of the floor plan was input to read the 
location of walls and objects. Figure 3 is an image of the floor plan used for input into the system, 
with other spaces painted gray so that walkable spaces can be read. Also, the image was created 
with 1 pixel as 1 cm. 

Next, the walking trajectory of the resident is simulated. We used the Probabilistic Road Map 
(PRM) method, a typical method for pathfinding, to predict the walking paths [8]. As shown in 
Figure 4, by dividing the walkable space in the floor plans by nodes, a path connecting any two 
points can be calculated while avoiding obstacles and walls. In the validation of this system, we 
simulated walking between six areas: entrance, kitchen, dining room, bedroom, room, and 
bathroom Ⅰ. The calculation was conducted in two ways: one is to move equally 100 times between 
each area 3000 times in total, and the other is to move 3000 times in total considering the ratio in 
Table 1 calculated from the ON/OFF information of the motion sensor for about two months. 
bathroom II was excluded because the motion sensor data indicated that it was seldom used. 
Starting and ending points were generated at random locations within each area, and each time 
divided into nodes and searched for a route. 

Next, the measurable amount of walking for the sensor position and angle conditions was 
calculated. As shown in Figure 5, all walking paths were given to each pixel as walking points 
along with angle information. Then, as shown in Figure 6, only walking points that corresponded 
to directions within 30° to the left and right of the sensor, and that were not blocked by walls or 
obstacles, were considered to be measurable straight walking. Also, the size of the sensor stand 
was set to 20 cm (length) and 20 cm (width), and the measurement range was 60° horizontally and 
0.5 m to 3.85 m forward, assuming the Azure Kinect DK (Microsoft, Redmond, WA, USA) which 
is one of the major RGB-D sensors was installed.[9]。As described in the previous section, sensor 
placement was limited to locations where they were in contact with walls and obstacles, and the 
amount of walking was calculated by changing the angle every 10° at each location on the floor 
plan. In order to satisfy the evaluation items that the residents do not feel discomfort, the rooms 
were excluded from the sensor placement candidates, and the door opening/closing range was also 
excluded. 

Finally, the amount of straight walking within the measurable range of the sensor was scored, 
and points were deducted according to the amount of walking obstructed by the sensor stand. Then, 
a ranking was calculated from the scores of each sensor arrangement, and the higher ranked ones 
were displayed on the floor plan. 
 

 
 

 Figure 2. Calculation flow 
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Figure 3. Images of floor plans used as input for the system 
 

 
 

Figure 4. Prediction of walking path by PRM method 
 

 
 

Figure 5. Assigning walking path and angle information to pixels 
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Figure 6. Measurable range of sensor 
 

Table 1. Percentage of movement between areas 
 

 
Results & Discussions 
Figure 7 (a) and (b) show the simulation results when the number of moves between areas is 
equalized. The blue lines in the figures show walking trajectories. The best placement was by the 
wall near bathroom II, where the central corridor walking could be measured. We consider this 
result to be reasonable because many walking movements can be measured by moving between 
areas such as the kitchen, dining room, and bedroom, and it is easy to measure straight walking. 
However, the angle of the sensor causes half of the measurement range to be blocked by the kitchen 
counter, which is wasteful. This system assumes that measurement accuracy and other conditions 
are constant within the measurable range of the sensor, but in actuality, there are differences 
depending on distance and angle to the sensor. Therefore, it is considered necessary to make 
improvements such as giving a difference in evaluation scores even within the measurable range. 
Also, the top 10 placements indicate that placement near the bedroom entrance was also rated as a 
good placement, although the measurement range is almost the same. The placement is not a 
problem for the measurement range, but it is considered to be an obstacle to walking while opening 
the bedroom door to the corridor. The system did not take into account the effect of doors opening 
and closing on the flow line when simulating walking paths, because the simulation was conducted 
with the doors open. We consider that the walking path can be calculated more accurately by 
improving the system so that the walking path is also slightly modified by the door opening and 
closing motion. 

 

To 
From Entrance Kitchen Dining Bed 

room Room Bath 
room Ⅰ Total 

Entrance  3% 1% 4% 1% 1% 10% 
Kitchen 4%  14% 3% 3% 0% 24% 
Dining 1% 16%  5% 3% 0% 24% 
Bedroom 4% 2% 6%  0% 11% 23% 
Room 1% 2% 4% 0%  0% 8% 
Bathroom Ⅰ 1% 0% 0% 11% 0%  12% 
Total 10% 24% 24% 23% 7% 12% 100% 
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(a) Best Placement                         (b) Top 10   

Figure 7. Sensor placement results for equal number of moves between areas 
Next, Figures 8 (a) and (b) show the results when the ratio based on actual life data is taken into 

account for movement between areas. Both the best and the top 10 sensor placements were 
captured the central corridor, and the results were similar to the case of equal walking. In the floor 
plan used in this study, the dining room is open, so placing the sensor on the wall along the kitchen 
in the central corridor, as shown in these results, is not expected to interfere with walking. Also, 
the top 10 results were placed in almost the same position, in difference from the equal case. It is 
thought that this is due to the amount of walking between the kitchen and dining rooms in real life, 
and that walking was concentrated in the left portion of the central corridor. However, since no 
significant differences were observed in the walking trajectories, it was found that the 
consideration of the movement ratio between areas was not very important in this verification. In 
addition, in the floor plan used in this study, the main bathroom (bathroom I) was attached to the 
bedroom, but if the bathroom is facing a corridor, it would be necessary to make other 
considerations such as not capturing the inside. In the future, we would like to conduct further 
verification using a variety of floor plans and propose a system that can be introduced in daily life. 

 

  
(a) Best Placement                           (b) Top 10 

Figure 8. Sensor placement results for consideration of movement ratios 
Conclusion 
In this study, we proposed an optimization system for sensor placement for physical function 
evaluation in living space that satisfies the following three evaluation items: (1) residents do not 
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feel discomfort, (2) walking motions can be measured, and (3) the sensor does not interfere with 
the residents' walking. In this system, we proposed a sensor placement that can measure straight 
walking by simulating a walking trajectory using the PRM method based on the floor plan. The 
results suggest that the prediction of obtainable data in advance can be used to determine the 
placement of sensors during research and installation. However, since only one floor plan was 
verified in this study, we would like to conduct additional verification based on the results of this 
study in order to make the system more suitable for implementation in daily life. 

Also, in this study, there was no significant difference between the proposed placement based 
only on floor plan information and the one that considered the movement ratio based on actual 
living data. However, in an actual living space, there are many factors to consider, such as the 
desires of the residents and the number of people in the house. In addition, there is room for 
consideration of placement not only for measurement of straight walking for physical function 
evaluation, but also for change of direction and other movements other than walking. In the future, 
we plan to verify the accuracy by installing sensors in actual living spaces and taking 
measurements. 
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Abstract. In recent years, the diversification of lifestyles and the increase in the number of elderly 
single-person households have increased the need to introduce robots and sensors into living 
spaces to control living spaces appropriately for individuals. To realize these goals, it is necessary 
to predict people’s non-steady motions which is one of the challenges in introducing robots into 
living spaces. In response, we have conducted research on motion prediction systems using robots 
and sensors. These studies will contribute to the realization of safe and comfortable architectural 
spaces by introducing robots into living spaces and collaborating with various space controls such 
as automatic doors and lighting. In this study, we focused on turning related to walking, which is 
the most basic motion in activities of daily living. As turning is a non-steady motion greatly 
affected by aging and disease, it is difficult to predict while is highly useful as a health indicator. 
Previous studies have suggested that architectural space design can influence the prediction of 
turning, but the actual effects are not clear because these studies were conducted only under highly 
constrained conditions in a laboratory environment. Thus, existing systems for predicting turning 
have not been validated in daily living environments due to issues such as instructions of motions 
to participants, limitations of natural motions because of contact sensors, and validation in 
experimental environments that are specially prepared to ensure reproducibility. Therefore, the 
purpose of this study was to introduce our sensing systems into actual living spaces and to validate 
our turning prediction system using acquired data on participants’ natural motion. In addition, the 
influence of architectural space design on predicting turning was clarified by conducting an 
experiment at a T-junction with an open space and a crossroad with poor visibility. In this study, 
an office space was selected as the experimental field as a living space to verify the feasibility of 
our turning prediction system. 
Introduction 
In recent years, the increase in the number of single elderly people and the diversification of 
lifestyles due to the super-aging society have increased the need to control living spaces 
appropriately for individuals by introducing robots and sensors into living spaces. In order to 
realize spatial control based on human positions and motions in real-time, it is necessary to predict 
people’s non-steady motions which is one of the challenges in introducing robots into living 
spaces. In response, we have conducted research on motion prediction systems using robots and 
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sensors. Among the prediction of the motion in activities of daily living, this study focused on the 
prediction of the turning motions during walking. 

The turning motions are frequently occurring movements during walking in daily life [1]. On 
the other hand, the turning motions are movements to slow down the speed of motions in the 
direction of travel when walking straight ahead and to shift the center of gravity in the new 
direction of travel [2], and they are known as challenging movements that modify the periodic 
motion of the lower limbs by asymmetrically adjusting the stride length and ground reaction force 
of both feet [3]. It is said to increase the risk of falls, especially for the elderly with reduced 
mobility and cognitive function [4]. In addition, the risk of falling due to turning is known to be 
influenced by dual tasks [5] and the architectural factors [6], such as increased turning angles, 
inadequate lighting [7], and opening and closing doors during turning. Therefore, by predicting 
the turning motions in advance, appropriate real-time space control such as automatic door 
opening/closing and lighting control can be realized, aiming to improve safety and comfort during 
motions. 

Recently, methods combining pattern recognition and machine learning, or Deep Learning have 
been used for motion prediction. Recurrent Neural Networks, which are Deep Learning using time 
series elements, are widely used for motion prediction [8][9]. However, while Deep Learning can 
derive highly accurate solutions from huge amounts of data, several issues have been pointed such 
as the obscuring of detailed algorithms, enormous computational costs, and the physical 
constraints of the human body are unconsidered. On the other hand, the method that combines 
pattern recognition and machine learning allows the selection of input features, which makes it 
possible to consider the physical constraints of the human body and create a simpler motion 
prediction system. In this study, we used only head rotation, shoulder rotation, and hip rotation as 
useful parameters for predicting turning which we extracted in the previous research [10],and 
applied machine learning. 

The problem with existing systems for predicting turning is that the participants’ motions are 
limited by the experimental conditions. Specifically, the systems have been verified in an 
experimental environment [11] specially prepared to ensure reproducibility [12],and have not been 
verified in daily living environments [13]. Moreover, few studies have focused on architectural 
space design and the prediction of turning motions. Takeda [12] compared the predictability of 
turning motions in a space with poor visibility and a large pillarless space, and they concluded that 
the prediction time was longer in a space with poor visibility and that head rotation was a parameter 
that depended on environmental factors. However, they used wearable sensors and did not measure 
natural motion. 

Therefore, the purpose of this study was to validate the applicability of our turning prediction 
system by measuring participants’ natural motions in actual living spaces, and to clarify the 
influence of architectural space design on the prediction of turning motion. In this study, only 
Azure Kinect DK (Microsoft, Redmond, WA, USA), a non-contact and marker-less RGB-D 
sensor, was used for data acquisition and only 3D depth data was analyzed for the applicability to 
daily living space. The position and timing of turning were not specified, and the participants’ 
usual walking motions were measured. 
Materials & Methods 
・Experimental Setup & Subjects 

The experiment was conducted in a corridor space at Takenaka Corporation’s Technical 
Research Institute shown in Figure 1 on 12th July 2022. The plan of the experimental setup is 
shown in Figure 2. Two Azure Kinect DK (Kinect) units were positioned to measure a corridor 
between two intersections named “Crossroad” and “T-junction”. The Kinect Body Tracking SDK 
was used to measure 32 points on the entire body at a frame rate of 30 fps. The height of both 
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Kinects was set at 1.1 m to enable data acquisition of the joint positions of only the upper body 
within 0.5m-1.0 m and the whole body at 2.0 m or more.  

We measured unspecified numbers of employees passing through the corridor from 10:00 a.m. 
to 4:30 p.m. They were walking as usual, not in a specially prepared experimental environment. 
For the analysis, we selected 12 walking data of different employees who were able to walk 
independently (M:11, F:1), including six straight walking and six turning to left motions for which 
skeletal information within the predicted location could be obtained. People who walked from 
point 1 performed straight walking or turning motions at the “T-junction” with good visibility 
where there is an open space on the right side and captured by the Kinect at point 1, while people 
who walked from point 2 performed straight walking and turning motions at the “Crossroad” with 
poor visibility captured by the Kinect at point 2. 

This experiment was approved by the ethical committee of Keio University (approval number: 
2022-081). Due to the nature of the experiment, we obtained informed consent for participation in 
the experiment from all employees at once, and an announcement of the experiment was given by 
flyers at the site one week in advance. On the day of the experiment, flyers were posted in the 
vicinity of the measurement area stating that measurements were being taken. Whenever consent 
for the experiment was not obtained, or when a subject to exclusion was passing by, the 
measurement was temporarily stopped. 
 
 

 

Fig. 1 experimental environment 
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Fig. 2 the experimental plan and sensor placement 

 
・Caluculation of  Prediction Parameters 
Experiments comparing straight walking and turning motions with specified start and end 

positions of walking suggest that the angles in the XZ plane of head rotation, shoulder rotation, 
and hip rotation are useful parameters for predicting turning motions [10]. Based on this, we used 
these three parameters for the same calculation method. Table 1 lists the predictive parameters. 
Figure 4 shows the 7 skeletal positions used to calculate these parameters. Figure 5 shows how the 
predictive parameters for head rotation were calculated. It was calculated using the following 
equation (1). 

 

 𝜃𝜃 = tan−1 𝑏𝑏
𝑎𝑎

   (1) 

Table. 1 List of Prediction Parameters 

Parameter θ (°) Positions of sensors 

Head rotation θ (XZ plane) Ear_Right ― Ear_Left 

Shoulder rotation θ (XZ plane) Shoulder_Right ― Shoulder_Left 

Hip rotation θ (XZ plane) Hip_Right ― Hip_Left 
 
 

 

Fig. 3 Skeletal data used for analysis 
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Fig. 4 Calculation of Predicted Parameters (Ex1: head rotation) 
 

・Data Analysis 
Based on the previous studies‘ judgment criterion, we predicted targets‘ turning motions if the 

predictive parameters exceeded the thresholds pre-calculated. Previous studies adopted the 
predicted time to evaluate their prediction system of turning motion [11][12]. The predicted time 
is defined as the time from when the predictive parameters exceeded the threshold value to the 
start time of the turning motion. However, the predicted time is likely not to work for actual use 
as it depends on the targets‘ walking speed. Also, the predicted positions to the intersection are not 
considered which should be evaluated to clarify the effect of the spatial characteristics. Therefore, 
we adopted the predicted positions which were calculated as the distance from the intersection to 
the targets‘ positions when the turning motions were predicted. The positions of the intersections 
were defined as the midpoints of diagonal lines connecting corners of the intersecting roads shown 
as blue and red rectangles in Figure 5. The predicted positions of turning were determined by 
comparing the three straight and the respective turning motion . 4 walking data were compared, 
and the threshold was set as the position where three straight and turning motion could be 
distinguished. Furthermore, the average of the calculated predicted positions of turning motions  
was calculated. 

 

 

Fig. 5 Predicted position 0m at each location 
 

Results & Discussions 
Figure 6 shows the results of three subjects (A~C) walking straight and three subjects (D~F) with 
turning motions ahead with shoulder rotation, hip rotation, and head rotation at the “T-junction”. 
Figure 7 shows the results of 3 subjects (A~C) walking straight and 3 subjects (D~F) with turning 
motions ahead with shoulder rotation, hip rotation, and head rotation at the “Crossroad”. A 
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comparison of the three predictive parameters for straight walking and left turning motions 
revealed that shoulder rotation and hip rotation were highly useful. Head rotation, which was 
considered to be a useful parameter for predicting turning, was found to be significantly affected 
by the surrounding environment in the natural walking condition. At the “Crossroad”, the head 
rotation angle was found to be very unstable and inaccurate, since most of the subjects were seen 
to move to check their surroundings due to poor visibility of where they were going. The “T-
junction” had many subjects walking while checking the right side of the road because there were 
experimenters on the right side during the experiment.  

Table 2 shows the predicted distances for the three predictive parameters. Regarding the 
shoulder rotation, at the “T-junction” the straight walking and turning motions were discriminated 
at an average of 1.41m before the intersection while the predictable distance was an average of 
1.31m at the “Crossroad”. About hip rotation, at the “T-junction” straight walking and turning 
motions were discriminated at an average of 1.23m before while the predictive accuracy was an 
average of 1.28m at the “Crossroad”. 

Regarding the placement of the Kinect, further study is needed. According to the acquired data, 
the average distance which Kinect at point 1 recognized subjects and detected joint positions was 
6.1 m before the intersection position of the “T-junction” On the other hand, for the Kinect at point 
2, the average distance was 2.8 m before the intersection position of the “Crossroad”. That is the 
average distance of the Kinect at point 2 for the acquisition of joint positions was the average 3.3 
m shorter than the Kinect at point 1. This suggests that Kinect at point 2 would be able to recognize 
the subjects and detect the joint positions from 6.0 m before by moving 3.0 m in the positive 
direction of the Z-axis, then a more accurate prediction of turning movements would be possible.  

 

  

(a) Shoulder Rotation (T-junction) (b) Hip Rotation (T-junction) 

 

(c) Head Rotation (T-junction) 
Fig. 6 Six subjects’(A to F) shoulder rotation,hip rotation, and head rotation at the “T-

junction” 
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(a) Shoulder Rotation (Crossroad) (b) Hip Rotation (Crossroad) 

 

(c) Head Rotation (Crossraod) 
Fig. 7 Six subjects’(A to F) shoulder rotation,hip rotation, and head rotation at the 

“Crossroad” 
Table. 2 Validation of usefulness of forecasting parameters 

Location Predictive parameter D E F Mean predicted position (m) 

T-junction 
Data acquired from point 1 

Head rotation     

Shoulder rotation -1.38 -1.62 -1.23 -1.41 
Hip rotation -0.99 -1.57 -1.13 -1.23 

Crossroad 
Data acquired from point 2 

Head rotation     

Shoulder rotation -1.26 -1.40 -1.26 -1.31 
Hip rotation -1.23 -1.26 -1.34 -1.28 

Conclusions 
In this study, we quantitatively evaluated the applicability of the turning prediction system in actual 
living spaces and compared prediction accuracy between two different intersections aiming to 
create a motion prediction system using robots and sensors. Azure Kinect DK was used as a non-
contact sensor to measure natural motions, and three prediction parameters such as head rotation, 
shoulder rotation, and hip rotation were calculated. The results suggest that hip rotation and 
shoulder rotation are highly useful as predictive parameters. The turning motions with good 
visibility in open space were predicted at the point of average of 1.41 m before the intersection, 
while turning motions at the “Crossroad” with poor visibility were predicted at the point of average 
of 1.31 m before. Head rotation, which has been considered useful in previous studies, was found 
to be inaccurate as a prediction parameter in natural walking conditions. 

Our future works are to reexamine the placement of sensors to predict turning motions, to 
consider new prediction parameters, and to build a real-time prediction system that takes 
environmental factors into account. 
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Abstract. Many people suffered severe injuries from crashing into furniture or falling when 
attempting to evacuate during a large historical earthquake. To assess human injuries during an 
earthquake, it is essential to estimate both the behavior of furniture and a human response to 
shaking. This study proposes a method for evaluating injury during an earthquake that considers 
the behavior of humans and furniture by constructing seismic response analysis models in a 
physical simulator. First, shaking table tests with human subjects were conducted to observe the 
behavior of a human during strong motions. Next, a human body model considering walking and 
falling was developed based on a cart-type double inverted pendulum with a feedback control 
system. To set appropriate feedback gains of the control system, the displacement and velocity of 
the head of the human body model were compared with those of the human subject in the shaking 
table test. Entering the strong motion recorded during the 1995 Hyogo-ken Nanbu earthquake into 
the human body model, the manner in which people behave and fall when they are walking during 
shaking was investigated. A static loading test of a bookshelf was conducted to measure the static 
and dynamic friction coefficients to construct a seismic response analysis model of the furniture. 
Finally, the human body and furniture models were incorporated into the physical simulator. The 
floor responses calculated by seismic response analysis of an RC super high-rise building were 
input to the simulator to evaluate the risk of human injury in the building. The degree of injury 
was quantitatively evaluated using head injury criterion.  
Introduction 
People are injured by colliding with furniture, being cut by broken glass, or falling while trying to 
evacuate during an earthquake. Therefore, to assess the human injury and develop mitigation 
measures, it is necessary to evaluate the behavior of both humans and furniture simultaneously.  

Previous studies addressed indoor damage during an earthquake. Yoshizawa et al. [1] 
investigated indoor damage in earthquakes based on shaking table tests. Previous studies dealt 
with human behavior during earthquakes. Cimellaro [2] investigated the behavior of a human 
maintaining a posture during shaking. However, these studies were not aimed to propose a method 
for the evaluation of human injury by considering the human response to earthquakes. 

To estimate the human response during an earthquake, a seismic response analysis model of the 
human body is required because it is impossible to conduct realistic experiments in which people 
fall or are injured during an earthquake. Previous studies developed seismic response analysis 
models for the human body. Yamamoto [3] and Yoneda et al. [4] proposed seismic response 
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models for the human body. The model is a single-mass system, and it is impossible to consider 
stepping to maintain the posture. 

Hida et al. [5] developed a seismic response analysis model of the human body based on a cart-
type double inverted pendulum, which evaluates injury caused by collision with a rigid plane using 
the HIC score. In addition, Hida et al. [6] developed a human body model, considering falling. 
However, the behavior of furniture during an earthquake was not considered.  

This study proposes a methodology for the evaluation of the human injury, considering both 
human response and behavior of furniture using a physical simulator. First, a seismic response 
analysis model of the human body considering walking and falling due to an earthquake was 
developed. Next, an indoor model, including a human body model and a seismic response analysis 
model of furniture, was built on the physical simulator. This approach can be used to evaluate the 
injury status of people evacuating during an earthquake. 
Outline of Shake Table Test 
Figure 1 illustrates the setup of the shaking table test. The size of the shaking table was 5 m × 5 
m. The vibration of the shaking table was in two horizontal directions. To ensure the safety of the 
subject, a handrail consisting of steel pipes and safety nets was added to the shaking table. Safety 
mats were installed under the handrail. To reproduce the indoor condition, a blackout curtain was 
installed at the end of the shaking table in front of the subject. Six video cameras (1920 × 1080, 
60 fps) were installed around the test area to capture the behavior of the subject. 

Figure 2 shows a human subject (male, 24 years old, 169 cm, 57 kg). The subject was equipped 
with a helmet and protectors to ensure safety. To measure the head movement during shaking 
markers were attached to the head. The displacement waveforms of the marker attached to the 
helmet and shaking table were obtained using a 3D motion capture system. The subject was 
instructed to walk 3.5 m at a steady rhythm during excitation.  

The shake table test was performed using recorded strong motions. The records were observed 
at the operation floor of a reactor building of a nuclear power plant during the Niigata-ken Chuetsu-
oki earthquake in 2007 in Japan.  
 

 
 
Seismic Response Analysis Model of Human Body 
Figure 4 shows the nonlinear seismic response analysis model of the human body based on a cart-
type double inverted pendulum with a feedback control system. The body was modeled using two 
pendulums. The upper pendulum corresponds to the upper body, whereas the lower pendulum 
corresponds to the lower body. The anteroposterior movement of the cart corresponds to the 
movement of the center of pressure due to foot stepping. The hip torque of a body can be 
considered the torque applied on a hinge between the upper and lower pendulums. The backbend 

Figure 1 Bird eye view of Shaking Table Test Figure 2 Human Subject 
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of a body can be considered by a spring and damper attached between the lower and upper 
pendulum. The nonlinear equation of motion of the model is as follows [6]: 

d1�ξ̈(t)+ξ̈0(t)�+d2θ1̈(t)cosθ1(t)+d3θ2̈(t)cosθ2(t)+μcξ̇(t)

= d2�θ1̇(t)�
2
sinθ1(t)+d3�θ2̇(t)�

2
sinθ2(t)+fc(t)

(1) 

d2cosθ1(t)�ξ̈(t)+ξ̈0(t)�+d4θ1̈(t)+d5 cos{θ1(t)-θ2(t)} θ2̈(t)-τp(t)-μp(t){θ̇2(t)-θ1̇(t)}

=d7sinθ1(t)-d5��̇�𝜃2(t)�
2

sin{θ1(t)-θ2(t)} -τ(t)   
(2) 

        
d3cosθ2(t)�ξ̈(t)+ξ̈0(t)�+d5 cos{θ1(t)-θ2(t)} θ̈1(t)+d6θ2̈(t)+τp(t)+μp(t){θ̇2(t)-θ1̇(t)}

=d8sinθ2(t)+d5�θ̇1(t)�
2

sin{θ1(t)-θ2(t)} +τ(t)
(3) 

where θ1(t) and θ2(t) are the angles with respect to the vertical line of the lower and upper 
pendulum at time t. 𝜉𝜉(t) is the relative displacement between the cart and floor. ξ0(t) denotes the 
absolute displacement of the floor. fc(t) is the horizontal force applied to the cart. 𝜏𝜏(t) denotes the 
torque applied to the hinge between the lower and upper pendulum. τp(t) is the torque of the spring 
used to confine the back bend.  μc and μp  are the viscosity coefficients of the cart and hinge 
attached between the lower and upper pendulums, respectively. Note that d1 ~ d8  and τp(t) in 
Equations (1)–(3) are expressed by the following equations [6]: 

d1 = m1+m2+mc 
d3 = m2l2
d5 = m2l2L1
d7 = (m1l1+m2L1)g

             

d2 = m1l1 + m2l2
d4 = J1+m1l2 + m2l2
d6 = J2+m2l2

2

d8 = m2l2g

(4) 

𝜏𝜏𝑝𝑝(𝑡𝑡) = �
0

kp{𝜃𝜃2(𝑡𝑡) − 𝜃𝜃1(𝑡𝑡)}
    (0 ≤ (𝜃𝜃2(𝑡𝑡) − 𝜃𝜃1(𝑡𝑡))
    (0 ≥ (𝜃𝜃2(𝑡𝑡) − 𝜃𝜃1(𝑡𝑡)) (5) 

where, m1, m2, and mc are the masses of the lower pendulum, upper pendulum, and cart, 
respectively. l1 and l2 are the heights from the lower end to the center of mass of the lower and 
upper pendulums, respectively. L1 and L2 are the total lengths of the lower and upper pendulums, 
respectively. J1 and J2 are the rotational inertia of the lower and upper pendulums, respectively. 
kp(t) is the stiffness of the attached spring between the lower and upper pendulum. 

The seismic response analysis model of a human body attempts to maintain its standing posture 
using a feedback control system. Feedback control is relevant to postural control in humans.  

The block diagram of the model is shown in Figure 5.  
x(t) is the state vector and r(t) is the reference vector. These vectors are expressed by the following 
equations: 

x(t)=�𝜉𝜉(𝑡𝑡)  𝜃𝜃1(𝑡𝑡)  𝜃𝜃2(𝑡𝑡)  �̇�𝜉(𝑡𝑡)  �̇�𝜃1(𝑡𝑡)  �̇�𝜃2(𝑡𝑡)�
T

,     r(t)={𝜉𝜉𝒓𝒓(𝑡𝑡) 0  0  0  0  0}T (1) 
where ξr(t) is the time-varying reference of the relative displacement between the cart and floor, 

and the human body model can be considered walking by changing that with time.  

 
Figure 4 Seismic Analysis Model of Human Body 

Figure 5 Block Diagram of Sesmic  
Analysis Model of Human Body 
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When a human is disturbed and tries to stabilize its standing posture, there is a time delay in 
generating the control force due to the time lag caused by neurotransmission, information 
processing in the brain, and force generation in the nerve-muscle-skeletal system. In this study, 
the time delay is considered the dead time (L) in the feedback system, and the difference between 
the state vector x(t) and reference vector r(t) is delayed for a specified time before input to the 
controller. The control torque 𝜏𝜏(t) applied to the hip and the control force  fc(t) applied to the cart 
are expressed by the following equations:  

τ(t) = kτ e(t - L), fc(t) =wfξ(t)wfξ̇(t) k
fc

 e(t - L) (2) 
where e(t - L) is the difference between the state vector x(t) and the reference vector r(t), 
considering the dead time. wfξ(t) and wfξ̇(t) are the coefficients that consider the falling of a human, 
as described later. kτ(t) and kfc(t) are the feedback gains, expressed by the following equations: 

k𝜏𝜏=�𝑘𝑘𝜏𝜏𝜏𝜏  𝑘𝑘𝜏𝜏𝜃𝜃1   𝑘𝑘𝜏𝜏𝜃𝜃2  𝑘𝑘𝜏𝜏�̇�𝜏  𝑘𝑘𝜏𝜏𝜃𝜃1̇   𝑘𝑘𝜏𝜏𝜃𝜃2̇  �,     kfc=�𝑘𝑘𝑓𝑓𝜏𝜏  𝑘𝑘𝑓𝑓𝜃𝜃1   𝑘𝑘𝑓𝑓𝜃𝜃2  𝑘𝑘𝑓𝑓�̇�𝜏  𝑘𝑘𝑓𝑓𝜃𝜃1̇   𝑘𝑘𝑓𝑓𝜃𝜃2̇  � (3) 
where kτξ,  kτθ1,  kτθ2 , kτξ̇,  kτθ1̇

  and kτθ2̇
 are the feedback gains of 𝜏𝜏, multiplied by the difference 

between the state vector x(t) and the reference vector r(t). State variables are the relative 
displacement between the cart and floor, angles of the lower and upper pendulum, relative velocity 
between the cart and floor, and angular velocity of the lower and upper pendulum. Similarly, kfξ, 
kfθ1, kfθ2 , kfξ̇, kfθ1̇

 and kfθ2̇
 are the feedback gains of fc multiplied by the difference between the state 

vector x(t) and the reference vector r(t). In this study, MATLAB and Simulink [7] were used to 
perform the analysis.  
       To consider the fall of a person, the threshold for the relative displacement and velocity 
between the cart and the floor was set in the body model. It was based on the threshold for balance 
recovery in humans. Table 2 shows the thresholds of balance recovery in the forward and backward 
directions [8]. 

 
 
The threshold of the relative displacement between the cart and floor was 1 m forward and 0.7 m 
backward. The threshold of the relative velocity between the cart and floor was 4.3 m/s forward 
and 3.8 m/s backward. The control force applied to the cart becomes zero when the displacement 
or velocity of the cart exceeds a threshold. The limit coefficient of the control force applied to the 
cart is expressed as follows: 

wfξ(t)=�
0 (ξ(t)-ξ(t-0.2) < -0.7 )
1           (-0.7  ≤  ξ(t)-ξ(t-0.2) ≤  1)
0  (ξ(t)-ξ(t-0.2) > 1)

,       wfξ̇(t)=�
0 �ξ̇(t) ≤ -3.8�
1            �-3.8 ≤ ξ̇(t) ≤ 4.3�
0  �ξ̇(t) ≥  4.3�

(4) 

Analytical Result of Seismic Response Analysis Model of Human Body 
Table 3 lists the parameters of the seismic analysis model for the human body. The length and 
mass of the pendulum were set based on the height and weight of the subject in the shaking table 
test. ξlimit

- , ξlimit
+ , ξ̇limit

-
 and ξ̇limit

+
 are limitation values of the relative displacement and velocity 

between the cart and floor. The dead time, L was set as 0.1 seconds.  

Lean direction Forward Backward
Reaction Time (ms) 153±13 206±31
Step Time(ms) 238±7 193±28
Step Length(m) 1.032±0.082 0.724±0.047
Mean Step Velocity (m/s) 4.327±0.334 3.807±0.656

Table 2 Threshold of balance recovery of front-back direction [8] 
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In this study, a seismic response analysis of behavior in the forward/backward direction of a human 
was performed. Table 4 presents the feedback gains of the feedback control system. The feedback 
gains were determined such that the displacement and velocity of the head of the human body 
model corresponded to those of the human subject in the shaking table test.  

          
Figure 6 shows the time-history waveforms of the absolute acceleration of the shaking table, as 
well as the experimental and analytical results of the relative displacement and velocity of the head 
with respect to the shaking table. The reference for the relative displacement between the cart and 
floor was set using a ramp function with a slope of 1.1 m/s. The amplitude and phase of the 
waveforms analyzed by the human body model were consistent with the experimental results.  

 
Evaluation of Human Injury considering both Human and Furniture Behavior 
In this section, a physical simulation is performed using Unity [9] to evaluate injury considering 
both human and furniture behavior. The human body and furniture models were incorporated into 
the physical simulator. 

The furniture was modeled as a rigid body for the seismic response analysis. The static and 
dynamic friction coefficients of the furniture model were based on the results of the static loading 
test on a bookshelf. The static and dynamic friction coefficients were set as 0.171 and 0.120, 
respectively.  

To generate the input motion, a seismic response analysis of an RC super high-rise building 
was performed. The analysis model used [10] was a 30-story multi-mass shear model. 

The first natural period of the model was 1.8 s. The restoring force characteristics of the springs 
installed in each layer were a degrading trilinear model. The damping model was tangent stiffness-
proportional damping, and the damping ratio was set to 0.03 for the first-order natural frequency. 
The strong motion record observed during the 1995 Hyogo-ken Nanbu earthquake was used as the 
input motion. Analysis was performed using SNAP Ver. 8 [11]. After the analysis of the building 
model, the acceleration waveforms of the 30th floor were input into the seismic response model of 
the human body and the physical simulator.  

Table 3 Parameter of Seismic Analysis Model of Human Body 

Table 4 Feedback Gain 

Figure 6 Time history of head, CoP and shaking table of Case3  
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Figure 7 shows the situation of the room and the locations of the human model and furniture.  
This is a standard room for apartment buildings in Japan. The floor area is approximately 30 m2. 
The distance from the window to the entrance was 6 m. The human body model was made to walk 
6 m to simulate an evacuation.  

Figure 8 shows the image sequence of the physical simulation before the human model falls. 
Figure 9 shows the image sequence of the human motion. The bookshelf collides with the model 
from one side at 9 s. The model collides head-on with the entrance door at 10.5 s. After 12 s, the 
human model falls backward, and the occiput collides with the floor. Injuries from collisions with 
furniture or doors occur before the model falls. These injuries cannot be evaluated when  only 
human behavior was considered. Therefore, estimating the behavior of both furniture and humans 
simultaneously is essential for evaluating human injury during an earthquake.  

 

 
 
Figure 10 shows the relative velocity of the head with respect to the colliding object when the 

human body model collided with the furniture or door and fell. The HIC scores [12] corresponding 
to each injury were calculated based on head velocity as shown in the figure. The injuries are 
classified as minor when the head injury does not affect consciousness, moderate when the skull 
is fractured, critical when cerebral contusion occurs, and fatal when the person is dead.  

The relative velocity of the head when the model collided with the entrance door exceeded the 
minor injury level and was larger than that when the model collided with the bookshelf. This 
suggests that the level of injury may be higher during frontal collisions than during side collisions.  

The relative velocity of the head when the human body model fell exceeded the fatal injury 
level. These results suggest that falling backward is more dangerous than hitting an object on the 
head. 

Figure 7 Situation of the room and 
relationship of location between human 

and furniture 

Figure 8 Image sequence of the 
physical simulation on 30th floor 

Figure 9 Image Sequence of Human Motion on the 30th floor 

ForwardBackward
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4 86 10 12
Time(s)
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Using the human body and furniture models developed in this study, it is possible to 

quantitatively evaluate the possibility of injury during an earthquake. However, the seismic 
response model of the human body constructed in this study evaluated the behavior of only one 
subject in the shaking table test. Thus, the human body model could not evaluate the variation in 
behavior caused by individual differences. Furthermore, it is important to note that the HIC scores 
calculated in this study can lead to an overestimation of injury because the scores were evaluated 
under a assumptions that when the head collides with a rigid plane.  
Conclusion 
In this study, we developed a seismic response analysis model of the human body, considering 
walking and falling based on a shaking table test. To evaluate injury during an earthquake, 
considering the behavior of humans and furniture simultaneously, a seismic response analysis 
model of the human body and furniture was incorporated into a physical simulator. The probability 
of injury was evaluated using the HIC score. The findings are as follows:  
1) The relative displacement and velocity between the human head and floor during walking  can 

be evaluated accurately using the cart-type double inverted pendulum model. 
2) The falling of a human can be simulated by setting a threshold for the relative displacement 

and velocity between the cart and the floor. 
3) Using the seismic response analysis model of the human body and furniture developed in this 

study, it is possible to evaluate the possibility of injury during an earthquake. 
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Abstract  In recent years, Structural Health Monitoring (SHM) has been attracting more attention 
as a method to determine the existence of the damage and its extent. The typical SHM system 
employs many sensors to assess the damage quantitatively and qualitatively. However, such a 
system is not appropriate for wooden houses as it is very costly despite the strong demand. 
Therefore, developing a low-cost SHM system for wooden houses is necessary. We have been 
working on algorithms that automatically determine the degree of damage from the maximum 
inter-story drift angle and natural frequencies using two accelerometers and evaluate the accuracy 
of the results by applying them to full-scale shake table experimental data.[1]  Then, we evolved 
the system to use only a single accelerometer. In this advanced method, we estimate the first natural 
frequency without being annoyed by the fundamental frequency of ground motion, which often 
deteriorates frequency estimation accuracy. In this paper, we demonstrate the applicability of the 
SHM system using only one sensor in practical scenarios. Firstly, we examined the proposed 
method using only one accelerometer through the simulation approach. Secondly, we test the 
system's applicability utilizing a series of large-scale shake table test data. Finally, we examine 
this method's validity and economic feasibility, contributing to cost reduction and simplification 
of the algorithm for practical use. 
Introduction 
In April 2016, the Kumamoto earthquake occurred in Japan, causing multiple large earthquakes in 
a short period of two days. In particular, many people returned to their homes from evacuation 
places after the first main shock. They lost their lives due to the collapse of their wooden houses 
caused by the second major earthquake. This tragic event was caused by the fact that after the first 
earthquake, people returned to their homes from the evacuation site, unaware that the wooden 
building had lost its bearing capacity. Usually, after the main shock, the building capacity is 
checked by experts, which takes about one month on average. In other words, visual checks by 
experts alone are not enough to cope with such a huge earthquake in an extremely short period 
such as this one. The need is evident for a system that can automatically and quickly estimate the 
degree of damage to a building after the main shock by installing accelerometers inside the 
building. In addition, there is currently little research on automatic damage assessment systems 
using a single acceleration sensor in wooden houses, and further studies are needed for practical 
use.[2] Our research is precisely in this field (SHM), and we are researching the evaluation of 
building resistance using acceleration sensors. The fewer the number of accelerometers, the better, 
in terms of installation cost, etc., and the simpler the program, the better the management by 
residents through maintenance, etc. The fewer number of accelerometers, the better from the point 
of view of installation cost, etc. Considering these factors, we show their effectiveness and 
usefulness in this paper. 
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The proposed method  
Previous issues with the method using a single accelerometer 
A method for estimating the maximum inter-story drift angle of a building using a single 
accelerometer has been proposed. However, there was a problem that the ground's natural 
frequency affected the building's first-order natural frequency estimated by system identification, 
as shown in Figure 1 below. How to remove this effect remained an issue. Therefore, we propose 
a method for estimating the first-order natural frequencies of buildings, which is one factor in 
determining the degree of damage. 

 

 
Fig.1 A problem with the effect of the ground's natural frequency 

 
Use of the initial tremor interval 
During our research, we discovered that it is possible to estimate the primary natural frequencies 
of buildings by extracting the response acceleration of buildings to the initial microtremor section 
of a large earthquake and performing spectral analysis to remove the effect of the ground. First, 
the initial microtremor time is calculated by the following Omori formula. 
 

   𝐷𝐷 = 𝑘𝑘 ∙ 𝜏𝜏                                                         (1) 
 

𝐷𝐷 is the hypo central distance, 𝜏𝜏 is the initial microtremor duration, and 𝑘𝑘 is the Omori coefficient. 
The Omori coefficient varies from 4 to 9 km/s depending on the location. It can be assumed to be 
8 km/s for the Japanese Islands. 
Next, a spectral analysis using power spectral density is performed on the response acceleration 
data of the building, from which the initial microtremor interval is extracted to estimate the primary 
natural frequencies of the building. Equation (2) below represents the Fourier transform, where 
𝑋𝑋(𝜔𝜔) is the Fourier spectrum. The power spectral density (PSD) is calculated by equation (3) 
below. It can be obtained by dividing the mean of the squares of the Fourier spectrum by the 
frequency resolution ∆𝑓𝑓, which is determined by the length of the time history 𝑇𝑇 with𝛥𝛥𝑓𝑓 = 1

𝑇𝑇
. 
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         𝑋𝑋(𝜔𝜔) = ∫ 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡∞
−∞                                         (2) 

        𝑃𝑃𝑃𝑃𝐷𝐷(𝜔𝜔) = |𝑋𝑋(𝜔𝜔)|2/∆𝑓𝑓                                          (3) 
 
In this study, we will examine the method using simulation data and experimental data. Figure 2 
below summarizes the flow of this approach. 
 
 

 
Fig.2  Flow-chart of the proposed approach 

 
Estimation results 
Full-scale shaking table experiment 
The actual data used in this study are based on experiments conducted at E-defense, a full-scale 
3D seismic rupture test facility at the National Research Institute for Earth Science and Disaster 
Prevention (NIED) Hyogo Earthquake Engineering Center. Among them, we will use data from a 
vibration test titled "Verification of Seismic Transfer Structural Safety of Detached Houses against 
Large-Scale Earthquakes" conducted in 2015. 
The subject of this study is a wooden house with a two-story 2×6 panel structure and no vibration 
control system installed. Figure 3 below shows the south and east elevations, and Figure4 shows 
a photograph of the specimen.  

 
Fig.3  South and east elevations 
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Fig.4  Two test buildings on the table Fig.5  Accelerometer used in the tests 

 
On each first and second floor, servo accelerometers were installed at the northwest, center, and 
southeast locations. The accelerometer is a 3-axis servo-type accelerometer, TA-25E, 
manufactured by TOKYO KEIKI CORPORATION, and Figure 5 shows a photograph of it. This 
study uses four types of seismic motions from these excitation experiments, as shown in Table 1 
below. 

Table.1  Seismic waves 

 
 
Result of the simulation 
In studying a method for automatic determination of the degree of damage using a single 
accelerometer, a two-mass linear numerical simulation modeling a wooden house is designed. 
Table 2 below shows the design parameters for the simulation. 
 

Table.2  Simulation parameters 

        
 

Figures 6 and 7 below show the input and output waveforms of building response acceleration and 
the red line in it means the period of extracting the initial tremor interval. Figure 8 below shows 
PSD results when input by JMA Kobe seismic acceleration data. The building response 
acceleration is for the first-floor horizontal direction.                
 

Earthquake Input scale Input Directions
JR Takatori 100% XYZ
JMA Kobe 100% XYZ

K-net Hitachi 100% XYZ
K-net Mito 100% XYZ
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Fig.6 Input waveforms                  Fig.7  Output waveforms obtained by simulation 

  

 
Fig.8  PSD result 

 
The estimated primary natural frequency was 4.69 Hz, close to the parameter setting value of 5 
Hz. Since the initial microtremor interval is extracted, it is clear that the low-frequency component, 
which has a strong ground component, has almost no effect. 

Next, we tested how much the estimated results deviated from the set value when the parameter 
set value for the primary natural frequency of the simulation varied between 2 Hz and 8 Hz for the 
four seismic data. Next, we tested how much the estimated results deviated from the set value 
when the parameter set value for the primary natural frequency of the simulation varied between 
2 Hz and 8 Hz for the four seismic data. The results are shown in Table 3 below. If the error in the 
estimated results is within 1 Hz, it is indicated as 0, if it is within 2 Hz, it is indicated as △, and if 
it is larger than that, it is indicated as ×. 
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Table.3  Simulation results for applicable frequencies 

 
 

The results in the table above show that the method applies to most seismic motions. Still, it does 
not apply to the 3 Hz and 6 Hz of the JR Takatori seismic motions because the estimation error is 
more than 2 Hz. 
 
Use of full-scale shake table test 
Finally, the initial microtremor interval is extracted, and PSD is applied directly using the full-
scale shake table test. Figure 8 below shows the results of building response acceleration for the 
JR Takatori seismic data. Figure 9 below shows the PSD results of it.  
 

  
                Fig.8 Output Waveforms                        Fig.9  PSD results of building response   

                                                                             acceleration for the JR Takatori seismic data 
 
The estimated primary natural frequency obtained from this result is 2.44 Hz, which, compared 
with the reference value calculated by the transfer function and ARX method, is shown in Table 4 
below. 
 

Table.4  Comparison between the estimated value and reference value 

 
 
The comparison results in the table above indicate that the difference between the estimated and 
reference values of the primary natural frequencies is less than 0.2 Hz, suggesting that our method 
is effective for recording actual data building response acceleration. 
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Conclusion 
In this paper, we have studied the usefulness of an automatic damage assessment system for 
wooden wall houses using a single acceleration sensor. In estimating the first-order natural 
frequencies, we compared the values with the set values in simulations and with reference values 
obtained using building response acceleration data from full-scale shaking table experiments. The 
results showed that the difference between the estimated and reference values was minimal, 
indicating that the method is applicable. 
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Abstract The seismic response analysis model of a nuclear facility can be used to evaluate the 
integrity of the structure as well as the safety of humans and machines within in the event of an 
earthquake. This study accordingly proposed a methodology for constructing the seismic response 
analysis model of a nuclear facility based on observed strong motion records. First, to evaluate the 
seismic response characteristics of an example nuclear facility in Japan, the subspace state-space 
system identification [1] technique was applied to strong motion records from the 2011 off the 
Pacific coast of Tohoku Earthquake. The identified natural modes were then clustered using the 
hierarchical clustering technique. Second, a seismic response analysis model of the example 
facility was constructed for each cluster based on the sway–rocking model. The stiffness and 
damping factors for each model were calculated from the mean values of the corresponding mode 
characteristics. Third, the constructed models were employed for seismic response analysis using 
the strong motion record observed during the main shock of the 2011 Tohoku earthquake as input, 
and the root mean square errors between the response records and analytical results were evaluated 
to select the most accurate model. Finally, the selected model was validated by performing a 
seismic response analysis using the strong motion records from an aftershock of the 2011 Tohoku 
earthquake. The analytical responses showed good agreement with the records, indicating that the 
proposed method represents a valid approach for constructing seismic response analysis models of 
nuclear facilities. 
Introduction 
A seismic analysis model is useful for assessing not only the structural integrity of a building 
during an earthquake but also the safety of humans and machines inside. Many studies have been 
conducted to investigate methodologies for evaluating the seismic response characteristics of a 
building using subspace state-space system identification (4SID) [2]. However, few studies have 
undertaken seismic response analyses of nuclear facilities based on strong motion records using 
4SID. This paper therefore proposes a methodology for constructing a seismic response model 
based on the strong motion records observed at an existing nuclear facility. 

To evaluate the vibration characteristics of the example nuclear facility, the 4SID technique 
was applied to the strong motion response records observed at the facility during the 2011 off the 
Pacific coast of Tohoku Earthquake. The characteristics of the natural modes were then clustered 
by a hierarchical clustering technique. Next, a seismic response analysis model of the facility was 
constructed using the sway–rocking (SR) model to consider the soil–structure interaction through 
the combined action of a rocking spring and sway spring installed between the substructure and 
the ground. Finally, the proposed method was verified by inputting the strong motion record from 
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an aftershock of the 2011 Tohoku earthquake into the constructed model and comparing its 
responses with the corresponding response records. 
Methodology of Subspace State-space System Identification 
In this study, the ordinary multivariable output-error state space [1], which is a 4SID algorithm, 
was used to identify the seismic response characteristics of an example nuclear facility. The 
discrete-time linear time-invariant system is expressed by the state-space expression as follows: 

( 1) ( ) ( )
( ) ( ) ( )

t t t
t t t
+ = +

 = +

x Ax Bu
y Cx Du

     (1) 

where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector, and A, B, C, and D 
are constant matrices. 

For r-input and m-output systems, the block Hankel matrix, which consists of input and output 
data U and Y, respectively, can be constructed as follows: 
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where N and ν denote the number of data points and the number of block rows, respectively. 
Then, matrix Ξ is calculated using the following equation: 

⊥= UΞ YΠ       (3) 
where ⊥

UΠ  is the geometric operator that projects the row space of matrix Y onto the orthogonal 
complement of the row space of matrix U. This is represented by the following equation: 

1( )T T⊥ −= −UΠ I U UU U      (4) 
where I is an identity matrix and T denotes transposition.  

The singular value decomposition of Ξ is performed according to the following equation: 
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    (5) 

where n denotes the system order, Σ1 and Σ2 comprise the diagonal matrix consisting of the 
singular value of Ξ, and U1, U2, V1, and V2 denote the singular matrices. 

The extended observability matrix O is calculated using: 
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Matrix C can be identified from the upper block matrix of Oν; matrix A can be identified as follows: 
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†

†O O     (7) 

where † denotes the Moore–Penrose pseudo inverse matrix [5][6]. 
The natural circular frequency ωj, damping ratio hj, and eigenmode vector 𝚽𝚽  of the j-th 

eigenmode are calculated by the following equations: 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 150-157  https://doi.org/10.21741/9781644902455-19 

 

 
152 

ln j
j t
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ω =

∆
,  

ln

ln
j
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= − ,  jφ=Φ C   (8) 

where λj, Δt, and φj denote the j-th eigenvalue of matrix A, the sampling period, and the 
eigenvector of matrix A, respectively. 
Seismic Analysis Model 
The section of the example nuclear facility is illustrated in Figure 1, and its corresponding SR 
model is shown in Figure 2. In this paper, the nuclear facility was modelized by SR model. 
 

 
 

The model shown in Figure 2 consists of two masses: m1 corresponding to the superstructure 
and m2 corresponding to the substructure. Their combined equation of motion is given by: 
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O  (9) 

where J is the rotational inertia of the substructure; kb, ks, and kr are the rigidities of the 
superstructure, sway spring, and rotational spring, respectively; cb, cs, and cr are the damping 
coefficients of the superstructure, sway spring, and rotational spring, respectively; λ’ is the 
identified complex eigenvalue of matrix A; h is the height of the superstructure; Δt is the sampling 
period of the strong motion record; Ut and Us are the horizontal mode amplitudes of the 
superstructure and substructure, respectively; and Θ  denotes the angular amplitude of the 
substructure. 

The rigidities and damping coefficients of the system can be calculated using the following 
equations: 
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t sX U U h= − − Θ                                                           (11) 
Λ = lnλ'/∆t  

where X is superstructure’s relative displacement. 
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System Identification 
The strong motion records depicting the north–south component observed at the example 

nuclear facility during the 2011 off the Pacific coast of Tohoku Earthquake are shown in Figure 3. 
Note that the acceleration amplitude of the superstructure was larger than that of the substructure 
and input motion. 

 
Figure 4 shows the transfer function identified by 4SID with system orders of 6 and 14. When 

the system order was set to 6 and 14, the natural frequencies were identified including 
approximately 3 Hz, 6.8 Hz, and 9.2 Hz. 

 
 

Figure 5 shows a stabilization diagram representing the relationship between the natural 
frequencies and system orders. Although the eigenmodes were slightly scattered, the natural 
frequencies of the first, second, and third modes can indeed be identified at approximately 3 Hz, 
6.8 Hz, and 9.2 Hz, respectively. 

 

Fig. 3 Acceleration time history waveforms 
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To evaluate the valid eigenmode, a hierarchical clustering technique was applied to the system 
identification results. The modal assurance criterion (MAC) was used as the cluster distance to 
evaluate the similarity between any two eigenmodes as follows: 

{ }{ }

2*

* *
(0 1)

T
i j

ij ijT T
i i j j

MAC MAC
ϕ ϕ

ϕ ϕ ϕ ϕ
= ≤ ≤     (12) 

where φi denotes the i-th mode vector and * denotes conjugation. Ranging from 0 to 1, the larger 
the MAC value, the more similar the two compared modes. The distance between the two 
compared eigenmodes was calculated using [4]: 

(1 )i j
ij ij

j

f f
d MAC

f
−

= + −      (13) 

Figure 6 shows the relationship between the cluster number ratio and cluster distance. In this 
study, clustering was terminated when the cluster number ratio reached 10%. 
 

 
 

Figure 7 shows the relationship between the identified natural frequencies and damping ratios. 
Markers with the same color and shape indicate results belonging to the same cluster. The red 
marker was each center of cluster. The natural frequency of both the black and yellow clusters was 
determined to be approximately 3 Hz, suggesting that they correspond to the first mode. The 
natural frequency of the blue cluster was approximately 6.8 Hz and that of the green cluster was 
approximately 9.2 Hz, suggesting that these clusters correspond to the second and third modes, 
respectively. 
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Construction and Validation of the Seismic Response Analysis Model 
This section describes the methodology used to construct the SR models of the example nuclear 
facility based on the system identification results. First, the cluster results indicating a damping 
ratio greater than 0.06 were excluded. Then, based on Equation (7) as well as the masses and 
rotational inertias given in Table 1, the stiffness and damping coefficients were calculated from 
the averaged eigenvalue and eigenmode vector for each cluster to construct a series of models. 

Seismic response analyses using the Newmark-β method (β = 1/4, γ = 1/2) were performed on 
all constructed models by applying the strong motion record from the main shock of the 2011 off 
the Pacific coast of Tohoku Earthquake as input. Then, the root mean square errors (RMSEs) 
between the acceleration time histories provided in the analytical results and the corresponding 
strong motion response records were calculated, and the model with the lowest RMSE was selected 
as the best model. The natural frequency and damping ratio obtained in this study for the best 
model were 2.51 Hz and 0.069, respectively. 

 

 

 
 

The acceleration and velocity time-history waveforms of the best model under the strong motion 
records input are compared with the observed response records in Figure 8. The amplitudes and 
phases of the horizontal accelerations of the model superstructure and substructure showed 
excellent agreement with the observed response accelerations, whereas the modeled angular 
acceleration of the substructure departed somewhat from the observed response. 

To validate the derived analysis model, the seismic responses were calculated using the time-
history waveform observed during an aftershock of the 2011 off the Pacific coast of Tohoku 
Earthquake as input. The results are provided in Figure 9, which shows that although the angular 
acceleration and velocity of the model substructure were poorly reproduced, the horizontal 
accelerations and velocities of the model superstructure and substructure correspond well with the 
response records, confirming the validity of the model. 
 

system order 2~50

number of lines
of block matrix 60

m 1 　1.7×107 [kg]

m 2 　5.8×107 [kg]

I 　1.6×102 [kg･m2]

Table 1 Hyperparameters of system identification, mass, and rotational inertia 
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Conclusion 
In this study, a methodology for constructing the seismic response analysis model of a nuclear 
facility was demonstrated using the results of system identification using 4SID. This study 
accomplished the following: 

1) A method was derived to determine the stiffness and damping coefficients of the SR model 
using the average of the eigenvalues and eigenmode vectors from the system identification 
results obtained using 4SID. 

2) The system identification results were clustered, the stiffness and damping coefficients 
were calculated for each cluster, and seismic response models were constructed 
accordingly. The most valid analytical model was identified by conducting a seismic 
response analysis subjecting each model to the same input motion and then selecting the 
model with the smallest RMSE value relative to the corresponding strong motion response 
records. 

a) Acceleration  b)   Velocity 
Fig. 8 Comparison of model time-history waves with records of main shock acceleration and 

velocity 
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Fig. 9 Comparison of model time-history waves with records of aftershock acceleration and 
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3) The results obtained when inputting a strong motion record that was not used for system 
identification into the selected response analysis model agreed well with the corresponding 
response records, confirming the validity of the proposed method. 
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Abstract. The present research focusses on the development of a robust data-driven damage 
diagnosis technique to detect different types of damages in a hybrid metal-composite (HMC) plate 
specimen resulting from manufacturing processes, loading conditions, and ambient environmental 
conditions. These defects over a course of time deteriorate the load-bearing capacity of the HMC’s 
and in turn, their reliability in terms of safe operation. In this work, ultrasonic guided waves 
(UGW) are used for non-destructive evaluation (NDE) of the HMC. The use of UGW for NDE 
offers advantages such as long-range inspection and sensitivity to small-sized surface and sub-
surface damages. The ultrasonic tests are simulated using a pitch-catch active sensing technique at 
a typical frequency-mode pair best suited to detect and classify damages in the HMCs. The 
damage-sensitive feature is extracted from the received UGW using Hilbert transform-based 
feature extraction method. The damage indicator is classified in the damage-sensitive feature space 
using the root mean square technique identified as outliers, which is further used to classify the 
detected damages. The achieved results manifest the ability of the proposed technique to be a part 
of the industrial structural integrity inspection process typically for HMCs in detecting and 
classifying embedded damages with high accuracy. 
Introduction 
Composite materials are widely used in the aerospace industry, with nearly 80% of structural 
volume of an aircraft, due to their high fatigue strength, low density, and corrosion resistance. 
Unlike metals, damage in composites appears prematurely, but propagates in a more stable way. 
Thus, they have an upper end compared to metals particularly when subjected to fatigue loading 
primarily because of the complicated relationship between the fibers, matrix, damage, and the 
residual stresses that block the propagation of damage [1]. In the case of fiber re-enforced 
composites, defects can occur in the matrix, fiber, or at the interface. The major defects are the 
delamination, debonding in the fiber matrix interface, waviness, fiber breakage, matrix cracking, 
porosity etc. Further, if the layered composite is attached to a metal plate, resulting in a Hybrid 
metal composite assembly, disbond damage can occur between the metal-composite interface.  

Guided waves are of paramount importance for non-destructive testing (NDT) of engineering 
structures such as rail tracks, pipes used to transport oil and gas, nuclear reactors, adhesive bonds, 
aircraft components, civil structures, and many more. These waves travel sufficiently longer 
distances and can capture any potential irregularities of the propagating medium. However, these 
waves are multimodal and highly dispersive. Thus, a careful selection of the frequency-mode pair 
is essential to ensure effective inspection of the structure [2-3]. 

Lugovtsova et.al [4] studied propagation of guided waves in a multi-layered CFRP-Aluminum 
structure to detect cracks and delamination. Yan et.al. [5] studied the interaction of ultrasonic 
guided waves and delamination in a 23-layer Alcoa Advanced Hybrid Structural plate.  
Papanaboina et.al [6] focused on the numerical analysis of the guided waves propagation in a 
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multilayered CFRP structure to refine damage detection and its localization using different signal 
processing methods. Zhang et.al. and Liu et.al. [7-8] studied the defect and waviness detection in 
a layered composite using ultrasound.  

The present study focusses on the NDT of a HMC specimen using ultrasonic guided waves. 
Firstly, a suitable frequency-mode pair was identified through the dispersion diagram best suited 
to detect disbond and delamination damage in the specimen. Next, this frequency-mode pair was 
excited using a wedge transducer and multiple responses were recorded along the wave 
propagation direction. The received time-domain responses were analyzed using the Hilbert-
Huang transform (HHT) and the Hilbert envelopes and phases were evaluated. Lastly, a 
classification of damages was performed based on the outliers estimated using the RMS of Hilbert 
phases. Finally, findings from the present study were summarized. 
Methodology 
The present study focusses on the damage detection in a HMC specimen using a typical ultrasonic 
guided wave mode. For this purpose, signal processing of the received ultrasonic signals is 
conducted using the Hilbert-Huang transform algorithm to extract the Hilbert envelope and the 
phase. The envelope can be useful for estimating the arrival time of incident wave packet and 
damage reflected wave packet which can be eventually used for damage detection and localization; 
whereas the Hilbert phase is useful to classify the detected damage. The following sub-section 
presents the background of the HHT algorithm. 
The Hilbert-Huang transform algorithm:  
The HHT is a method to decompose the time-transient signal into intrinsic mode functions (IMFs) 
and estimate instantaneous phase or frequency. These IMFs can be regarded as a basis of expansion 
which can linear or nonlinear in nature. An instantaneous phase (𝜙𝜙(𝑡𝑡)) can be defined by an 
analytical signal as [9]: 

 
y(t) = x(t) + iH[x(t)] = 𝑎𝑎(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡),                                                                                            (1) 

 
where ‘x(t)’ is the time-domain signal and the imaginary part is the Hilbert transform of ‘x(t)’, 
further 𝑎𝑎(𝑡𝑡) = �[𝑥𝑥(t)]2 + {𝐻𝐻[𝑥𝑥(t)]}2 , and 𝜙𝜙(𝑡𝑡) = arctan {𝐻𝐻[𝑥𝑥(𝑡𝑡)]/𝑥𝑥(𝑡𝑡)} . The total 
instantaneous phase is calculated as the sum of the instantaneous phases of each IMF’s given as: 
 
𝜙𝜙(𝑡𝑡) =  ∑ arctan �𝐻𝐻[𝑥𝑥𝑖𝑖(𝑡𝑡)]

𝑥𝑥𝑖𝑖(𝑡𝑡)
� 𝑛𝑛

𝑖𝑖=1                                                                                                   (2) 
 

Due to the properties of the IMF’s the Hilbert phase monotonically increases with time. 
Numerical study 
In the present study, the ultrasonic guided waves are excited and sensed using a wedge transducer 
and the guided wave responses are recorded in a pitch catch configuration. This ensures that a 
desired guided wave mode is actuated and sensed through the Finite Element (FE) model setup 
[10-11].  The materials used in the simulation and their mechanical properties are presented in the 
following subsection. 
Material description and defects: 
The specimen used for the present study is a HMC specimen that comprises of two metal plates 
affixed to composite plies as shown in Fig.1. The metal plate is an Al 6061 specimen whereas the 
composite plies are made of Uni-directional carbon fiber laminates (U-CFL) stacked on top of 
each other with stacking sequence [0/+45/-45/90]2s. As shown schematically in Fig.1, there are 
two plates of Aluminum and 16 plies of U-CFL. The material properties of metal and composite 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 158-165  https://doi.org/10.21741/9781644902455-20 

 

 
160 

are given in Table 1 and Table 2 respectively. Further, the mechanical properties of the wedge 
material are also given in Table 1. 

 
Fig.1. Schematic of the HMC specimen showing Al and U-CFL material along with defects. 

 
Table 1 Mechanical properties of Al 6061 and PMMA wedge 

Material Thickness 
(mm) 𝝆𝝆(Kg/m3) 𝑬𝑬(GPa) 𝝂𝝂 [-] 𝑽𝑽𝑳𝑳 (m/s) 𝑽𝑽𝑻𝑻 (m/s) 

Al6061 1.6 2700 68.9 0.33 6148.9 3097.3 
PMMA - 1185 2.3 0.35 1765 847.9 

 
Table 2 Mechanical properties of U-CFL [00] 

Thickness 
(mm) 

𝐂𝐂𝟏𝟏𝟏𝟏 
(GPa) 

𝐂𝐂𝟏𝟏𝟏𝟏, 𝐂𝐂𝟏𝟏𝟏𝟏 
(GPa) 

𝐂𝐂𝟏𝟏𝟏𝟏 
(GPa) 

𝐂𝐂𝟏𝟏𝟏𝟏 
(GPa) 

𝐂𝐂𝟏𝟏𝟏𝟏 
(GPa) 

𝐂𝐂𝟒𝟒𝟒𝟒 
(GPa) 

𝐂𝐂𝟓𝟓𝟓𝟓, 𝐂𝐂𝟔𝟔𝟔𝟔 
(GPa) 

𝝆𝝆 
𝐤𝐤𝐤𝐤/𝐦𝐦𝟏𝟏 

0.25  165.24 6.63 14.32 6.39 14.32 3.96 5.17     1560 
 
Two different types of defects are considered in the present study namely delamination and 

disbond. Delamination is a type of defect that occurs between neighbouring plies whereas disbond 
is a defect that occurs between a metal and composite ply layer.  
Dispersion curves & wave structures of the HMC specimen: 
The structural integrity of the HMC specimen is evaluated using ultrasonic guided waves in 
contrast to the conventional bulk wave-based C-Scan technique. However, to apply a guided wave-
based defect detection strategy in a HMC specimen, it is paramount to firstly obtain the guided 
wave dispersion curves that describes all the possible mode-frequencies which are available for 
structural integrity inspection. Further analysis of the dispersion curves shall reveal the most 
sensitive modes that can provide inspection of the specimen not only near to specimen surface but 
also across whole of its thickness. This is the primary reason of selecting guided wave-based 
inspection technology in contrast to the conventional bulk wave C-Scan technique. The dispersion 
curves obtained for a HMC specimen are shown in Fig.2. To select a suitable wave mode for 
damage inspection, wave structures of each Lamb mode are studied at different frequencies, and 
it is found that the 𝐴𝐴1  Lamb mode at 500 kHz excitation frequency is suitable for damage 
inspection in the considered HMC specimen as shown in an inset diagram in Fig.2. Thus, the 
excitation frequency is selected as 15.5 cycles gaussian modulated sine wave signal that is centered 
at 500 kHz. This time-domain excitation signal and its frequency spectrum is shown in Fig.3.  
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                                        (a)                                                                                                         (b)                                                             

Fig.2 Dispersion Curves of HMC specimen (a) Phase velocity (b) Group velocity. 
 

                               
                                                 (a)                                                                    (b) 

Fig.3 The excitation signal used in FE simulations (a) Time domain (b) Frequency domain. 
 

Finite Element model  
In the present study, the guided wave responses were excited using a wedge transducer affixed on 
top of the HMC specimen and sensed along different receiving points on plate surface as shown 
schematically in Fig.4. A normal transducer attached to the PMMA wedge is modelled to simulate 
a wedge transducer that act as an actuator and generates a desired guided wave mode in the HMC 
test specimen. The angle of excitation or the wedge angle is estimated using the Snell’s law as 
shown in Eq.3. On the receiver side, in-plane and out-of-plane time domain responses are recorded 
on the HMC specimen surface with a uniform incremental steps of 10 mm.  
 

𝜃𝜃𝐴𝐴1 = sin−1 �VL
|Wedge

VA1|Plate
�                                                                                                             (3) 

 
Further absorbing boundary conditions are enforced at the start and end of the HMC plate across 
thickness direction as well as along all edges of wedge except the excitation edge and wedge-HMC 
interface as shown in Fig.4. 
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Fig.4 Schematic of the 2D FE model (All dimensions are in mm). 

Results and discussions 
The results of FE simulations conducted at 500 kHz for an intact HMC specimen is presented 
firstly in this section. The wave propagation in the wedge-HMC assembly for an intact specimen 
is shown in Fig.5. The longitudinal wave excited at the flank of the wedge is converted to 𝐴𝐴1 Lamb 
mode at a critical angle of 33.230. Further, time-domain waveforms at the intact condition of the 
specimen are presented in Fig.6 for in-plane and out-of-plane motion. It shows a pure generation 
of 𝐴𝐴1 Lamb mode with no potential reflections from damage. 

   
                                       (a)                                                                            (b) 
   

   
                                       (c)                                                                            (d) 

Fig.5 Wave propagation at different time instants in a intact HMC specimen. 

    (a)         (b)   
Fig.6 Time domain waveforms for a healthy HMC specimen at (70,7.2) mm from origin. 

 
Further, a disbond damage was created in the specimen model centered (155, 5.65) mm from 

the origin. The time domain signals received at 70 mm and 100 mm are shown in Fig.7 and Fig.8 
respectively. It can be clearly seen in Fig.7; an additional wave packet being reflected from the 
disbond damage. It is also observed from Fig.8, when the sensing point is far away from damage, 
the out-of-plane motion captures smaller wave packets that are reflected from the front and back 
edge of the disbond. However, when the sensing point moves closer to the damage, these two 

L-wave 

𝐴𝐴1 
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smaller wave packets merge into one bigger wave packet, as a result of reduced wave propagation 
distance from damage to sensing point as shown in Fig.8.  

            (a)           (b)                                                
Fig.7 Time domain waveforms for a HMC specimen with disbond at (70,7.2) mm from origin. 

          (a)        (b)   
Fig.8 Time domain waveforms for a HMC specimen with disbond at (100,7.2) mm from origin. 

 
Next, delamination damage was created in the specimen model centered (155, 4.35) mm from 

the origin. The time domain signals received at 70 mm & 100 mm are shown in Fig.9 and Fig.10 
respectively. Similarly, additional wave packets reflected from the delamination damage were 
observed. The Hilbert envelope and phases were evaluated for healthy and damaged HMC 
specimens as shown in Fig.11(a)-(c). The envelope for a disbond damage was seen to have 
significant deviation from healthy specimen compared to delamination damage which was also 
seen in the Hilbert phase. In order to facilitate classification, RMS of the Hilbert phase was 
evaluated and shown in Fig.11 (d). The disbond damage exhibit maximum RMS whereas the 
delamination damage has intermediate value and lastly followed by the healthy HMC specimen.  

                 (a)      (b)  
Fig.9 Waveforms for a HMC specimen with delamination at (70,7.2) mm from origin. 
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              (a)        (b)  
Fig.10 Waveforms for a HMC specimen with delamination at (100,7.2) mm from origin. 

 

             7.5  
                                  (a) Hilbert envelope                       (b) Hilbert envelope enlarged 

      
                         (c) Hilbert phase                                          (d) RMS of Hilbert phase 

Fig.11 HHT for healthy and damaged HMC specimens (a) Hilbert envelope (b) Exaggerated 
image (c) Hilbert phase (d) Damage classification. 

Summary 
The present study focusses on the development of a damage diagnosis technique to detect different 
types of damages in a hybrid metal-composite (HMC) plate specimen using ultrasonic guided 
waves and outliers estimate. Dispersion curves of the HMC specimen were obtained to identify 
the most suitable frequency-mode pair for inspection. Based on the dispersion curves and wave 
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structure analysis, A1 Lamb mode at 500 kHz was found suitable to inspect the disbond and 
delamination damage in the HMC specimen. Wedge transducer was used to excite A1 Lamb mode 
into the specimen and time-domain responses were recorded at different propagation distances 
which were finally analyzed using HHT algorithm. Following are the concluding remarks from 
the present study: 

1. The employed 𝐴𝐴1 Lamb mode was able to detect the disbond and delamination damage. 
2. The Hilbert envelope not only helps localize the disbond and delamination damage but also 

evaluate its size along the wave propagation direction. 
3. The Hilbert phase is used as a damage related feature to classify the detected damages in the 

HMC specimen. 
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Abstract. Various structural health monitoring (SHM) methods based on system identification 
using strong motion records of buildings were proposed in previous studies. Methodologies based 
on linear state-space models such as subspace state-space system identification (4SID) [1][2] were 
often used to assess the structural damage in past studies. However, it is inappropriate to apply 
methods based on linear state-space representations when evaluating damage to buildings that 
exhibit strong nonlinearity, such as wooden structures that were severely damaged due to an 
earthquake. To evaluate the seismic damage of a building, it is desirable to observe the strong 
motion on all floors of the building. However, such cases are rare in real buildings due to various 
restrictions such as cost and/or spatial limitation. Based on the background mentioned above, this 
paper investigates the applicability of the particle filter [3][4] to assess the structural integrity of 
highly nonlinear buildings using the strong motion records observed on a limited number of floors. 
Introduction 
Structural Health Monitoring (SHM) methods could play important role to evaluate the seismic 
damages to buildings during an earthquake. Various SHM approaches based on the system 
identification using strong motion records observed at a building were proposed in the past studies. 
In the several past studies, a methodology based on the linear state space model such as the 
subspace state-space system identification (4SID) [1][2] was used. However, there are limited  
knowledge on the validity of the methodology for the building with a strong non-linearity, such as 
wooden structure suffered severe damage due to an earthquake. Moreover, it is inappropriate to 
apply the method based on linear state-space representations when evaluating damage to buildings 
that exhibit strong nonlinearity. 

Considering the background mentioned above, this paper investigates the applicability of the 
particle filter [3][4], which is one of methodologies of the data assimilation, to the structural health 
monitoring of buildings with a strong non-linearity. 

First, we performed a non-linear seismic response analysis of 2DOF system consisting of two 
springs of the Bouc-Wen model, which can reproduce the various shapes of restoring force 
characteristics. Then the parameters of the model were identified by the particle filter, and the 
evaluated hysteresis loops were compared with those of the analytical results to examine the 
accuracy of this approach. 

In order to evaluate the seismic damage to buildings in detail, it is desirable to observe the 
strong motion on all floors of the building, but such cases are rare in the real buildings due to 
various restrictions such as cost and/or spatial limitation. To cope with these difficulties, we also 
investigate the identification accuracy of the above-mentioned approach by using the strong 
motion records observed on the limited number of stories, e.g., 1st floor and roof floor of the 2-
story building. 
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Overview of particle filters 
Figure 1 shows an overview of the particle filter. The particle filter uses a state-space 
representation shown below. 

 

�𝐱𝐱𝑡𝑡 = 𝑓𝑓(𝐱𝐱𝑡𝑡−1,𝐮𝐮𝑡𝑡, 𝐯𝐯𝑡𝑡),
𝐲𝐲𝑡𝑡 = ℎ(𝐱𝐱𝑡𝑡,𝐮𝐮𝑡𝑡 , 𝛆𝛆𝑡𝑡),             𝐯𝐯𝑡𝑡 ∼ N(𝟎𝟎,𝐕𝐕𝑡𝑡)

𝛆𝛆𝑡𝑡 ∼ N(𝟎𝟎,𝐄𝐄𝑡𝑡)
       (1) 

 
Where xt is the state vector at time t, ut is the input vector, yt is the output vector, vt is the system 
noise vector, εt is the observation noise vector, Vt is the system noise covariance matrix, Et is the 
observation noise covariance matrix. The parameters to be identified are incorporated into the 
state, and many random numbers (particles) are generated. Then the particles are duplicated 
according to the likelihood evaluated from the analytical results calculated by the seismic analysis 
models with each parameter (particle) and observation data. The particles with low likelihood are 
vanished. The duplicated particles are taken as the state of the next step. Finally, the appropriate 
parameters can be identified by repeating this procedure at each step. In this study, we used a 
merging particle filter [5] that can avoid reducing particle diversity. The number of margined 
particles n is set to three. 
 

 
Estimation of Response on Unobserved Floor of 2DOF System 
In this study, the seismic response of an unobserved floor is predicted using the data obtained from 
the seismic response analysis of the shear 2DOF system. Figure 2 shows the analysis model. In 
this study, we assume that strong motion observations are performed only on the bottom floor and 
the roof floor. These data are used to predict the seismic response of the non-observation floor 
(second floor). 
 

Figure 1   Outline of particle filter 
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When the restoring force characteristics of each layer are modeled using the Bouc-Wen model 
[6][7], the equation of motion of the 2DOF system is expressed by the following equations. 

 
1 1 1 1 1 1 1
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1 1 1 1 2 1
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0
( ) ( ) ( )

0
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− −     
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− −     

+ = −     − − −     

ξ ξ ξ

ξ

 


    (2) 

{ }
,

1( , ) ( ) ( ) ( , ) ( ) ( , ) , 1,3,5...n n
i i i i i i

y i

z r t A r t r t z r t r t z r t n
x

β γ= − − =       (3) 

 
Where mi are the mass of each floor, ci is the damping coefficient, and ki is the initial stiffness of 
floor i. ξ(t) and ξ0(t) is the displacement vector of the masses and ground, respectively. zi is a non-
observable hysteretic parameter, A, β, γ, xy,i and n are dimensionless quantities controlling the 
behavior of the model. Table 1 shows the set parameters.  

 

 
 
The north-south component of the strong motion record observed at JR Takatori station during 

the 1995 Hyogo-ken Nanbu Earthquake occurred in Japan was used as the input motion. The time 
step of seismic analysis was set to 0.001 second. Assuming strong motion observation, the 
likelihood is calculated using the absolute acceleration obtained every 0.01 second (Fig. 3). The 
standard deviation of the observation noise was set to 1 m/s2, and the prior distribution in the 
particle filter was set to uniform distribution. The prior distribution and system noise settings are 
shown in Table 2. 

ξ1 

ξ2 

ξ0 

m1 

m2 

c1 

c2 

k1 

k2 

: Accelerometer 

Fig. 2   Analysis model 

m1   m2   k1  k2   c1  c2  A1  A2 n1 n2 

8 10  700 800 0  0  1  1   1  1 

α1     α2  β1  β2  γ1   
γ2   

xy1    
xy2 

0.95  0.9 0.3 0.5 0.9 0.7 0.01 0.01 

Table 1   Parameter of Bouc-Wen 
d l 
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The number of particles was set to 100, 200, 500, and 1000. 100 cases were calculated for each 

to investigate the variation due to the random number of particles. Figure 4 shows the relationship 
between the number of particles and the root-mean-square error (RMSE) of the observed and 
estimated acceleration for each floor. The larger the number of particles, the smaller the RMSE. 
Particularly, In the case of 1000 particles, the RMSE is extremely small. 

 

Estimated 
data 

time 

Acc.  
Like
liho
od 

Δt=0.001(s) 

Δt=0.01(s) 

Observed data 

Figure 3 Likelihood calculation method 

Table 2   Parameter setting of particle filter 

Parameter Min. and max. value of prior distribution 
(Uniform distribution) Standard deviation of system noise 

ξ1(t), ξ2(t) -0.001～0.001 0.00001 

,  -0.005～0.005 0.00001 

,  -0.01～0.01 0.00001 
z1(t), z2(t) -0.1～0.1 0.0000001 

k1, k2 

(kN/m) 500～1000 0.1 

c1, c2 
(kNs/m) 0 0 

α1, α2 0.5～1.0 0.0001 
β1, β2 0.05～0.5 0.0001 
γ1, γ2 0.2～0.6 0.0001 

xy1, xy 2 (m) 0.005～0.02 0.00001 
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Figure 5 shows an example of identification results of k1, k2 and the absolute acceleration of 

each floor when the number of particles is 1000. It can be seen that k1 and k2 converge to the true 
values as time progresses, and the acceleration of the unobserved floor (2nd floor) is predicted 
with good accuracy. Based on this, the number of particles is assumed to be 1000 in the following 
discussion. 

 

 
Verification by Seismic Response Analysis of RC Two-Story Building 
Next, a particle filter is applied to the data obtained from the seismic response analysis assuming 
a two-story RC building. The analysis model was the same as in fig. 2, and the mass of each floor 
was set to 400 tons. The restoring force characteristic is a degrading trilinear model, and the 
damping characteristic was proportional to the tangent stiffness. The north-south component of the 
strong motion record observed at the JR Takatori station was used as the input motion. It is 
assumed that strong motions were observed on the bottom floor and the roof floor. The response 
of the second floor is predicted using these observation records. The parameters of the prior 
distribution and system noise were set as shown in Table 3. 

Figure 4   Relationship between number of particles and  
RMSE of absolute acceleration on each floor 

●: mean 
I: mean±σ 

a) Roof floor b) 2nd floor 
3 
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Figure 5    Example of result of identification (Particle number = 
1000) 
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Fig. 6 shows the time histories of the relative displacement and absolute acceleration response 

estimated by the particle filter with the Bouc-Wen model with A = 1, n = 11. The relative 
displacement, relative velocity, and absolute acceleration of each floor including non-observed 
floors are predicted with good accuracy. 

 

 
Fig. 7 compares the restoring force characteristics in the analysis and the estimated results. 

Although the inter story drift was slightly different, the estimated restoring force characteristics of 
1st and 2nd floor generally corresponded to those of the true ones. In particular, the 2nd floor has 
not yet yielded, and the yield load and yield displacement of the 1st floor were well identified. The 
maximum inter-story displacement on the 1st floor also corresponds roughly. These results show 

Table 3   Parameter setting of particle filter 

Parameter Min. and max. value of prior 
distribution (Uniform distribution) Standard deviation of system noise 

ξ1(t), ξ2(t) -0.0005～0.0005 0 

,  -0.01～0.01 0 

,  -0.1～0.1 0 
z1(t), z2(t) -0.01～0.01 0 

k1, k2 
(kN/m) 5000～20000 10 

c1, c2 
(kNs/m) 1000～6000 1 

α1, α2 0.1～0.5 0.0002 
β1, β2 0.05～0.5 0.0002 
γ1, γ2 0.2～0.8 0.0002 

xy1, xy 2 (m) 0.002～0.01 0.000002 
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that the method proposed in this study enables us to predict the position and degree of damage of 
the building based on the strong motion records at fewer points. 

 

Conclusion 
In this study, based on the nonlinear seismic response analysis of the 2DOF system, we 
investigated the method for estimating the seismic response of the unobserved floor using the 
Bouc-Wen model and the particle filter. The following conclusions were obtained. 
1) In this study, when the number of particles was 1000, the seismic response of the unobserved 

floor of the building can be predicted with good accuracy. 
2) It was possible to predict with good accuracy even for buildings whose restoring force 

characteristics differed from that of the Bouc-Wen model. 
3) By identifying the restoring force characteristics exhibiting strong nonlinearity, the seismic 

damage such as yielding of a building can be evaluated. 
4) It is also possible to predict the building response on non-observed floors. This result suggests 

that the damaged parts of the building can be identified based on the strong motion records at 
fewer points. 
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Abstract. Osseointegrated prosthesis has been utilized as an alternative treatment for transfemoral 
amputation to replace the common prosthetic sock device, which has been complained by patients 
as unsatisfactory due to the severe infection and pain.  Osseointegrated prosthesis demonstrated 
enormous advantages in improving mobility and quality of life for the amputee. However, the long 
rehabilitation period, which forces patients to stay in bed for up to 18 months, limits the application 
of the osseointegrated implant. Therefore, accurate and quantitative assessment method attracts 
research interest in recent years. This paper investigates the capability of a vibrational analysis 
technique using two unidirectional sensors on monitoring stages of the osseointegration process. 
This assessment method has been proven to be sensitive to the stiffness change at the femur-
implant interface due to osseointegration. This paper mainly focuses on the further validation of 
this vibrational method and E-index on three lengths of the residual femur. The colormap of the 
cross-spectrum against the curing time demonstrates a clear step change in the magnitude. 
Moreover, the E-index for these three lengths of residual femur shares a similar trend, which 
dramatically increases after 300s and peaks above 0.8. The time when the gradient of the E-index 
reaches its maximum is coincident with the initial bonding time of the epoxy adhesive which is 
used to simulate the osseointegration process. The clear correlation between E-index to the curing 
time evidences the capability of this vibrational method in monitoring the osseointegration process 
and the potential of the E-index being a quantitative parameter to assess the stage of the 
osseointegration process. 
Introduction 
Traumatic limb loss affects over 50 million patients worldwide [1]. Prosthetic limbs offer a 
relatively secure and comfortable connection to the residual limb, improving the life quality of 
amputees. The traditional design of the prosthesis is using the socket interface which contains a 
socket that covers the remnant femur and links with the artificial limb, leading to severe skin 
infections and pain in long-term utilization [2, 3]. Moreover, the application of the socket system 
is limited by the specific requirement for the length of the residual limb [2, 4, 5]. The trans-femoral 
osseointegrated implant (TFOI) is treated as an alternative method for amputees who suffer from 
an above-knee amputation [3]. Unlike a conventional socket system, the osseointegrated implant 
provides a direct connection between the residual limb and prosthesis by inserting the 
intramedullary stem into the skeletal system. There are several types of TFOI currently clinically 
available, such as the OPRA system and the ILP system. Patients with the osseointegrated implant 
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experience significant improvement in control of prosthesis and joint mobility over the socket 
system [6-8].  

Even though the OI system has significantly reduced and eliminated some limitations of the 
socket system [3, 7-10], various challenges remain for the osseointegrated implant, such as 
infection and implant failure. It has been evidenced that there are approximately 40% of patients 
suffered from infection, which mainly due to penetration of the implant [11]. Except for these 
limitations, an extensive long rehabilitation period has also become another major concern for the 
osseointegration implant. During the rehabilitation period, bone formation starts on the surface of 
biocompatible material without the intervention of inter-positioned connective tissue [9, 12, 13]. 
The improved stability of the implant due to the stiffness increase at the femur-implant interface 
is associated with the osseointegration process. Loading on the implant is restricted during the 
rehabilitation, to avoid overloading at the femur-implant interface. In addition, this also prevents 
the host bone damage and implant loosening. However, the slowness of the this inevitable period 
causes amputee’s concern and frustration [14]. Hence, reliable assessment methods for the OI 
process are essential to ensure initial and long-term implant stability. Currently, various 
examination methods such as clinical X-ray and magnetic resonance imaging are used to assess 
the in-vivo implant stability [3, 15, 16]. Nonetheless, these conventional methods are known to be 
subjective and qualitative since their accuracies are mainly based on the interpretation and 
judgment of the surgeon rather than using quantitative justifications (i.e. stiffness of the 
connection) [2, 16-19]. Therefore, there is a significant interest in researching the robust and 
quantitative method on monitoring the osseointegration process to personalise the rehabilitation 
period based on the patient’s conditions.  

Mechanical vibrational analysis is a non-destructive technique, which was widely used in the 
assessment of the dental implant stability [15, 17, 20], monitoring the total hip arthroplasty 
loosening [3, 21-25]. The research of vibrational methods on assessing the degree of 
osseointegration for transfemoral implants has proven that the change in the dynamic properties 
of the bone-implant system, such as resonance frequency and vibration modes, could identify the 
variation of bone-implant interface conditions along with osseointegration progression [3, 15, 26-
28]. In the in vivo research reported by Shao et al [3],  the resonance frequency gradually increased 
during the rehabilitation process of a 40-year-old male patient, except for a reduction at first weight 
bearing. Moreover, Cairns et al [15, 16] investigated the sensitivity of resonance frequency and 
mode shape to the change at the femur-implant interface by varying the implant inserting torque. 
The result demonstrated that by tracking the change in the particular modes over a specific 
frequency range, it is possible to identify the degree of osseointegration. Recently, research 
conducted by Lu et al [29] showed that the progression of the simulated osseointegration process 
could be identified by utilising a time-progression cross-spectrum with a dual sensor measurement 
method. In addition, they also proposed a new vibration parameter energy index (E-index), which 
focused on the magnitude over a large frequency range from 0 to 10kHz, instead of selecting and 
identifying the resonance frequencies based on the implant shape and residual femur length. The 
results in the previous study revealed that E-index was significantly sensitive to the stiffness 
change at the femur-implant interface regardless of the femur cross-section. In this paper, This 
paper mainly focuses on the further validation of this vibrational method and E-index on three 
lengths of the residual femur under in vitro conditions.  
Methodology 
The femur models which represented three different osteotomy levels of 228 mm, 190 mm and 
152 mm measured from the knee respectively, were utilised in the experiment (see Fig. 1a). The 
finding in [29] illustrated that the change in the cross-section of the residual femur has limited 
effect on the accuracy of the vibrational method investigated in this study. Therefore, the primary 
parameter that is of interest was the residual length and not the cross-section shape of the implant. 
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Hence, in this study only an oval-shape implant was employed in this experiment to maintain the 
consistency between each femur specimen. The implant design utilised in this study was developed 
according to a design concept proposed by Russ, Fitzgerald, and Chiu (US20200188140) [30, 31], 
which aims to embed sensors into the implant to assess implant stability under in vivo conditions. 
The geometry of the custom-fit implant, shown in Fig. 1b, consisted of three components: cup-
shaped extramedullary (EM) strut, an intramedullary (IM) stem and a prosthesis stem. EM strut 
provided the initial resistance to the axial and rotational movement, allowing close apposition of 
bone to the surface of IM. After forming a secure connection between femur and implant, the 
weight bearing load was applied thought the abutment, which was connected to the prosthesis 
stem.  

 

 

(a) (b) 
Fig. 1. Geometry of (a) Three lengths of residual femur compared to the intact femur(Green) and 

(b) The novel osseointegration implant developed based on Patent US20200188140. 
The implant specimens were 3D printed with ABS. The stem was extended from the base to 

provide a loading point for the experiment. The diameter of the IM stem was slightly reduced by 
2 mm to provide sufficient space for the application of the epoxy adhesive, which was used to 
simulate the osseointegration process for the in vivo implant [2], as shown in Fig. 2b. An epoxy 
adhesive with a setting time of 5 mins and a fully cured time of 16 h was used. Even though the 
material properties of the adhesive are not an accurate representation of the osseointegration 
process, the change in stiffness as a result of the curing process is similar to the bonding between 
femur and femur introduced by the osseointegation process [18, 19, 32-35]. 

  

(a) (b) 
Fig. 2. (a) Modified oval-shape implant with hollow IM stem for the experiment and (b) Cross-

section of femur-implant interface with adhesive epoxy 
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In the experiment, a 250 mm long Sawbone® composite femur model was fastened rigidly by 
a vice through 3D printed adapter, as illustrated in Fig. 3. The femur mode was clamped at different 
sections to simulate three length conditions of residual femur. The femur-implant system was 
stimulated by an input loading through the strike point with an instrumented impact hammer (B&K 
Type 8206). Two unidirectional accelerometers (B&K Type 4507), which were attached to the 
bottom of the implant at location of S1 and S2, were arranged to measure the acceleration along 
y-axis. The voltage from two sensors were acquired and analyzed by B&K PULSE with a 
frequency bandwidth of 14.4kHz and frequency resolution of 1.125Hz. Due to the significant 
increase in stiffness of the adhesive in the first 5 mins, the data were recorded at 30-second 
intervals for the first 5 mins and 60-second intervals for 14 mins. 

 
Fig. 3. Two-sensor setup for composite femur model with markers for three residual length 

conditions. 
The quality of the recorded signals and acceptable frequency range were evaluated and 

determined via a coherence function as illustrated below: 

 𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �𝐺𝐺11(𝑓𝑓)���������𝐺𝐺22(𝑓𝑓)�
2

𝐺𝐺11(𝑓𝑓)𝐺𝐺22(𝑓𝑓)
 (1) 

where 𝐺𝐺11(𝑓𝑓) and 𝐺𝐺22(𝑓𝑓) are the autospectra of sensors 1 and 2, respectively, and 𝐺𝐺11(𝑓𝑓)��������� is 
the complex conjugate of 𝐺𝐺11(𝑓𝑓). 

The E-index from the previous study was defined as ratio of integration of normalised 
magnitude plot from a certain frequency range from lower frequency bound 𝑓𝑓0  to target 
frequency 𝑓𝑓𝑖𝑖 relative to the whole frequency range (𝑓𝑓0 to 𝑓𝑓1), refer below [29]: 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸𝑓𝑓𝑖𝑖(𝑡𝑡)/𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) (2) 

𝐸𝐸𝑓𝑓𝑖𝑖(𝑡𝑡) = � 𝑀𝑀2(𝑓𝑓, 𝑡𝑡)𝑑𝑑𝑓𝑓
𝑓𝑓𝑖𝑖

𝑓𝑓0
 (3) 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = � 𝑀𝑀2(𝑓𝑓, 𝑡𝑡)𝑑𝑑𝑓𝑓
𝑓𝑓1

𝑓𝑓0
  (4) 

where 𝑀𝑀(𝑓𝑓, 𝑡𝑡) is the normalized magnitude at frequency 𝑓𝑓 and cure time 𝑡𝑡, 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) is the 
integration of normalised magnitude 𝑀𝑀(𝑓𝑓, 𝑡𝑡) from 𝑓𝑓0 to 𝑓𝑓1 at cure time 𝑡𝑡, 𝐸𝐸𝑓𝑓𝑖𝑖 is the integration of 
normalised magnitude 𝑀𝑀(𝑓𝑓, 𝑡𝑡) from 𝑓𝑓0 to 𝑓𝑓𝑖𝑖 at cure time 𝑡𝑡. 

The selection of 𝑓𝑓0 , 𝑓𝑓𝑖𝑖  and 𝑓𝑓1  varies between each residual length condition and will be 
discussed in the result section. 
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Result 
Determination of upper frequency band 
The coherence, which was plotted against the adhesive cure time in frequency bandwidth of 
14.4kHz for three residual length conditions was shown in Fig. 4. For all three conditions, the 
magnitude distributed over a wide frequency range without significant peaks before 300s. 
However after 300s, marked with yellow dashed line, several resonance peaks could be identified 
at certain frequencies. These results indicated that resonance modes were suppressed by the 
damping effect of the adhesive prior to the sufficient strength at the femur-implant interface. 
Moreover, the plots illustrated that the coherence from 0 to 8000Hz, were generally above 0.8 
indicating that the veracity of the data collected. Therefore, the upper bond (𝑓𝑓1) in Equation (4) 
was set to 8000Hz. 

 
  

(a) (b) (c) 
Fig. 4. Coherence function for residual length of (a) 152 mm, (b) 190 mm and (c) 228 mm. 

Time-progression of Cross-spectrum 
Fig. 5 exhibited the cross-spectrum of the normalized magnitude, which were plotted in the 
frequency bandwidth of 8000Hz for three residual femur lengths. The cross-spectrums were 
plotted at a cure time of 0, 150, 300, 600, and 1140 seconds, which aimed to show the magnitude 
change relative to the simulated osseointegration process. For all three length conditions, at the 
early stage of the adhesive curing process (before 300 seconds), the response was flat and the 
resonant modes were hard to spot in the plots except for the vibration modes located at the lower 
frequency range (frequency smaller than 1500Hz), as marked with vertical dash-dotted line. There 
are several peaks that could be visually recognized in the cross-spectrum after the adhesive setting 
time of 300 seconds such as 2500, 2900, 2700Hz for 152, 190 and 228 mm respectively, as 
indicated in the plot.  Along with a cure time increasing, the selected peak became noticeable with 
curing time. This finding indicated that the change of the interface condition could be detected by 
the specific resonant modes by track the change along the curing time.  
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Fig. 5. Cross-spectrum of normalised magnitude for three residual femur length at cure time 0, 

150, 300, 600, and 1140 seconds. 
Different from Fig. 5, the colormap in Fig. 6 demonstrated the development of the resonance 

peaks over a continuous time frame rather than several discrete time spots. Before 300 seconds, 
which was indicated with a vertical yellow dash-dotted line, the vibration modes were hard to 
determine except for the modes that located below 1500Hz, which were not affected by the 
interface condition change. Therefore, the lower frequency bound for the E-index, 𝑓𝑓0 was set to 
1500Hz for all three length conditions, refer to Equation (3) & (4). By setting the lower bond of 
integration,  the ability of the E-index on monitoring the degree of osseointegration was enhanced 
by excluding the frequency peaks not being relevant to the simulated osseointegration process. 
During the early stage of curing time, the frequency modes over 1500Hz are impeded by the 
damping induced by the soft adhesive. A clear step change on the magnitude of resonance peaks 
at 300s, which is coincident with setting time. After 300s (5 mins setting time),  multiple resonance 
peaks appeared, especially for the peaks located between 2000 to 3000Hz. With the further curing 
of the adhesive,  large variation in the resonant peaks along the cure time were identified around 
2500Hz for 152 mm , 2900Hz for 190m and  2700Hz for 228 mm conditions. Therefore, to enhance 
the sensitive of the E-index, the target frequency 𝑓𝑓𝑖𝑖 was set to 2500, 2900 and 2700Hz for 152, 190 
and 228 mm, respectively, refer to Equation (3), to ensure that frequency range covered by the E-
index has large magnitude changes related to the stiffness changes induced by the simulated 
osseointegration process. 
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(a) (b) (c) 
Fig. 6. Time-progression of cross-spectrum as the function of cure time for (a) 152 mm, (b) 190 

mm and (c) 228 mm 
E-index as function of curing time 
Fig. 7 generated from the E-index formula based on the specific frequency ranges selected based 
on the above results for each remnant femur length. Even though there are some fluctuations in 
the E-index, the plots share a general trend that the E-index gradually increases to a value and 
stabilises above above 0.8, indicating the implant securely bonded with the femur. This behaviour 
of E-index over curing time evidenced that the interface stiffness change incurred by the curing of 
the adhesive is clearly represented by the the E-index through time. In addition, Table 1 
demonstrates the change in the E-index at the end of the experiment relative to the value at t = 0. 
The E-index demonstrated an averaged increase over 50% with minimum change of 47%, which 
is significantly larger, compared to the 3% of resonance frequency analysis [3] and 10-47% 
difference and modal analysis [15], for all three remnant length conditions. 

 
Fig. 7. E-index development as the function of cure time. 
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Table 1 Difference of E-index (Relative to the 0s) for each length condition 

Length Difference (relative to t0) (%) 

152 mm 52.55 

190 mm 47.59 

228 mm 54.89 

Averaged 51.67 

Conclusion 
The work presented has shown that the degree of the osseointegration which is simulated by using 
two-part adhesive epoxy, could be assessed with the dynamic response of femur-implant system. 
Cross-spectrum and colormap of the normalised magnitude over curing time, has demonstrated 
significant changes which were related to the increase in stiffness due to the curing of epoxy, 
indicating that the application of these plots could advance the accuracy of diagnostic techniques. 
Furthermore, the accuracy and reliability E-index from previous work [29] is further investigated 
in this study with three residual femur length conditions. The results have indicated a clear trend 
and significant shift of averaged 51% of E-index along the simulated osseointegration for all three 
lengths. This finding evidenced the capability of E-index as a quantitative approach to monitor the 
degree of osseointegration without the burdens of selecting and identifying the specific resonant 
peaks based on length of residual femur. Future work includes the validation of this E-index 
method, and research on combining the E-index method with the novel implant, which will 
intergrate the sensors with structure to assess the osseointegration under in-vivo conditions. 
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Abstract. In recent years, the increasing social isolation has become a major problem in Japan 
because of the growing trend toward nuclear families. In addition, further social isolation is 
concerned caused by a decrease on face-to-face communication opportunities due to the outbreak 
of the COVID-19 infection. Therefore, it is necessary to create connections among people. On the 
other hand, opportunities for people to communicate online have increased rapidly. However, 
various information obtained the face-to-face is missing online, which degrades the quality of 
communication and causes physical and mental fatigue to users. To solve these problems, this 
study aims to minimize the gap that exists between online and the face-to-face, and to propose an 
Augmented Architectural Space that creates casual connections between people within their living 
space. By comparing the results of impression evaluation experiments using questionnaires for the 
face-to-face environment, the video conferencing system environment, and the proposed system 
environment, we demonstrate the usefulness of the proposed Augmented Architectural Space 
system for creating casual connections between people. 
Introduction 
In recent years, people’s social isolation has become an issue in Japan, as the growing trend toward 
nuclear families, the increase in the number of single-person households, and changes in residential 
patterns have weakened the sense of neighborhood and community ties. According to the Ministry 
of Health, Labour and Welfare, 15.3% of the Japanese population reported that they have “no” or 
“very little” interaction with “friends, colleagues, and other people” outside of their family, the 
highest percentage among the 20 OECD member countries [1]. Previous research refer to the high 
impact of social isolation on risk of death[2], and social isolation can lead to increase in isolated 
deaths, disuse disease, shut in, and suicides[3]. Compounding this situation, the recent COVID-19 
epidemic has reduced the number of face-to-face encounters with people, exacerbating the social 
isolation situation. In order to improve these problems, a way to create casual connections between 
people under the constraints of face-to-face activities is urgently needed. 

The COVID-19 epidemic has forced activities that were usually conducted outside the home to 
be conducted inside the home, and video conferencing systems have rapidly become popular. Not 
only are they useful in the fields of education [4], healthcare [5], and business [6], but they have also 
become an important tool for communicating with family and friends who live far away, and can 
help prevent social isolation. In particular, due to Zoom’s features of being free, simple, and easy-
to-use, the number of users per day rapidly increased from about 10 million in December 2019 to 
about 200 million in March 2020, and about 300 million in April 2020[7]. It is predicted that the 
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lifestyle of using video conferencing systems will continue into the post-covid era because of the 
reduced commuting time, more efficient use of time, and reduced travel costs. 

While video conferencing systems are rapidly gaining popularity due to their many advantages, 
the term “Zoom fatigue” has become popular. “Zoom fatigue” (synonym: video conferencing 
fatigue) is defined as the physical and mental exhaustion caused by intensive and inappropriate 
use of video conferencing systems [8] and is caused by the gap that exists between face-to-face and 
online. There are seven main causes of this fatigue. (1) stress due to communication delays, (2) 
increased cognitive and communicative effort due to lack of body language, (3) increased anxiety 
and cognitive effort due to lack of eye contact and not knowing where to look, (4) unnatural 
interaction with multiple faces (close range,etc.), (5) stress to induce self-evaluation by looking at 
one’s own appearance[9], (6) stress from multitasking during video conferencing, and (7) stress on 
the whole body due to difficulty in moving around [8][10][11]. (1) to (3) can be summarized as “lack 
of information” and (4) to (6) as “too much information”. These causes create a gap between face-
to-face and online, causing people to experience physical and mental fatigue. By dissolving these 
causes of fatigue and minimizing the gap between face-to-face and online communication, we 
think we can create a sense of casual connection between people who live far away from each 
other that is more similar to face-to-face communication. 

The elements shared in communication include information, action, and space. In face-to-face 
communication, all these elements can be shared. On the other hand, we have always shared some 
of these elements to communicate remotely and create a sense of connection with people who live 
far away from each other. For example, we are familiar with telephone calls and e-mails, which 
create a sense of connection by sharing information with others using text and voice. SyncDecor 

[12] and Meeting Pot [13] are communication tools that focus on sharing something with others. 
These are tools that create a sense of connection by sharing each other’s actions. Furthermore, 
video conferencing systems, which have spread rapidly in recent years, can perform both 
information and actions sharing because they allow people to see each other’s faces. On the other 
hand, there is currently little remote communication that incorporates the spatial elements that are 
inevitably shared in face-to-face communication. While existing video conferencing systems and 
videophone systems can share space around each other as visual information because the 
background space of the communication target is cut off, there are cases where disclosure of 
private information is not desired from the viewpoint of privacy protection, and virtual 
backgrounds and filters have been used in recent years. In addition, there is a large gap in the 
amount of information between the space in which one is and the space in which the other party 
is, obtained from limited visual information, and this inequality is not appropriate for space 
sharing. Now that opportunities for face-to-face communication are limited, there is a possibility 
of creating more casual connections if space can be shared in a new way in telecommunication. 

Therefore, this study aims to minimize the gap that exists between face-to-face and online 
communication, and to try space sharing that has not been considered in remote communication 
so far by proposing an Augmented Architectural Space that creates casual connections between 
people within their living space. For the reasons mentioned above, this study attempted to propose 
a system that allows people to feel connected through the same shared space by sharing a third 
space, rather than just sharing the private space where each other is. By comparing with the existing 
video conferencing system and the face-to-face communication, we evaluated the usefulness of 
the proposed system and clarified the optimal form of a combined real and virtual space that can 
create a sense of connection between people. 
Proposed system 
Among the causes of creating the gap between face-to-face and online mentioned above, the spatial 
system we propose approaches four of them: (2) increased cognitive and communicative effort due 
to lack of body language, (3) increased anxiety and cognitive effort due to lack of eye contact and 
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not knowing where to look, (4) unnatural interaction with multiple faces (close range, etc.) and (5) 
stress to induce self-evaluation by looking at one’s own appearance. Figure 1 shows the proposed 
system environment.  

The proposed system is intended for use by two people living apart and consists mainly of a 
large screen, a display, and a web camera. A real-time spatial image common to both students is 
projected on the large screen, and silhouettes of both students are projected on top of the spatial 
image. Students are seated facing the large screen. The video and audio images of each student, 
captured by a web camera installed on a desk beside them, are projected in real time on a display 
installed on the side of the communication partner. 

Next, explain the intention of each device. The silhouette images of both students projected on 
the large screen attempt to solve (2) above. By projecting a silhouette image of the whole body in 
front of the student’s eyes, the presence [14] and body language of the other party, which are difficult 
to convey online, can be expressed without violating privacy. In addition, by projecting not only 
the silhouette of the other party but also one’s own silhouette on the same spatial image, we thought 
it would induce a sense of being in the same space as the other party. We attempted to solve (3) 
by having the students seated facing a large screen and having their partner’s profile projected on 
a display installed on the side. Unlike conventional video conferencing systems, the proposed 
system is designed to prevent excessive eye contact by positioning the student’s side-by-side with 
the other party, not facing each other, so that the students can recognize that they are being watched 
and that their attention is being directed from the direction of the other party’s face. The side-by-
side positional relationship in a face-to-face situation is called a sociopetal relationship, which 
promotes the most interaction. By projecting the other party at life-size on the side display, we are 
attempting to solve (4). Based on the concept of personal space, the psychological area surrounding 
the human body, and in order to establish an appropriate virtual distance for the relationship 
between students, we prevented communication at unnatural close range by matching the size of 
the head in the face-to-face state with the size of the other party’s head projected on the display. 
And, unlike conventional video conferencing systems, the proposed system attempts to solve (5) 
by not projecting the image of oneself except as a silhouette. Also, in the face-to-face space, people 
share the same space equally and are always unconsciously influenced by surrounding information 
such as wind and passersby. In order to solve the situation of a video conferencing system, where 
all external information is shut out, and to create the situation in the face-to-face space online, we 
attempted to create a situation similar to face-to-face communication by sharing a common space 
in real time. 

 

 

Fig. 1 the proposed system environment 
 
Experimental and Evaluation methods 
The experiment was conducted on 8 students (M:4 F:4) in their 20s in pairs. After 3 minutes of (a) 
the face-to-face communication, the students entered two rooms where the proposed system was 
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installed, one by one, and communicated freely with each other for 3 minutes each in two 
environments: (b) the existing video conferencing system environment and (c) the proposed 
system environment. After each communication in (a) the face-to-face environment, (b) the video 
conferencing system environment, and (3) the proposed system environment, the students were 
asked to answer a questionnaire using Google Form. The total time for communication and 
questionnaire response was about 30 minutes. 

In this study, in order to measure individuals’ impressions of the target environment and to 
clarify the semantic structure and image of the target environment, we employed a method in which 
(A) words with relative meanings were paired to form a single item, and students were asked to 
answer each item on a 5-point scale. They were also asked to answer on a 5-point scale the 
questions about (B) fatigue and (C) missing elements online. Factor analysis was conducted for 
the items with (A) paired words with relative meanings in order to get the characteristics of the 
proposed system, and t-tests were conducted for the questions about (B) fatigue and (C) missing 
elements in order to show the usefulness of the proposed system. 
Statistical analysis 
The factor analysis and t-tests indicated above were conducted using IBM’s SPSS 28 statistical 
analysis software. 

For items that (A) paired words with relative meanings, based on the data collected, 
standardized data were entered into SPSS for each item, 24 data for 8 students multiplied by 3 
patterns, and analyzed. The items to be analyzed were adjusted, and the factor analysis was 
repeated until each item loaded relatively high on only one factor. The principal axis was used to 
extract the factors, and the Promax rotation method was employed. In order to examine whether 
the collected date are valid for factor analysis, we confirmed the KMO measure of sampling 
adequacy. In addition, in order to determine whether the items constituting the factors were 
consistent, we calculated Cronbach’s coefficient alpha using SPSS and confirmed the internal 
consistency of the factors. Cronbach’s coefficient alpha of 0.8 or higher was considered sufficient 
for internal consistency. After that, the factor score coefficient was calculated by factor analysis 
with SPSS again, the factor score coefficient was multiplied by the standardized mean value for 
each item, and the factor score was calculated by summing all items. The factor score was used to 
confirm how each factor affected (a) the face-to-face environment, (b) the video conferencing 
system environment, and (c) the proposed system environment. 

For the questions on (B) fatigue and (C) missing factors, we also input 24 standardized data for 
each item into SPSS and analyzed them. Here, before conducting the t-test, a test of normality of 
the data was conducted to confirm that all items followed a normal distribution. By checking the 
significance probability, we confirmed whether there was a significant difference between (b) the 
video conferencing system environment and (c) the proposed system environment in the mean 
value of each item. 
Result 
Factor analysis results for the evaluation environment 
A graphical representation of the questionnaire results for items that paired words with relative 
meanings is shown in Figure 2. Here, the variables were standardized so that the mean was 0 and 
the standard deviation was 1, since the standard of evaluation may differ due to individual 
differences such as student’s preferences.  

As a result of repeated factor analysis on the collected data, four items, “fun - boring,” “relax - 
tension,” “comfortable - uncomfortable,” and “bright - dark atmosphere,” were removed from the 
data and analyzed. 

Since the KMO measure of sampling adequacy is 0.851, which is greater than 0.50, it can be 
concluded that there is validity to conduct a factor analysis. 
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When the number of factors is examined from the perspective of eigenvalues, the first factor is 
8.94, the second factor is 1.39, the third factor is 1.15, and the fourth and subsequent factors are 
less than 1, so it can be determined that the Kaiser criterion can be determined up to the third 
factor. Also, the cumulative contribution ratio up to the third factor is 88.2%, which is more than 
50%, it can be determined that the number of factors should be three. 

The variance value of the sum of squares of loadings after Promax rotation indicates that Factor 
1 explains 67.7% of the total, Factor 2 9.28% of the total, Factor 3 7.28% of the total, and the three 
factors together explain 84.2% of the total. Here, Factor 1 consisted of six items: “casual”, “easy 
to talk”, “calm”, “convenient”, “relief” and “friendly”, and the items related to the comfort of the 
space and the other party showed a high load. Therefore, the first factor was named 
“comfortableness”. The second factor consisted of four items, “spacious”, “open”, “highly space 
shared”, and “no pressure”, and the items related to openness toward space showed a high load. 
Therefore, the second factor was named “openness”. The third factor consisted of three items, 
“immersive”, “close to existence” and “highly connected” and the items related to the connection 
with the other party and the space with others showed a high load. Therefore, we named the third 
factor “sense of connection”. From the above, it was found that the evaluation environment in this 
experiment can be explained by three indices: “comfortableness”, “openness” and “sense of 
connection”. 

Regarding the correlation of the three extracted factors, a correlation of 0.688 was found 
between the first and second factors, 0.657 between the first and third factors, and 0.531 between 
the second and third factors, indicating that there is a very strong correlation between 
“comfortableness”, “openness” and “sense of connection” with each other. 

Next, for the Cronbach’s coefficient alpha, all factors took values of 0.8 or higher, so it can be 
said that there is sufficient internal consistency for all factors. 

Using the three factors determined above, we will discuss the three evaluation environment 
patterns in terms of factor score. The results of factor score for each evaluation environment are 
shown in Figure 3. 

Figure 3 shows that the proposed system scored higher than the video conferencing system in 
all three factors of “comfortableness”, “openness” and “sense of connection”. For 
“comfortableness”, the proposed system scored higher than the video conferencing system because 
it created a natural communication environment similar to a face-to-face environment by 
expressing body language through silhouette projection and by expressing appropriate conditions 
such as distance through a life-size display. The proposed system also scored higher than the video 
conferencing system for “openness”. When the method of magnitude estimation was used to 
evaluate the size of the space, the mean values of 100 for (A) the face-to-face environment, 32.8 
for (B) the video conferencing system environment, and 77.5 for (C) the proposed system 
environment were calculated, showing that the proposed system scored higher than the video 
conferencing system in terms of numerical values. It is thought that these results were obtained 
because the real-time sharing of a common space allowed the students to feel the expansion of the 
communication space through another space, rather than only the separate space they could see in 
each other’s video conferencing system. The reason for the smaller value than the face-to-face 
space is thought to be due to the lack of reality of the common real-time space. The proposed 
system scored higher than the video conferencing system in terms of “sense of connection” not 
only because the silhouette projection expressed body language and presence, and the projection 
of the other party’s profile on the display induced a side-by-side feeling, but also because the 
projection of oneself and the other party sitting next to each other in one common space created a 
sense of physically being in the same space. 
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Fig. 2 Questionnaire standardized mean results graph 

 

Fig. 3 Factor score for each evaluation environment 
 
T-test results in fatigue 
A graphical representation of the questionnaire comparison results for fatigue in the face-to-face, 
video conferencing system, and proposed system environments is shown in Figure 4. All results 
are standardized. 

 

 

Fig. 4 Questionnaire standardized mean results graph for fatigue 
From Figure 4, it can be visually seen that the proposed system is less fatiguing than the existing 

video conferencing system for all questionnaire items. Here, we compared the mean values of each 
questionnaire item between the two subjects in the video conferencing system environment and 
the proposed system environment, and quantitatively clarified whether there was a significant 
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difference by t-test. As a result of the t-test, items with a significance probability of less than 0.05 
are marked with *, and items with a significance probability of less than 0.01 are marked with ** 
at the right end of each questionnaire item in Figure 4. Figure 4 shows that there were significant 
differences between the mean values in the video conferencing system environment and the mean 
values in the proposed system environment for all items of the questionnaire items about fatigue. 
This indicates that the proposed system causes less physical and mental fatigue after use than the 
existing video conferencing system. In other words, the proposed system was shown to be useful 
in dissolving Zoom fatigue. 
T-test results for missing elements online 
A graphical representation of the questionnaire comparison results for missing elements online in 
the video conferencing system and proposed system environments is shown in Figure 5. All results 
are standardized. 

From Figure 5, it can be visually seen that the proposed system shows more useful results in 
terms of the sense of connection with the other party than the existing video conferencing system 
in all items except eye contact. Here, we conducted a t-test in the same way as for the questionnaire 
about (B) fatigue, and examined whether there was a significant difference between the mean 
values of the two environments. From Figure 5, among the questionnaire items about the missing 
elements online, a significant difference was found between the mean values in the video 
conferencing system environment and the mean values in the proposed system environment for 
the sense of distance from the other party, awareness of oneself, gestures of the other party, 
proximity of the other party, gap with the face-to-face space, and sense of being monitored. On 
the other hand, no significant differences were found for the two items of where the other party is 
looking and the sense of eye contact. This indicates that the projection of silhouettes of both 
students complements body language such as gestures and hand gestures, and has the effect of 
making the presence of the other party feel closer, that the life-size display placed on the side 
allows a natural distance from the other party and avoids the feeling of being watched by not being 
in front of the other party, and that the projection of one’s own image only in silhouette allows one 
to avoid awareness and evaluation of oneself. By compensating for these missing elements online 
with the proposed system, the gap that exists between the face-to-face space and online is 
minimized and more natural communication is possible. On the other hand, the camera that 
captures the image displayed on the life-size display was installed in a position that project the 
student from below, which caused the student to look above his/her own eyes, resulting in an 
unnatural sensation of looking at the other party. Although line of sight is still an issue, compared 
to the video conferencing system, it was shown that the proposed system was able to create an 
environment closer to the face-to-face. 
 

 

Fig. 5 Questionnaire standardized mean results graph for missing elements online 
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Conclusion 
In this study, we conducted an impression evaluation experiment to clarify what kind of impression 
people have of an Augmented Architectural Space system created to create a space where they can 
easily connect with people who live far away from them, and what the factors are that make people 
feel this way. In addition, by comparing the proposed system with the video conferencing system, 
which has the same value in terms of “creating human connections” within a living space in an 
online environment, we clarified the usefulness of the proposed system. 
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Abstract. The present study describes the evaluation of feelings of difficulty faced by residents in 
performing actions during earthquakes (hereinafter, action difficulty) based on questionnaire 
surveys and strong-motion records for high-rise RC residential buildings having over 20 stories with 
seismic dampers or seismic isolation devices applied. In the recent structural design of buildings, 
both ensuring structural safety, such as the preservation of human lives during earthquakes, and 
evaluating the security of people in the buildings from the viewpoint of resilience, such as their 
continuous functionality and reduction of anxiety, are necessary. In the present study, focusing on 
the degree of the action difficulty, we propose a new evaluation formula based on the results of 
questionnaire surveys during earthquakes to evaluate the security of people in buildings. First, we 
analyze past questionnaire survey results in detail for the residents of high-rise residential buildings 
and show that the action difficulty is greatly reduced in seismically isolated buildings, as compared 
to earthquake-resistant buildings. On the other hand, for seismic response controlled buildings with 
steel dampers, no significant effect is determined in terms of action difficulty based on questionnaire 
surveys after massive earthquakes. Second, based on the relationship between the strong-motion 
records and the results of questionnaire surveys for the residents of high-rise buildings for the 2011 
off the Pacific coast of Tohoku earthquake, we propose a new evaluation index to evaluate the 
security of people in the buildings and develop an evaluation formula for action difficulty. Third, we 
construct three-dimensional frame models with seismic dampers or seismic isolation devices in an 
existing high-rise RC residential building and evaluate the action difficulty for residents on each 
floor based on the proposed formula. Finally, we evaluate action difficulty during a medium-scale 
earthquake. The results indicate that the application of oil dampers and seismic isolation devices 
contributes to improving the security of people in buildings. 

Introduction 
In Japan, there are more than 1,400 high-rise residential buildings with more than 20 stories, which 
have been constructed since the 1970s. Most of these buildings are moment-resisting reinforced 
concrete (RC) structures, and buildings built in the early years were earthquake-resistant. An 
increasing number of buildings have been fitted with seismic dampers or seismic isolation devices 
in recent years. Such devices are effective in reducing shaking and improving the comfort and 
security of building residents. In the current social situation, there is a need to evaluate not only 
structural safety, such as the preservation of human lives, but also resilience, such as fear relief of 
residents and continuous usability of buildings after a disaster [1]. 
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Several evaluation methods that focus on security, such as indoor damage, have been proposed. 
However, there are few studies focusing on resilience evaluation, for example, by determining the 
effects of seismic dampers or seismic isolation devices from the viewpoint of security. The authors 
proposed an evaluation formula for the anxiety that occurs during earthquakes and the difficulty 
faced by residents in performing actions during earthquakes (hereinafter, action difficulty) based 
on the results of questionnaire surveys following the 2011 off the Pacific coast of Tohoku 
Earthquake (hereinafter referred to as the 3.11 earthquake) [2]. However, it has been considered 
necessary to take countermeasures against large-scale earthquakes, as well as medium-scale 
earthquakes that occur once every several years from the viewpoint of security.  

Therefore, the present study places emphasis on action difficulty to evaluate the security of 
people in buildings. First, we analyze the results of questionnaire surveys focusing on the 
application of seismic dampers or seismic isolation devices. Then, based on the relationship 
between the strong-motion records and the questionnaire surveys, we propose an evaluation 
formula for action difficulty based on a new evaluation index. Next, we construct a three-
dimensional frame model of an existing high-rise RC residential building with seismic dampers or 
seismic isolation devices and conduct a seismic response analysis to compare the accuracy of the 
results obtained using the evaluation formula and those of the questionnaire surveys. Furthermore, 
we analyze the effect of reducing action difficulty when seismic dampers or seismic isolation 
devices are applied. 
Indoor damage based on questionnaire surveys 
Outline of questionnaire surveys 
In a previous study [3], based on the different structural forms of high-rise residential buildings 
located in the same area (Kanagawa Prefecture, Japan), the results of questionnaire surveys on 
indoor damages at the time of the 3.11 earthquake were compared between earthquake-resistant, 
seismic response controlled, and seismically isolated buildings. The survey items and evaluation 
values for action difficulty are categorized in Table 1. 

In this study, we focused on the questionnaire survey results for two different types of 
earthquakes, the 3.11 earthquake, which was a trench-type earthquake, and the 2016 Kumamoto 
earthquake, which was an inland earthquake. An overview of the surveyed buildings is listed in 
Table 2. All of the buildings are moment-resisting reinforced concrete (RC) structures, except for 
Building U, which is a steel-reinforced concrete (SRC) structure. Although the number of 
questionnaire responses for some buildings is not large, it is the only information available in the 
absence of strong-motion records. 

Table 1 Survey items and evaluation values 

Action difficulty Value 

Tossed by shaking due to earthquake, could not do anything 4 
Unable to stand 3 

Difficulty in walking or moving 2 
Obvious feeling of shaking, no difficulty in doing anything 1 

Slight shaking, no difficulty in doing anything 0 
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Action difficulty analysis 
Figure 1 shows the average action difficulty for different structural forms based on the 
questionnaire surveys. Regardless of the residential floor, the action difficulty was the largest in 
earthquake-resistant buildings, followed by seismic response controlled buildings and seismically 
isolated buildings. In particular, seismically isolated buildings show a significant reduction in the 
degree of action difficulty compared to earthquake-resistant buildings. Therefore, seismically 
isolated buildings appear to be effective in reducing action difficulty for both trench-type and 
inland earthquakes. The seismic response controlled buildings (CH and CI) also exhibited smaller 
action difficulty compared to earthquake-resistant buildings. However, due to the CI being a 
special structural type with core walls [4] equipped with oil dampers at the top, its effect on period 
elongation should be taken into account. Moreover, the perception of shaking is affected by the 
frequency component, and the probability of perception tends to be reduced with decreasing 
frequency [5]. It can be assumed that the residents have fewer action difficulties in building CI at 
low frequency. Therefore, it is difficult to take the core-wall-type building CI as a targeted seismic 
response controlled building to verify the response reduction by additional damping, so CI will not 
be taken into further consideration, and only building CH with low-yield-point steel dampers will 
be used for comparison. In the case of building CH, the action difficulty is not much different from 
that of the earthquake-resistant buildings. Therefore, steel dampers are not expected to have a 
significant effect for earthquakes of intensity 5 or higher from the viewpoint of reducing action 
difficulty. 

Table 2 Outline of target buildings ( ): number of people in rooms 

Earthquake Building 
code 

Completion 
date 

Number 
of floors 

Number 
of answers Structure  

3.11 
(2011) 

T 2004 35 51(22) Earthquake-resistant building 
U 2007 40 66(23) Earthquake-resistant building 

CH 2008 34 66(25) Seismic 
response 

controlled 

Low-yield-point steel 
damper 

CI 2007 41 85(35) Core wall 
DA 2006 30 258(101) Seismically isolated building 
DB 2007 30 144(53) Seismically isolated building 

Kumamoto 
(2016) 

ED 2012 19 63(58) Earthquake-resistant building 
EE 2010 35 27(27) Seismically isolated building 

 

 
(a) 3.11 earthquake (b) Kumamoto earthquake 

Figure 1 Action difficulty based on questionnaire survey.  
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Evaluation formula for action difficulty 
In previous studies [2,6,7], based on questionnaire surveys results (the residents of 14 high-rise 
buildings) and strong-motion records for the 3.11 earthquake, formulas were proposed to evaluate 
the relationship between the maximum absolute acceleration and maximum absolute velocity of 
the floor response and the action difficulty, RD. 
However, in order to evaluate the security of 
people in the buildings, it is necessary to 
determine not only the maximum response but 
also the entire time history waveform. 
Therefore, based on the same strong-motion 
records and questionnaire surveys, we propose 
new evaluation formulas with the square root of 
the sum of the squares for the entire duration of 
floor responses as an index (hereinafter referred 
to as accumulation value). The accumulation 
value ar is calculated as the sum of the squares 
of the two horizontal components xi and yi at 
each step multiplied by the time step Δt, as 
follows: 

2 2
r ( )i ia t x y= ∆ +∑ . (1) 

Questionnaire surveys were conducted for five consecutive floors near the floor where the 
strong-motion seismographs were installed, and the average action difficulty was used for the 
lower floor, medium floor, and high floor. Data with fewer than three questionnaire responses were 
excluded because of their large variability, and only data with four or more responses were used. 
The relationship between ar and RD is approximated based on the Weibull distribution, as follows: 

( )
0.552

r
D r 4 1 exp

51.0
aR a

    = − −   
     

. (2) 

The relationship between the accumulation value and the action difficulty is shown in Figure 2, 
and the approximate equations correspond well to the results of the questionnaire surveys. 
Action difficulty evaluation from structural response analyses 
Although strong-motion records are available for some questionnaire-targeted earthquake-resistant 
buildings at the time of the 3.11 earthquake, there are few records for seismic response controlled 
and seismically isolated buildings. We constructed hypothetical building models with additional 
seismic dampers or seismic isolation devices based on an existing earthquake-resistant RC 
residential building in Tokyo, and evaluated the action difficulty dependence on the type of 
building from the seismic response analysis.  
Outline of target building and construction of earthquake-resistant building model 
The building used in the present study is a 38-story moment-resisting RC frame structure 
constructed in 2000. The building is located in Tokyo and suffered from the October 7, 2021 (Mj 
6.1) earthquake in the northwestern part of Chiba Prefecture with a seismic intensity of 5 or higher 
on the Japanese scale.  

We constructed a three-dimensional frame model (hereinafter referred to as the earthquake-
resistant building model) based on the design documents. Beams were modeled using bending-
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shear elements with nonlinear flexural springs at both ends. The flexural and axial behavior of the 
columns was represented by multi-spring models, with nonlinear multi-spring elements for 
concrete and steel at the column ends connected with axial and bending-shear elements. The 
hysteresis characteristics of the beams and columns were modeled using the Takeda model [8]. 
The model was fixed at the base, and each layer was assumed to have a rigid floor. The damping 
of the building was assumed to be of the internal viscous type, and the damping constant was 
assumed to be proportional to the instantaneous stiffness of 1% of the first-order natural period 
[9].  
Seismic response controlled building models 
The seismic response controlled building models shown in Figs. 3(a) and 4 were constructed with 
additional application of seismic dampers to the original earthquake-resistant building model. A 
total of 152 dampers are installed in all layers, two in the x and y directions for each layer. As 
seismic response controlled devices, steel dampers or oil dampers are used.  

The steel damper with stud and gusset plates was modeled by bending shear elements with 
trilinear hysteretic systems. The additional stiffness of the steel dampers was set to be 
approximately 10% of the initial shear stiffness of the original building model. The oil dampers 
were modeled as a Maxwell-type model with a relief load mechanism at the dashpot, and the model 
was connected to the end of the truss element replacing the brace at the corresponding position in 
the 3-D frame model. 

Seismically isolated building model 
Referring to a previous study [10], we constructed a seismically isolated building model with an 
additional 36 laminated rubber and 12 hysteretic dampers placed in the lower part of the first floor 

 
Figure 3 Floor plans. Figure 4 Damper location in elevation.  
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of the earthquake-resistant building model. The locations of the seismic isolation devices are 
shown in Figure 3(b). The MSS model was used to model the seismic isolators. In the present 
study, it was assumed that there was no restriction on the clearance of the seismically isolated 
layer, and retaining wall collision was not taken into consideration. 
Action difficulty evaluation for four types of buildings 
Input seismic waves 
Action difficulty was evaluated for four types of buildings, i.e., the earthquake-resistant building, 
two types of seismic response controlled buildings, and the seismically isolated building, for 
several input seismic waves. First, seismic responses were calculated using the constructed 
building models. The input seismic waves were the 3.11 earthquake, the Kumamoto earthquake, 
and the October 7, 2021 medium-scale earthquake in the northwestern part of Chiba Prefecture. 
For the 3.11 earthquake, the observed seismic wave from K-NET KNG001 (Kawasaki, 
Kanagawa), which is located in the same area as the target buildings for the questionnaire surveys 
on the 3.11 earthquake, was used. For the Kumamoto earthquake, the input seismic wave was from 
K-NET FKO011 (Kurume, Fukuoka), which is located in the same area as the target building for 
the questionnaire surveys on the main shock of the Kumamoto earthquake. As a medium-scale 
earthquake including pulse characteristics, we used records taken in October 7, 2021 at K-NET 
TKY015 (Higashi Shirahige, Tokyo), which is closest to the target building. 

The pseudo-velocity response spectra in Figure 5 indicate that the predominant periods vary 
depending on the type of earthquake. The action difficulty is estimated based on the calculated 
floor responses using the evaluation formula. These results are compared with the results for the 
questionnaire surveys after the 3.11 earthquake and the Kumamoto earthquake described in 
Section 2.  

Action difficulty evaluation 
Figure 6 compares action difficulty for four types of buildings by applying the response analysis 
results to the evaluation formula. We evaluated averaged scalar values for the upper 1/3 of floors, 
corresponding to the high floors, for each event.  

In general, action difficulty decreases in the order of earthquake-resistant building and seismic 
response controlled building with steel dampers, seismic response controlled building with oil 
dampers, and seismically isolated building.  

The results for action difficulty based on the evaluation formula are larger for the 3.11 main 
earthquake than for the Kumamoto earthquake, which is similar to the results for the questionnaire 
surveys, indicating that the evaluation formula is applicable to trench-type earthquakes as well as 
inland earthquakes.  

 
Figure 5 Pseudo-velocity response spectra of input seismic waves.  
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Oil dampers and seismic isolation devices reduce action difficulty not only during large 
earthquakes but also during medium-scale earthquakes, and play an important role in improving 
the resilience of buildings. 

Summary 
In the present study, in addition to the safety of the building, we evaluated its security by focusing 
on action difficulty and attempted to provide a basic discussion on the improvement of resilience 
with additional seismic dampers and seismic isolation devices. The following is a summary of our 
findings. 
1) The results of the questionnaire surveys showed that action difficulty was larger in earthquake-
resistant buildings and seismic response controlled buildings with steel dampers than in 
seismically isolated buildings. The application of steel dampers is less effective at reducing 
response, even for large earthquakes, and in improving security. 
2) An evaluation formula for action difficulty was developed using the accumulation value of floor 
response acceleration, and its consistency with strong-motion records was confirmed. 
3) A seismic response analysis was conducted for earthquake-resistant, seismic response 
controlled, and seismically isolated building models, and the results of questionnaire surveys on 
the 3.11 and Kumamoto earthquakes were compared with the results of the evaluation formula for 
action difficulty. Reasonably good agreement was found.  
4) We showed that the application of oil dampers or seismic isolation devices to earthquake-
resistant buildings can reduce action difficulty even for medium-scale earthquakes. Therefore, 
buildings with these devices can be effective in terms of structural safety as well as security 
(resilience). 
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Figure 6 Action difficulty evaluation for four types of building.  
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Abstract. Fibre reinforced composites have been discovered to have superior material properties 
compared to traditional materials. However, composite structures do have weaknesses which is 
highly susceptible to damage from accidental impacts. Passive approaches have gained popularity 
in recent years as these can be implemented using less structurally and electrically obtrusive sensor 
installations. The fundamental hypothesis is that every distinct impact event has a unique modal 
signature that can be exploited to distinguish between damaging and nondamaging impacts, and 
to characterize the severity of damage. Preliminary research showed that the possibility to 
determine the progressive failure mechanism in composite specimens subjected to three-point 
bending. Each failure mechanisms have its corresponding frequency bandwidth, and it can be seen 
by plotting the spectrogram of time-frequency analysis. However, the limitation of time-frequency 
analysis for identifying failure modes arises from the fact that there can be a confluence of modes 
having more-or-less the same group velocity hence, having the same arrival time in a time-
frequency plot for a given frequency. This overlap makes it problematic to identify modes 
unambiguously from a time-frequency analysis. The modes can be more clearly separated on the 
basis of dispersion curves obtained in the frequency-wavenumber space. This information paves 
way to the idea of developing a modal sensor that is capable of providing experimentally 
determined dispersion curves that can be expected to lead to a quantum advance in capability for 
modal identification, and hence for determining a far more accurate modal signature for various 
acoustic emission events. 
Introduction 
Fibre reinforced composites have many structural and functional advantages such as high 
mechanical resistance, lightweight and freedom of forms. In such, fibre composites are suitable as 
structural materials for high-value assets where a reduction in structural weight can enhance 
performance, reduced fuel consumption and improve energy efficiency of the overall system [1]. 
These high-value assets include but not limited to, civil and military aircraft [2], wind turbines 
which make a significant contribution towards renewable energy generation [3], and metal or 
plastic-lined composite pressure vessels that are used as fuel tanks for space vehicles and other 
applications [4,5]. However, composite structures do have weaknesses which is highly susceptible 
to damage from accidental impacts [1,6-10]. Multiple studies have been conducted and found that 
even relatively low-energy impacts that leave little to no visual evidence of damage can cause 
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substantial reductions of up to 60% in compressive strength [7,8], which presents an unacceptable 
risk of failure for such high-value or safety critical structures. An important development for the 
structural integrity management of such highvalue assets is the shift towards structural health 
monitoring (SHM) and condition-based maintenance [11-13], as opposed to the conventional 
approach of setting inspection intervals and scheduled maintenance, which can involve time-
consuming disassembly procedures as well as costly downtime. SHM techniques can be classified 
into two main categories: active and passive monitoring. Active monitoring is where the structure 
is interrogated by built-in or surface-mounted actuators ,the response is then monitored by sensors 
attached to the structure. On the other hand, passive monitoring is where the sensing system relies 
on naturally occurring events, such as impacts, for the actuation. Passive approaches have gained 
popularity in recent years as these can be implemented using less structurally and electrically less 
obtrusive sensor installations, which is an important consideration for industrial application. One 
of the desired goals is for passive SHM to relate to impact events to be able to distinguish between 
damaging and nondamaging impacts, and to further distinguish between structurally significant 
and insignificant levels of damage. A successful approach for addressing these objectives will 
provide clear benefits for improved structural integrity management of composite structures across 
a range of important industry sectors. Ultrasonic waves that are generated by impact events, which 
are referred to as acoustic emission (AE), propagate as guided waves in plate-like structures, with 
distinctive modes of propagation depending on the particular laminate lay-up and constituents. The 
fundamental hypothesis is that every distinct impact event has a unique modal signature, i.e., a 
unique set of amplitudes for each of the propagating modes, and that this modal signature can be 
exploited to distinguish between damaging and nondamaging impacts, and to characterize the 
severity of damage. During the lifespan of the composite laminates, it may be exposed to various 
form of loading which may cause different kinds of failure to happen, which includes matrix crack, 
delamination, and fibre fracture. For the failure of single or bundled brittle fibres, the crack speed 
is expected to be high, and the average length of crack propagation is expected to be relatively 
smaller. The maximum crack length is the fibre diameter for a single fibre filament failure. Based 
on the fundamentals mentioned above, this leads to the expectation of an increased bandwidth 
toward higher frequencies for this source type. For cracks growing between the fibres, such as 
within the matrix or along the interface between fibre and matrix the situation will be slightly 
different. Sound wave travels slower in polymer matrix materials, as such, the expected crack 
propagation speed is much slower compared to fibre failure. In addition, the average crack lengths 
are expected to be larger as the crack typically only comes to a rest if stopped by fibre filaments 
of different orientation or after long distances of propagation due to changes in the stress 
concentration in the region around the crack tip. Both effects lead to the conclusion that the typical 
bandwidth of such sources is less than compared to fibre failure. As the extension of such cracks 
may cover a range from micrometres to several millimetres in a realistic composite, this can be 
viewed as mostly a statistical effect. The application of acoustic emission on the failure analysis 
of composite laminates leads to a series of research outputs which mainly focused on three types 
of failure, namely, matrix crack, delamination, and fibre fracture. It was found that there is a 
frequency response range that corresponds to each failure mechanisms. For the frequency range of 
matrix crack, delamination, and fibre fracture, the frequency ranges are validated in the 
preliminary research, which is in accordance with the experiments performed in [14–18]. For 
example, Sause et al. [19] confirmed these frequency ranges through numerical study, which found 
that the frequency ranges for matrix crack, delamination, and fibre fracture are 100–300 kHz, 300–
400 kHz, and 400–700 kHz respectively. Gutkin et al. [20] used competitive neural networks to 
analyse a carbon-fibre reinforced polymer composite and found that the frequency ranges for 
matrix crack, delamination, and fibre fracture are 0–150 kHz, 300–400 kHz, and 400–700 kHz. 
Huang et al. [15] used acoustic emission signal to analyse pure resin matrix with matrix crack, 
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resin matrix within a carbon fibre tow and pre-cuts delamination specimen and found that the 
frequency ranges are within 58–185 kHz, 190–290 kHz, and 405–455 kHz. To summarize, 
research  showed that the frequency ranges of matrix crack, delamination, and fibre fracture are 
within 100–300 kHz, 400–550 kHz, and 600–750 kHz. Based on the above frequency ranges, 
failure mode identification can be performed. Any sorts of failure in the composite laminates will 
cause a drastic decrease in the strength and stiffness, which may eventually cause ultimate failure 
of equipment made from them. In order to improve the safety and reliability of such high-valued 
equipment, it is of importance to investigate the general progression of failure event in lamiates 
and to characterize the acoustic wavefield that arises from the failure mechanism. 
Materials and Methods 
Three different composite lay-ups were self-manufactured in the Monash Mechanical Engineering 
Workshop using prepreg plies. The composite prepreg used to manufacture the composite 
specimen is made of high-strength carbon with a SE84LV epoxy as its matrix (HMC/Gurit 
SE84LV). The first specimen (specimen A) is a 0-degree laminate with a lamination code of [04]s 
which is designed to induce fibre break. The second laminate (specimen B) is a 90-degree laminate 
with a lamination code of [0/908] designed to induce matrix crack and the third laminate (specimen 
C) which consists of 45-degree ply has a lamination code of [+45/-45/0/90]s. The idea of 
manufacturing these three different laminates is to conduct a three-point bending test on the 
specimen to study the process of failure mechanism and to ultimately induce a specific failure 
mechanism on the composite specimen.  

As shown in Figure 1, all of the laminate strips is 200 mm tall and 25 mm wide. The sides 
drawn in purple represents the placement of the supports, the red drawing in the centre represents 
the contact of the loading roller with the composite specimen. The mechanical loadings were 
performed at cross-head speed of 0.5 mm/min using a tensile machine (INSTRON 1185) with a 
load cell of 100kN (Fig. 2). Two AE sensors (PKWDI, from Physical Acoustics Corporation-
MISTRAS Group), connected to a 26dB pre-amplification, were coupled with silicone grease on 
the same face of the sample. They are asymmetrically arranged from the center of the specimen 
with a distance of 50 mm for one and 60 mm for another. The acquisition threshold is determined 
when the specimen is situated on the three-point bend rig in contact with the loading roller at zero 
stress. For each specimen type, the acquisition threshold increased step by step in such a way to 
avoid the acquisition of any acoustic activity coming from the external environment including the 
vibration from the tensile machine or any background noise. Specimen A and C were loaded with 
a loading rate of 0.08mm/s whereas specimen B is loaded at 0.03mm/s.  
 

 
Figure 1: Schematic drawing of the laminate strip.  

Composite laminates have complex failure modes, the main ones are known to be matrix crack, 
delamination, and fibre breakage. In order to investigate the evolution of failure in composite 
laminates, an experimental study was conducted on three laminates with different layups using 
acoustic emission technique. For the 0-degree laminate, a crack defect is imposed on the centre to 
induce fibre break. Three-point bend test are performed on the laminates and real-time acoustic 
emission signals are collected. Spectrograms can be constructed from the detected acoustic 
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emission signal and the evolution of failure mechanisms for different laminates with different ply 
lay-ups can be observed.    

 

 
Figure 2: Experimentation setup for three-point bend test on composite specimens. 

Results and Discussion 

 
(a)                                                (b)                                                  (c) 

Figure 3: Force vs Displacement cuve for (a) specimen A which has 6 points of investigation, (b) 
specimen B which has 4 points of investigation and (c) which has 8 points of investigation. 

 
Figure 4: Analysis of time series and its corresponding spectrogram for specimen A. 

To recall, bending of specimen A is to ultimately observe fibre fracture. Figure 3 (a) can be 
broken down into three significant regions. A total of 6 acoustic waveforms with 2 from each 
regions was used to analyse the failure mechanisms at those particular instances. The first region 
is between 0 mm to 17.5 mm displacement, where the force vs displacement curve is linear. In this 
region, two acoustic waveforms that were detected was used to analyse the failure mechanism that 
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has occurred in the specimen. Acoustic waveform 1 is the waveform detected at first hit which 
happens at the displacement of 5mm, whereas acoustic waveform 2 is the waveform detected at 
the displaement of 15mm, just before the second region. Analysis on the acoustic signal detected 
on this region showed that delamination caused by interlaminar shear is the dominant failure mode, 
and it happens at the start long before fibre breakage.   

The second region is between the displacement of 17.5 mm to 35 mm, where the composite 
specimen starts to yield which is shown by the non-linearity of the force vs displacement curve. 
Acoustic waveform 3 is selected such that it is closer to the start of the second region and the 
waveform is detected at the displacement of 20 mm. Acoustic waveform 4 is selected towards the 
end of the region where a jump occurs on the force vs displacement curve at the displacement of 
32mm. During this period of time, it is frequently observed that 3 failure mechanisms exist 
simultaneously, and the energy is higher compared to the previous region. The short-time Fourier 
transform of acoustic waveform 3 showed that at the start of the yielding process, the dominant 
failure mode is still delamination which is due to interlaminar shear. According to the short-time 
Fourier transform of acoustic waveform 4, it can be seen that not only lamina delamination occurs, 
but also fibre fracture which typically happens at the frequency range of 400kHz to 700kHz. This 
suggests that fibre fracture already starts to occur towards the end of the experiment but before the 
ultimate fracture point. At the end of the third region, ultimate failure occurs to the 0-degree 
composite laminate (specimen A) and the specimen breaks into half. Interestingly, from the start 
of the third region towards the end which leads to ultimate failure, the force and displacement 
curve exhibits oscillatory behaviour i.e., wave-like pattern. Acoustic waveform 5 was detected 
when the extension is at 37.5 mm, during where the force and displacement curve exhibits 
oscillatory behaviour.  The last waveform investigated, which is acoustic waveform 6, is the last 
hit at the moment the composite specimen breaks into half. The short-time Fourier transform of 
acoustic waveform 5 showed that similar to acoustic waveform 4, fibre breakage and delamination 
both happens. At last, spectrogram of acoustic waveform 6 showed that the moment ultimate 
failure occurs, the only failure mode that exists is fibre fracture.   

 
Figure 5: Analysis of time series and its corresponding spectrogram for specimen B. 

Again, bending of the second laminate is to ultimately observe matrix crack. As shown in Figure 
3(b), the force required to break the 90-degree laminate specimen (specimen B) is significantly 
lower compared to the 0-degree laminate specimen (specimen A) i.e., it is easier to induce matrix 
breaking compared to fibre fracture. 
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According to the AE software, hits were only starting to be registered at the displacement of 
4.2 mm. That instance coincides with the sudden drop of force as shown on the figure above. Thus, 
the force vs displacement curve can be divided into two main regions. The first one is before the 
4.2 mm displacement where none of the acoustic emission from the three failure modes were 
detected. Since no acoustic emission was detected, no waveform was analysed in this region. The 
second region starts at the displacement of 4.2 mm and ends at ultimate failure where the specimen 
breaks into half. Four acoustic waveforms were analysed to better investigate failure modes in this 
region. The corresponding waveforms were selected at the displacements of 4.2mm, 6mm, 8mm 
and 10.2mm. Acoustic Waveform 1 was detected when there is a sudden dip on the force vs 
displacement curve at the displacement of 4.2 mm. The short-time Fourier transform of acoustic 
waveform 1 showed that matrix cracking started happening at first hit detected. The short-time 
Fourier transform of acoustic waveform 2 showed that three failure mechanisms exist in the 
process of loading. Interestingly, fibre fracture failure can be detected which is suspected to be the 
breakage of fibres of the top layer 0-degree lamina. Spectrogram of acoustic waveform 3 showed 
that the three failure modes did not always happen simultaneously. Matrix crack is still the 
dominant failure mode at certain moments. All three failure modes can be detected at the end of 
the experiment where the composite specimen ultimately fails and breaks into half. 

 

 
Figure 6: Analysis of time series and its corresponding spectrogram for specimen C. 

Bending of the third laminate is to ultimately observe delamination. Figure 3(c) shown above 
can be divided into four main regions. The first region encompasses the start towards a 
displacement of 26 mm where the specimen is in the elastic region. The second region is selected 
at a displacement from 26.65 mm to 33.23 mm. There is a sudden dip on the force vs displacement 
curve at the start of this region followed by a linear increase of force against displacement. 
However, the slope is less steep compared to the first region. The third region is marked from a 
displacement of 33.23 mm towards the peak of the force vs displacement curve at 41.65 mm. It 
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can be observed that the force vs displacement curve is non-linear and the second half of the force 
vs displacement curve in this region exhibits oscillatory behaviour. The fourth region starts at the 
peak of the force vs displacement curve towards the end of the experiment. Interestingly, the force 
vs displacement curve decreases gradually in this region while also exhibit oscillatory behaviour. 
Note that for specimen C, no catastrophic failure or damage can be observed by the naked eye, and 
the experiment has to be put to an end manually. 

Plenty of acoustic waveforms were detected during the experiment and the acoustic waveforms 
at multiple points of interests were selected for analysis to study the progressive failure 
mechanisms of the composite specimen throughout the experiment.  

Acoustic waveform 1 and 2 is in the first region where the force vs displacement curve is linear. 
Acoustic waveform 1 is the first hit and it was detected at a displacement of 10 mm whereas 
acoustic waveform 2 was detected at a displacement of 20 mm. Acoustic waveform 3 is chosen 
because it was detected during the sudden dip of the force vs displacement curve. Acoustic 
waveform 4 is situated in the middle of the second region. Acoustic waveform 5 was detected 
when there is a rapid increase of the slope of the force vs displacement curve which ultimately 
leads to the peak of the force vs displacement curve where acoustic waveform 6 was detected. 
Acoustic waveform 7 and 8 was detected during the decrease of the force vs displacement curve 
at the displacements of 30 mm and 40 mm respectively. 

Spectrogram of acoustic waveform 1 which is the first hit detected, showed that matrix crack is 
the first failure mode to occur at the beginning of the experiment. Acoustic waveform 2 showed 
that as time progresses, ply delamination starts to occur together with matrix cracking. 
Interestingly, spectrogram analysis on acoustic waveform 3 showed that fibre fracture occurs in 
the composite specimen, which could possibly explain the sudden drop of the force vs 
displacement curve at that moment. Acoustic waveform 4 showed that fibre fracture continues to 
happen in the second region as the force increases linearly against displacement. Acoustic 
waveform 5 was detected when there is a rapid increase of the slope of the force vs displacement 
curve. The spectrogram of the waveform showed that laminate ply delamination caused by 
interlaminar shear happens during that time period. At around the peak of the force vs displacement 
curve, interlaminar shear has been found to be the dominant failure mode. Spectrogram of the 
acoustic waveform 7 and 8 showed that during the time period where the force vs displacement 
curve is headed downwards, all three failure mechanisms can be detected. 
Summary 
In conclusion, this experiment studied the progressive failure mechanism in composite specimens 
subjected to loading. Each failure mechanisms have its corresponding bandwidth, and it can be 
clearly seen using spectrogram analysis. As mentioned in the introduction, the fundamental 
hypothesis is that every distinct impact event has a unique modal signature, and this modal 
signature can be exploited to distinguish between damaging and nondamaging impacts, and to 
characterize the severity of damage. However, the limitation of time-frequency analysis for 
identifying failure modes arises from the fact that there can be a confluence of modes having more-
or-less the same group velocity hence, having the same arrival time in a time-frequency plot for a 
given frequency. This overlap makes it problematic to identify modes unambiguously from a time-
frequency analysis. The modes can be more clearly separated on the basis of dispersion curves 
obtained in the frequency-wavenumber space. Thus, a modal sensor that is capable of providing 
experimentally determined dispersion curves can be expected to lead to a quantum advance in 
capability for modal identification, and hence for determining a far more accurate modal signature 
for various acoustic emission events. 
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Abstract. Large-scale space antennas will experience rapid temperature changes and non-uniform 
temperature distribution during orbit operation. These thermal excitations will lead to 
unpredictable deformation of the antenna. To ensure its normal operation, real-time and reliable 
shape monitoring of the antenna is necessary for further array correction and compensation. The 
structural shape reconstruction method based on strain information and fiber Bragg grating sensors 
is one of the most potent methods. This paper proposed an inverse finite element-based shape 
reconstruction method with variable element size for a honeycomb sandwich antenna panel under 
changing and non-uniform temperature environment. The size of the inverse finite element is 
optimized by the displacement gradient, which reduces the total number of elements and improves 
the efficiency of the shape reconstruction algorithm. The proposed method is validated with a 
honeycomb sandwich antenna panel numerically and experimentally. 
Introduction 
In the field of communication, reconnaissance, remote sensing, and deep space exploration, large-
scale space antennas have been widely used and play a decisive role in the function of the satellite 
system [1]. During orbit operation, space antennas will experience rapid temperature changes due 
to solar radiation and non-uniform temperature distribution due to functional devices [2]. These 
thermal excitations will lead to unpredictable deformation of the antenna. 

To ensure the operation of space antennas, real-time and reliable shape monitoring of the 
antenna is necessary for further array correction and compensation. The shape reconstruction 
method based on strain information and fiber Bragg grating sensors is one of the most potent 
methods as it can achieve real-time monitoring and the weight of the monitoring system is more 
lightweight than other methods [3]. 

The key to the strain-based shape sensing method is to accurately establish the relationship 
between strain and displacement. A lot of methods have been proposed, such as Ko’s displacement 
theory [4], modal transformation theory [5], curvature-based method [6], and inverse finite element 
method (iFEM) [7]. Among them, the iFEM method is independent of the loading conditions and 
material information of the structure, which can be considered a promising candidate for the shape 
sensing of space antennas. 

For the large-scale space antennas, the iFEM method needs a large number of elements for shape 
reconstruction, which will not meet the real-time reconstruction requirement of the shape 
reconstruction algorithm. The efficiency of the iFEM-based shape reconstruction method is related 
to the number of elements in the method [8]. Thus, an optimized element discretization method is 
needed to increase the efficiency of the iFEM method while the accuracy can be maintained. 
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Thus, this paper proposes an element discretization method based on the displacement gradient 
for the iFEM shape reconstruction method. By optimizing the size of the inverse element, the 
number of elements for the iFEM method can be highly reduced, which can increase the efficiency 
of the shape reconstruction method while maintaining accuracy. The Basic principle of the 
variable-size inverse finite element method is first given. Then the numerical model of the space 
antenna is described. The displacement and strain distribution of the structure is analyzed. At last, 
the shape reconstruction results of the optimized element and original element are compared. 
The variable-size inverse finite element method  
Element discretization method based on displacement gradient 
The first step of the iFEM method is to discretize the structure into a number of finite elements. 
Then the inverse finite element can be applied. The number of the inverse element has a great 
influence on the accuracy and speed of the reconstruction method. Thus, this paper proposed a 
displacement gradient-based-element discretization method to optimize the number of the inverse 
finite elements. 

The proposed element discretization method will be conducted on the numerical model of the 
structure, as the numerical model of the structure can be acquired during the design and 
manufacturing process. From the numerical model, the displacement distribution of the structure 
can be acquired. For example, Fig. 1 shows the contour plot of the displacement distribution. A 
proper gradient of the displacement can be determined according to the accuracy requirements of 
the shape reconstruction and the amount of structural deformation. Then, based on the 
displacement gradient, the optimized size of the element in x-direction and y-direction can be 
determined as illustrated in Fig. 2. At last, the structure is discretized by the optimized elements. 

 
Fig. 1 The contour plot of the displacement distribution 

 
(a) x-direction                                  (b) y-direction 

Fig. 2 Optimized size of the element 
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The implementation process of the variable-size inverse finite element method 
The element adopted in this paper is the four-node quadrilateral inverse-shell element (iQS4) as 
illustrated in Fig. 3. The displacement nodal vector of the element can be expressed as follows 

[ ]1 2 3 4
Te =u u u u u  (1) 

where 

 ( 1, 2,3, 4).
T

i i i i xi yi ziu v w iθ θ θ = =  ，u  (2) 

 
Fig. 3 Four-node quadrilateral inverse-shell element 

The measured strain can be expressed in terms of the element nodal displacement vector as  
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where the matrices, mB , Bκ  and sB , contain derivatives of the shape functions. 
The strain sensors are arranged on the surface of the element as illustrated in Fig. 4.  According 

to Eq. (3), the membrane section strain and the curvatures can be expressed as the measured strain 
as follows 
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where the superscripts ‘+’ and ‘-’ denote the quantities that correspond to the top and bottom 
surface locations, respectively. 
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Fig. 4 The strain sensors arranged on the surface of the element 

For each element, the functional accounted the deformation can be expressed as 

2 2 2
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By minimizing the weighted least squares of the functional in Eq. (5) with respect to the nodal 
displacement eu  
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The displacement-strain relation in each element can be expressed as 
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The global displacement-strain relation can be acquired by assembling the element 
displacement-strain relation according to the element nodal, which gives 

=KU F  (10) 

By including the boundary conditions, the global displacement-strain relation can be expressed 
in the reduced form. And the displacement of all elements can be acquired as 

1( )R R R−=U K F  (11) 

Numerical study of the large-scale space antenna 
Numerical Model 
The dimension of the antenna is 1500mm×3125mm×20mm. It is a typical sandwich structure with 
epoxy fiberglass as the face sheet and aramid paper honeycomb as the core. Four aluminum blocks 
with a T shape are inserted in the honeycomb as illustrated in Fig. 5. The material properties are 
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listed in Table 1. The tails of the T-shaped aluminum block are clamped as the boundary condition. 
The temperature field applied to the structure is acquired from the experiment with thermocouple 
sensors, as shown in Fig. 6. 

 
Fig. 5 The geometry of the antenna 

Table 1 The material properties 

 Aluminum Honeycomb Face sheet 
Density（t/mm3） 7.2E-09 7.2E-11 1.85E-09 

Elastic modulus（MPa） 70000 
E1=0.1 
E2=0.1 
E3=0.1 

E1=24100 
E2=22400 

E3=0 

Poisson's ratio 0.3 
μ12=0.3 
μ13=0 
μ23=0 

μ12=0.32 
μ13=0 
μ23=0 

Shear modulus（MPa） / 
G12=0.1 
G13=43.2 
G23=21.6 

G12=4300 
G13=1470 
G23=1470 

Thermal expansion coefficient（℃-1） 2.32E-05 
α11=1.23E-05 
α22=1.23E-05 

α33=0 

α11=1.23E-05 
α22=1.23E-05 

α33=0 

 
(a) Surface with heating device                   (b) Surface without heating device 

Fig. 6 The measured temperature field 
Numerical results 
With the numerical model, the displacement and strain distribution can be acquired as illustrated 
in Fig. 7. The strain field on the optimized elements can be acquired as shown in Fig. 8. 
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Fig. 7 Displacement distribution of the antenna 

 
Fig. 8 Strain field of both surfaces 

The shape reconstruction results 
Based on the displacement field and accuracy requirement, the gradient of the displacement is set 
to be 1 mm. The optimized element size is determined with the element discretization method 
based on displacement gradient as illustrated in Fig. 9 (a) with a total number of 165 elements. 
while the original discretization needs 667element. 
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(a) Optimized                                                            (b) original 

Fig. 9 Elements discretization cases (mm) 
The shape reconstruction results with optimized and original element discretization are shown 

in Fig. 10 and Fig. 11. The error of the optimized elements is 0.83 mm, while the error of the 
original elements is 0.86 mm. 

 
(a) Reconstructed displacement         (b)     FEM displacement        (c) Error 

Fig. 10 Shape reconstruction results with the optimized elements 

 
(a) Reconstructed displacement         (b)     FEM displacement        (c) Error 

Fig. 11 Shape reconstruction results with the original elements 
Summary 
In this paper, a variable-size inverse finite element method is proposed for the shape reconstruction 
of the large-scale space antenna structure under thermal excitation. The size of the inverse finite 
element is optimized by the displacement gradient, which reduces the total number of elements 
and improves the efficiency of the shape reconstruction algorithm. The numerical results show that 
the number of elements is reduced from 667 to 165. The proposed method is validated on the large-
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scale space antenna structure under a non-uniform temperature field. The error of reconstructed 
displacement is less than 1 mm. 
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Abstract. Vibration of buildings can be regarded as the wave propagation in the vertical direction. 
Stiffness deterioration of structures due to damages could be altered by the changes in velocity and 
attenuation of the traveling waves. Previous studies have proposed methods to construct a new 
wavefield from the original wavefield of the building, in which the propagation path of the waves 
can be more easily recognized. In this study, firstly, we construct the wavefield with the virtual 
source at the top of the building (deconvolved wave), which consist of one acausal up-going wave 
and one causal down-going wave. Then, the changes of deconvolved waves over time at the base 
and inter floors are visualized. Finally, the CNN is constructed to automatically recognize the 
change of the visualized wavefield. To generate training data of the CNN model, multivariate 
nonlinear vibration simulation, reconstruction of the wavefield and visualization of the wavefield 
based on the vibration data was performed. To validate the trained CNN, the data of a shake table 
test on a 1/3 scaled 18-story steel frame building is used. As the damage progresses, the changes 
in the wavefield are recognized. 
Introduction 
Evaluating the changes of dynamic properties (eg., natural frequencies) of structures under the 
ground motion can indicate potential damages or deterioration of structural components. However, 
natural frequencies are easily to be wandering by environmental factors, such as temperature [1]. 
Seismic response of buildings can be regarded as wave propagation in the vertical direction. 
During the past decades, wave propagation has been widely used to measure the vibration response 
of a structure [2]. In addition, after an earthquake happens, it is essential to quickly evaluate the 
building damages and behaviors after earthquakes to avoid further financial loss and the secondary 
destruction of buildings, achieving the purpose of Structural Health Monitoring (SHM). With the 
development of technology in image classification, the Convolutional Neural Networks (CNNs) 
based methods have been verified as one of the most accurate methods to classify images. 

To fast evaluate the behavior of buildings, a wave-propagation and CNNs-based method were 
proposed in this study. At first, a Multiple-Degree-of-Freedom (MDOF) Model was established 
by referencing the specimen of the 18-story steel frame building for the shake table test, and it is 
used to generate the CNN training dataset. Then wavefield figures from acceleration 
deconvolved waves of the simulations were used as the feature input for the CNN model, which 
is divided into two classifications, linear and non-linear. The trained CNN model can 
automatically recognize the classification of wavefield figures (linear or non-linear). Finally, the 
performance of the trained CNN model was verified by the shake table test data. 
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Shake-table tests of steel structures 
The shake-table test of a 1/3-scaled 18-story moment-frame steel building structure was performed 
at E-defense on December 9-11, 2013 [3], as shown in Figure 1. The responses are not only used 
to identify the reliability of the MDOF model but also used to generate data in the later section to 
test the performance of the trained CNN model. The seismic excitations were applied only in the 
longitudinal direction. The magnitude of input motion is evaluated in pseudo response velocity, 
which is adjusted following the value of pSv (pseudo response velocity) from 40 to 340 cm/s (with 
a damping ratio of 5%). The schedule of loading to the specimen is listed in Table 1. The maximum 
value of the pSv of the original seismic motion is 110 cm/s, which is named Case110. In Table 1, 
the numbers after the 'Case' present the maximum values of the pSv.   

 

 

Figure 1. The specimen of shake-table test. [3]  
Table 1. The loading schedule and status. 

Case States 
40 No damages (elastic) 

110 Plasticizing of the beam ends (2F to 7F) and columns (1F) 
180 Yielding of beam ends (2F to 14F) and cracks of beam ends (2F to 5F) 
220 Break of beam ends (2F) 
300 Break of beam ends (2F to 5F) 
340 Buckling of the columns base (1F) 

 
Simulation and evaluation of MDOF model  
Multiple-Degree-of-Freedom system 
Multiple-Degree-of-Freedom (MDOF) systems can model the behaviors of a shear building. In 
this paper, the establishment of the multi-degree-of-freedom equivalent model is based on the 
shake table test 18-story steel frame building in Section 2, which is used to generate the CNN 
training dataset.  

Table 2 shows the detailed parameters of the 18-floor steel frame building. The weight of each 
floor of the building is ununiform and the stiffness is different. The height of the first story is 
1.75 m, and the story height of other stories is 1.35 m. Besides, the restoring force characteristic 
of each floor is Tri-linear, the first turning point is 0.005 rad and the second turning point is 0.01 
rad, respectively. 
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Table 2. The detailed parameters of the shake table test 18-story steel frame building 

Floor Height of 
floor (cm) 

Mass 
(kN) 

Initial 
stiffness K1 

(kN/cm) 

Yield dis-
placement (cm) 

Second 
stiffness ratio 

K2/ K1 

Third 
stiffness ratio 

K3/ K2 
18 135 202 363 0.75 0.5 0.3 
17 135 206 491 0.89 0.5 0.3 
16 135 206 562 1.00 0.5 0.3 
15 135 206 619 1.08 0.5 0.3 
14 135 206 660 1.13 0.5 0.3 
13 135 206 712 1.23 0.5 0.3 
12 135 206 788 1.23 0.5 0.3 
11 135 208 824 1.30 0.5 0.3 
10 135 208 840 1.32 0.5 0.3 
9 135 208 876 1.30 0.5 0.3 
8 135 208 938 1.30 0.5 0.3 
7 135 208 963 1.34 0.5 0.3 
6 135 208 990 1.34 0.5 0.3 
5 135 208 1028 1.34 0.5 0.3 
4 135 208 1028 1.28 0.5 0.3 
3 135 208 1073 1.22 0.5 0.3 
2 135 208 1092 1.18 0.5 0.3 
1 170 208 1155 1.18 0.5 0.3 

 
Evaluation of MDOF 
To evaluate the reliability of the equivalent MDOF models, the shake-table test data of Case40, 
Case110, Case 180, Case 220, and Case300 were selected as the input motions. The distribution 
of the maximum response drift angle and maximum response acceleration of measured and 
simulated data in the direction of building height are shown in Figures 2 and 3, respectively. 
Considering the expression of the measured data obtained from the recorded report [4], these 
figures use ‘pSv’ instead of ‘Case’. It can be seen that the simulation values of the MDOF model 
are in good agreement with the true values of acceleration and story drift angle for all floors of the 
building.  

  

(a)  (b)  
Figure 2. The maximum response drift angle of (a) Measured data [4] and (b) Simulated 

data. 
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(a)  (b)  
Figure 3. The maximum response acceleration of (a) Measured data [4] and (b) Simulated 

data. 

Training and verification of CNN model 
Reconstruction of wave filed 
From the changes of wave propagation within the stories, such as the travel time, the local 
properties of the traveled stories can be examined [5, 6]. However, it is difficult to read the wave 
travel time from the waveforms directly. Because the propagation velocity of shear wave in the 
vertical direction depends on the shear stiffness of the stories, it is possible to evaluate the damages 
of inter stories. Therefore, in this study, we pay attention to the propagation of shear waves, which 
generates horizontal vibrations at the floors.  

In order to construct a new wave field, from which it is easier to read the shear-wave 
propagation, in the study, the deconvolved waves of inter stories with respect to the response of 
the top are used. In the new wave field, the virtual source (impulse) is at the top of the building. 
As examples, the travel time and deconvolved waves calculated from the responses in Case40 
(linear case) and Case300 (non-linear case) are shown in Figure 4. By comparing Figure 4 (c) 
and (d), we can find that because of the occurrence of damage, the trace of impulse becomes 
blurry and even disappeared for non-linear cases, while the impulse in the linear case is obvious. 
This feature will be regarded as the recognition feature for using the CNN model to identify 
linear and nonlinear cases automatically. 
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(a)  (b)  

 

 

(c)  (d)  
Figure 4. (a) Deconvolved waves in Case40 (linear case) and (b) in Case300 (non-linear 

case) with the virtual source at the top of buildings; Visualization of varying of 
deconvolved waves within the duration of vibration at the first floor for the (c) Case40 and 
(d) Case300. The lower figures are the 3D expression of the upper figures, which are input 

to the CNN for feature recognization. 
 
Establishing the ground motion dataset for CNN model training 
The architecture of the CNN model used is shown in Figure 5. As illustrated in this figure, AlexNet 
[7] network is used as CNN architecture in this study, which consists of 8 layers of a convolutional 
neural network, including five convolutional layers and three fully connected layers. The input 
figures were resized to 224 × 224 pixels, but the actual size is 227 × 227. The training data were 
classified into two classifications, “linear” and “non-linear,” with “linear” set to 0 and “non-linear” 
set to 1, and the learning rate was set to 0.01.  

Although the number of real data for the training CNN models is limited, it can be overcome 
by numerical simulation. At present, there are several open-access ground motion databases such 
as the K-NET database [8] of Japan that can be used for training the CNN models. For this study, 
almost 80 ground motion records are selected from the K-NET database, as shown in Table 3. 
The reliability of MDOF models is evaluated at different performance levels, ranging from 
elastic to highly inelastic behavior. 
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Figure 5. Convolutional neural network architecture based on AlexNet [7]. 
 

Table 3. The earthquake input motions for generating CNN training dataset 
Year/Month 

/Date 
Earthquak

e name 
Magni
t-ude Site code PGA 

(cm/s2) 
Direction 

used Site code PGA 
(cm/s2) 

Directio
n used 

2016/4/14 Kumamoto 7.3 

KMM001 49.3 EW KMM018 50.1 EW 
KMM002 160.8 EW KMM019 56.3 EW 
KMM003 79.5 EW KMM022 36.2 EW 
KMM004 207.1 EW FKO004 43.6 EW 
KMM005 195.5 NS FKO005 55.5 EW 
KMM006 381.4 EW FKO011 41.8 EW 
KMM007 205.9 EW FKO013 70.9 EW 
KMM008 149.9 NS FKO015 92.0 EW 
KMM009 304.2 EW FKO016 80.6 EW 
KMM010 263.5 NS FKO004 42.5 EW 
KMM011 546.9 EW KGS001 52.4 EW 
KMM012 380.9 NS KGS001 48.3 EW 
KMM013 145.3 NS KGS003 90.0 EW 
KMM014 62.8 NS KGS006 75.5 EW 
KMM015 58.8 EW MYZ001 53.2 EW 
KMM016 48.7 NS MYZ002 50.1 EW 
KMM017 39.3 EW MYZ003 56.3 EW 

2022/3/16 Fukushima 7.4 

FKS001 727.5  EW FKS001 565.6 NS 
FKS002 750.5  EW FKS002 572.9 NS 
FKS003 294.7  EW FKS003 277.1 NS 
FKS004 608.9  EW FKS004 519.9 NS 
FKS005 514.6  EW FKS005 607.8 NS 
FKS006 530.4  EW FKS006 530.9 NS 
FKS007 456.1  EW FKS007 512.9 NS 
FKS008 517.6  EW FKS008 658.9 NS 
FKS009 309.5  EW FKS009 375.7 NS 
FKS010 426.8  EW FKS010 525.9 NS 

 
Training and verification CNN model 
The ground motions obtained from the K-NET database are designated as the training (including 
validation) datasets using the simulation of the MDOF model. The CNN was trained and validated 
using a total number of 2000 images of deconvolved waves at 1F to 18F of the MDOF model, in 
which 1000 images are linear cases and 1000 images are non-linear cases. Besides, 1800 figures 
were used for training, and the remaining 200 images were used to verify the trained CNN. For 
testing the trained CNN model, 60 figures of deconvolved waves of 1F~18F using the shake-table 
test data were selected.  
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The results of training and test data are shown in Figure 6, including the changes of accuracy 
value and mean loss value with the increase of the epoch. As can be seen in these figures, 94.7% 
accuracy is achieved for CNN training data for the recognition of linear or non-linear cases and 
94.6% accuracy is achieved for CNN test data. For the mean loss value, the training data and test 
data both show decreasing trends with the increase of epoch. In short, the trained CNN model 
achieves good performance. 

  

(a) (b) 

Figure 6. The accuracy and loss results of training and validation data. 

Conclusions 
In this study, a CNN-based approach for recognizing the linear and non-linear behavior of 
buildings using visualized deconvolved waves is proposed. To generate training data, a multiple-
degree-of-freedom model of the 18-story specimen of the shake-table test is established to simulate 
the seismic response. Numerical simulations can overcome the limited amount of actual data for 
training CNN models. Furthermore, we calculated the deconvolved waves from the numerical 
simulation seismic response, which are visualized and fed to train a convolutional neural network 
(CNN) to classify “linear” or “non-linear.” The trained CNN model is used to recognize figures of 
linear and non-linear cases of structures, and the accuracy of proposed method is satisfactory 
(94.7% and 94.6%). The findings of this study can be used to monitor the health situations of the 
structures in the future. 
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Abstract. Dimensional quality is critical to the successful installation of curtain walls, and the 
required dimensional tolerances are typically less than a millimeter. However, high-precision 
dimensional measurement of a curtain wall cross-section is practically difficult and time-
consuming because the cross-sectional shapes are various and complicated, and dimensional 
measurement is usually performed manually in the actual field. To improve these problems, 
various vision-based methos are being attempted, but there have been limitations in terms of 
precision due to row image resolution. Therefore, this study confirmed whether image super-
resolution can contribute to overcoming these limitations. To this end, an experiment on a curtain 
wall profile cross-section was conducted, and super-resolution generative adversarial network 
(SRGAN) was applied as an image super-resolution method. As a result, it was confirmed that 
high-precision dimensional measurement is possible from an image with enhanced resolution 
using SRGAN.  
Introduction 
A curtain wall is a structure used to cover and decorate the exterior of a building and is generally 
composed of aluminum profiles, glasses, and support brackets. It is widely used in modern high-
rise buildings since it is light in weight, beautiful in design, and easy to install [1].  

In the construction process, the curtain wall installation is considered as a risky process in terms 
of cost and schedule [2, 3]. The main reason is that curtain wall profiles are engineered materials 
which are customized in factories [4]. Unlike bulk materials [4], engineered materials take a 
considerable amount of time to be resupplied when dimensions are abnormal or materials are 
damaged. This affects the subsequent processes and the entire construction cost and period [2, 5].  

To mitigate this risk, it is important to perform a thorough dimensional quality control of curtain 
wall components during the material production stage and warehousing stage. Dimensional quality 
has a great influence on the assembly performance, structural performance, and waterproof 
performance of a curtain wall. Typical required dimensional tolerances are less than a millimeter. 
However, since the cross-sectional shapes of curtain wall profiles are diverse and complex and 
dimensional measurement is usually performed manually in the actual field, measuring dimensions 
with high-precision is practically difficult and time-consuming. To improve these problems, 
various vision-based methos are being attempted, but there have been limitations in terms of 
precision due to row image resolution. 

Therefore, in this study, it is attempted to confirm whether image super-resolution can 
contribute to overcoming these limitations. To this end, an experiment on a curtain wall profile 
cross-section was conducted, and super-resolution generative adversarial network (SRGAN) [6], 
which is a state-of-the-art deep learning-based super-resolution method, was applied. In the 
experiment, a VGA-resolution image of the curtain wall profile section was 16x upscaled to an 8K 
resolution-image using SRGAN [6], and dimensional measurement was performed. 
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As a result, it was verified that dimensional measurement can be carried out with high-precision 
of 0.4mm of mean absolute error (MAE) and 1.1% of mean relative absolute error (MRAE) using 
SRGAN [6]. But this study also has limitations in that there is an assumption that input cross-
sectional images are accurately photographed from the front and the measurement process is not 
automated. So, in this study, the process of measurement at the pixel level was performed manually. 
Generalization and automation of the measurement process will be left as a future study. 
Methodology 
In this study, dimensional measurement process for a curtain wall profile cross-section is made up 
of six steps. The first step is to collect the training data set consisting of 8K-resolution images 
taken from the cross-section of a curtain wall profile and a reference cube. Here, the reference 
cube is employed to convert pixel dimensions to metric dimensions, and the images of the curtain 
wall profile cross-section do not necessarily have to be target profile images to be inspected.  

The second step is SRGAN [6] configuration and training. Compared to the original SRGAN, 
in this study, there are several differences in neural network architecture. First, while the original 
SRGAN performs 4x upscaling, in this study, 16x upscaling is performed by adding two upscale 
blocks to the generator of the original SRGAN. Second, since this study targets only the curtain 
wall profile cross-sections, the task is relatively simple. Therefore, the residual blocks of the 
generator were reduced from originally 16 to 4 to shorten training time and prevent overfitting. 
Third, unlike the original SRGAN, a loss function of Equation 1 was used when training the 
SRGAN generator used in this study. 
 

( ) ( )1 210 10SR SR SR SR
VGG MSE Genmodifiedl l l l− −= + × + ×  (1) 

 
Where SR

VGGl , SR
MSEl , and SR

Genl  are VGG loss, pixel-wise MSE loss, and advertising loss 
respectively, and the definition of each is as introduced in the original SRGAN [6].  
 

SR
modifiedl , modified perceptual loss in this study, differs in that it includes the VGG, MSE, and 

adversarial losses simultaneously compared to the original perceptual loss [6] of the original 
SRGAN. There is also difference in the reflection ratio of each loss. In this study, using SR

modifiedl
(eq. 1) was more effective. Unlike the generator, the discriminator architecture and most of the 
other training details follow the original SRGAN [6]. 

The third step is to take the image of a target profile section to be measured. This study uses a 
reference cube to convert measured pixel displacements to metric displacements, it is necessary to 
photograph the reference cube together when taking the image of a target profile cross-section (Fig. 
1). As previously described, in this step, the VGA-resolution image is sufficient. However, in this 
study, it is assumed that the curtain wall profile cross-section and the reference cube were 
accurately photographed from the front, so filming should be carried out with this in mind. 

The fourth step is to estimate 8K super-resolution (SR) image from the VGA low-resolution 
image by 16x upscaling using the trained SRGAN.  

The fifth step is to measure the dimensions of the curtain-wall cross-section at the pixel level, 
and then, based on the reference cube, the measured pixel dimensions are converted to the metric 
dimensions. But, the measurement process is not automated yet in this study. So, for now, it was 
conducted manually. The automation of measurement process will be left for the future study. 
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Experiments 
To confirm whether image super-resolution can contribute to high-precision dimensional 

measurement, an experimental dimensional measurement on a curtain wall profile cross-section 
was conducted. The experimental results are described step by step as follows. 

 

 
Figure 1. Comparison of the LR, SR and ground truth images 

 
Step 1: In this experiment, two images were taken for SRGAN training. These are high-

resolution cropped images of the meaningful part of 8K-resolution photo images. In this study, 
training of SRGAN with only two images was attempted. 

Step 2: The training details of SRGAN were set as follows. Randomly cropped images of size 
384 x 384 px were used from the images of the training data set, mini-batch size of 5 was applied, 
and data augmentation including horizontal flip and random rotation was performed. A total of 
30,000 epochs of learning was conducted, and Adam [7] was used as an optimizer. The learning 
rate of the optimizer was applied to 410−  until 15,000 epochs and 510−  until 30,000 epochs. Most 
of the other details followed the original SRGAN [6]. 

Step 3: A low-resolution image taken for experimental dimensional measurement is shown in 
Fig. 1(a). Note that, Fig. 1(a) is different from the training data, and it is the result of cropping the 
meaningful part of a VGA-resolution photo image manually. 

Step 4: As a result of applying the SRGAN to the experiment, a 16x upscaled SR image is 
shown in Fig. 1(b). It can be seen that the resolution is greatly improved compared to the LR image 
of Fig.1(a). Additionally, compared with Fig. 1(c), which is a ground truth high-resolution image 
of the actual profile, it can be confirmed that the estimation performance of SRGAN is excellent. 
This was an encouraging result considering that only two images were used for SRGAN training. 
This result means that for certain tasks and target, there is no need to invest a long time in SRGAN 
training. 

Step 5: Using the 16x upscaled SR image, dimensions of the target profile section are measured 
at the pixel level, and then, based on the reference cube, these are converted to metric dimensions. 
In this study, this measurement process is not automated yet, it will be left for the future study. So, 
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for now, it was conducted manually. Dimensional measurement was performed for each LR image 
and 16x upscaled SR image respectively. It was conducted on the target dimensions shown in Fig. 
2, and the results are shown in Table 1.  

 

 
Figure 2. Target dimensions for experimental measurements 

Table. 1 Comparison of dimensional measurement results for LR image and 16x upscaled SR 
image 

 GT  LR image SR image 
Dim. Dimension AE RAE Dimension AE RAE 
(mm) (pixel) (mm) (mm) (%) (pixel) (mm) (mm) (%) 

Ref. 4.8 9 - - - 134 - - - 
(a) 34.8 61 32.5 2.3 6.5 969 34.7 0.1 0.3 
(b) 60.2 106 56.5 3.7 6.1 1693 60.6 0.4 0.7 
(c) 149.2 260 138.7 10.5 7.1 4203 150.6 1.4 0.9 
(d) 1.8 4 2.1 0.3 18.5 50 1.8 0.0 0.5 
(e) 11.3 20 10.7 0.6 5.6 310 11.1 0.2 1.7 
(f) 3.0 5 2.7 0.3 11.1 86 3.1 0.1 2.7 

Ave. - - - 3.0 9.1 - - 0.4 1.1 
 

As a result of dimensional measurements using the LR image, mean absolute error (MAE) was 
3.0 mm and mean relative absolute error (MRAE) was 9.1%. However, using the 16x upscaled SR 
image, MAE was 0.4 mm and MRAE was 1.1%. These results mean that when low-resolution 
images of the VGA-resolution are used for dimensional measurement, inaccurate measurement of 
3mm accuracy level is performed. However, when using SRGAN, high-precision inspection of 
0.4mm accuracy level is possible. This is a very significant result considering that the typical 
dimensional tolerances of the curtain wall profile are less than a millimeter. 
Conclusion 
This study confirmed whether image-resolution can contribute to high-precision dimensional 
measurement for a curtain wall profile cross-section. In this study, super-resolution generative 
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adversarial network (SRGAN) [6], which is a state-of-the-art deep learning-based super-resolution 
method was applied to convert low-resolution images to high-resolution images for high-precision 
measurement.  

To validate the applicability, an experimental dimensional measurement on a curtain wall 
profile section was conducted. Additionally, it was attempted to use only two high-resolution 
images for training SRGAN. As a result of the experiment, it was verified that the dimensional 
measurement can be carried out with high-precision of 0.4mm of mean absolute error (MAE) and 
1.1% of mean relative absolute error (MRAE). Considering that the typical dimensional tolerances 
of the curtain wall profile are less than a millimeter, this is a very significant result. For certain 
tasks and target, such as dimensional quality measurement of curtain wall profile cross-section 
using SRGAN, it means that there is no need to invest a long time in SRGAN training. 

Nevertheless, this study also has limitations in that there is an assumption that the input cross-
sectional image is accurately photographed from the front and the measurement process is not 
automated yet. Hence, in this study, the process of measurement at the pixel level was performed 
manually. Generalization and automation will be left for the future study. 
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Abstract. The human-induced climate change is one of the biggest threats for modern society. 
Wind energy turbines play a key role in the necessary transformation of the energy sector and their 
reliable, low-maintenance operation with short downtimes is therefore of particular interest. To 
this end, automated structural health monitoring (SHM) gained a lot of interest in research and 
economy. In this work, we propose an algorithm for damage detection in rotor blades using 
airborne acoustic emissions (AE). Our algorithm inherently uses a localization approach and is 
therefore not only able to detect a structural damage but also to estimate its position using time 
differences of arrival (TDoA) of airborne sound waves. Since we intend only an approximate 
localization of the impulsive damage sounds, we suggest a simple yet effective method based on 
cross-correlation of energy-envelope functions to estimate the TDoA. For the task of damage 
detection and localization, only two line-of-sight microphones are required, which makes this 
approach very economic for SHM. We evaluate our method on two large-scale fatigue tests 
conducted on a 34-meter and a 30-meter rotor blade under laboratory conditions. During the 
fatigue tests, we continuously recorded airborne sound signals with multiple microphones placed 
inside the rotor blades. With our proposed method, we are able to detect and correctly assign the 
two significant structural damages in both rotor blades to a two-meter-long rotor blade zone 
without having any false-positive alarms throughout more than 350 hours of continuous audio 
recordings. Airborne acoustic emissions therefore may be a promising alternative to other 
conventional monitoring solutions based on structure-borne sound, which usually require 
considerable denser sensor networks.  
Introduction 
Climate change and its consequences are a central topic in politics, research and our daily life. 
There is no doubt that especially the industrialized countries need to reduce their carbon dioxide 
emissions by decreasing the use of fossil fuels and expanding renewable energies. Next to 
hydropower, wind energy is the most prevalent form of renewable electricity generation [1]. Due 
to the heavily increasing construction of offshore wind turbines [2] and the growing economic 
pressure on wind turbine operators, the demand for automated structural health monitoring (SHM) 
is becoming more apparent. Even though, the wind turbine’s rotor blades are not the most prevalent 
component in terms of frequency of damage occurrence, they are considered to be a critical 
subassembly with respect to downtime of the wind turbine [3]. Therefore, various methods have 
been proposed to monitor the structural health of wind turbine rotor blades, including but not 
limited to operational modal analysis (OMA), guided wave testing (GWT) and automated visual 
inspections using computer vision [4–6]. While especially modal parameters, such as natural 
frequencies and mode shapes extracted from structure-borne sound signals are widely studied with 
regard to damage assessment of large civil infrastructures, aspects like their dependency on 
environmental and operational conditions as well as the limited sensitivity with respect to smaller 
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damages are still part of ongoing research [7]. With the availability of affordable, commercially 
available computer hardware and storage media, acoustic emission testing (AET) became suitable 
for applications in the field of structural health monitoring [8, 9]. Conventionally, AET belongs to 
the passive non-destructive testing methods and refers to the analysis of structure-borne sound 
waves in the ultrasonic frequency range resulting from the sudden energy release caused by 
damage events within the structure [10]. However, more recently researchers also suggested to use 
airborne sound signals for the task of damage assessment using acoustic emissions caused by the 
damage event itself or by analyzing the change of the characteristic environmental acoustic 
signature [11–13]. While the latter approach is mostly studied under controlled laboratory 
conditions, Krause et al. also validated their acoustic emission-based method on recordings 
acquired on an operating wind turbine. Using multiple microphones mounted inside the rotor 
blade, the suggested decision tree is capable to detect the significant structural damage that 
occurred during the large-scale fatigue test without showing any false-positive alarms during the 
analysis of the operational recordings [11]. However, the suggested decision tree relies on several 
spectro-temporal features with specified thresholds whose generalization needs to be further 
evaluated. In order to avoid establishing a discriminative feature representation of the damage 
events, Solimine et al. [12] proposed an anomaly detection algorithm based on different features, 
such as linear predictor cepstral coefficients. They evaluated their approach on a subset of audio 
signals recorded during another large-scale rotor blade fatigue test and were able to detect 
anomalous sound caused by external noise as well as the disbonding of foam inside the rotor blade. 
However, a structural damage did not occur during this test and could therefore not be detected. 
On the basis of these previous studies, we propose another simple and intuitive approach for 
detecting damages in wind turbine rotor blades using airborne acoustic emissions (AE). Our 
algorithm is based on the cumulative acoustic emission energy often utilized in the field of 
materials research [14]. In contrast to other methods, the proposed algorithm relies on only two 
user-defined power-related thresholds and inherently utilizes a localization approach allowing for 
a localized damage detection that none of the earlier discussed algorithms is capable of. The 
localization approach is based on time differences of arrival (TDoA), which can be estimated i) by 
detecting the signal’s onset time in each recording channel separately or ii) utilizing cross-
correlation based methods, such as the generalized cross-correlation phase transform (GCC-
PHAT) [15]. The latter approach is well-studied and successfully applied in various domains. 
However, multipath propagation introduces ambiguities that may result in poor localization 
performance.  Hence, we adapt the idea of a signal envelope used in time of flight (ToF) estimation 
in ultrasonic testing [16] and estimate the TDoA based on the peak-normalized cross-correlation 
of the moving root mean square of the percussive damage sound signals. 

In the next section, we will first introduce two large-scale fatigue tests of a 34m- and a 30m 
rotor blade, which form the experimental basis for our work. In Section 3, we give a detailed 
description of the proposed algorithm for the localized damage detection. Section 4 summarizes 
the results on the two datasets of audio recordings acquired during the previously mentioned 
fatigue tests. Section 5 closes with a brief summary and an outlook for interesting research 
directions. 
Experiments 
For the evaluation of our suggested algorithm, we utilize continuous audio recordings acquired 
during two large-scale rotor blade fatigue tests. During both rotor blade tests, the airborne sound 
was continuously recorded with a sampling frequency 𝑓𝑓𝑠𝑠 = 96 𝑘𝑘𝑘𝑘𝑘𝑘. For the calibration of each 
microphone, we utilized a sound calibrator with a defined sound pressure level of 114 dB at 1 kHz. 

Fatigue test of 34 m rotor blade. The first equipped rotor blade under test had a total length of 
34 m. Inside this rotor blade, we installed one microphone in the chamber of the leading edge close 
to the root and two more at the trailing edge in approximately 3 m and 15 m distance to the root. 
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The optical microphones used throughout the experiment were omnidirectional and had a 
frequency range from 20 Hz to 40 kHz (+/- 6 dB). The sensor layout is depicted in Fig. 1. A regular 
interruption of the fatigue test allowed for visual inspection and documentation of the rotor blade’s 
structural condition. Based on these visual inspections, excitation load was slowly increased to 
provoke a relevant structural damage within the limited test period. After the occurrence of the 
structural relevant damage, the external load was reduced and then stepwise increased again to 
allow for further damage propagation. Table 1 gives a brief summary of the experimental details 
including the number of load cycles and the analyzed hours of audio recordings used for the later 
evaluation of our method. The last column indicates the occurrence of the structural relevant 
damage and its approximate position. Several more minor damages, such as adhesive cracks, were 
also observed but found to be structurally irrelevant meaning that those damages would not lead 
to any repair measures if observed in an operating wind turbine.  

 
Table 1: Overview of test procedure for 34m and 30m rotor blade fatigue test  

Blade No. of  
load cycles 

Analyzed audio 
recordings Notes 

34m 
rotor 
blade 

~ 1.243.600 231 hours 

Structural relevant damage at 𝐷𝐷𝑟𝑟 = 6.2 𝑚𝑚 (see Fig. 1);  
(16th of July, 18:30 h); 

Initial crack size approx. 44 cm  
Progression of damage  
(18th of July, 09:00 h) 

30m 
rotor 
blade 

~ 666.000 137 hours 

 
Structural damage on 28th of April, 11:30 h; 
𝐷𝐷𝑟𝑟 = 8 𝑚𝑚  at leading edge (see Fig. 2); 

Final crack size up to 100 cm; 
 

 
 

 
Figure 1: Sensor layout for acoustic monitoring of a 34 m rotor blade during fatigue test 

Fatigue test of 30 m rotor blade. The second rotor blade considered in this study was slightly 
smaller, having a length of approximately 30 meters. In agreement with the sensor layout of the 
previously described fatigue test of the 34m rotor blade, we again installed three microphones 
inside the rotor blade as depicted in Fig. 2. However, this time we used omnidirectional electret 
microphones with a flatter frequency response in the audible frequency range (30 Hz – 18 kHz, 
+/- 1 dB). The fatigue test was conducted in several steps including adjustments of the excitation 
load to ensure the occurrence of a structural relevant damage within the test period. In regular time 
intervals, visual inspections as well as dynamic tests were carried out to assess the structural 
condition. In contrast to the rotor blade described before, only a minor increase of the external load 
was necessary throughout the test procedure indicating a more fatigue-related occurrence of 
damage than before. Some test parameters as well as the details of the damage are briefly 
summarized in Tab. 1. Minor damages such adhesive cracks were also observed during the regular 
inspections. However, since these damages would not lead to any actions if observed in a rotor 
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blade of an operating wind turbine, those were not considered as structural relevant damages in 
the later evaluation.  
 

 
Figure 2: Sketch of the 30m rotor blade and the installed microphones for continuous monitoring 
Methodology 
For detecting damages in rotor blades using airborne sound, we propose an algorithm based on 
cumulative acoustic emission energy (AE energy), which we extend by a zonal localization using 
time differences of arrival (TDoA). AE energy is often utilized in materials research to reveal 
information about damage progress throughout the experiment, when a manual interruption of the 
test is not desired [10]. Conventionally, acoustic emissions of ultrasonic structure-borne sound 
signals are analyzed. Here, we apply this method to airborne sound signals in the audible frequency 
range. Since significant structural damages in fiber-reinforced composites do not necessarily result 
in a single, sudden energy release but can also progressively grow and therefore result in multiple 
AE events with slightly less energy, we suggest the use of cumulative AE energy within a fixed 
time period. We hypothesize that a structural relevant progress of damage shall result in an 
observable increase of AE energy and can therefore be detected by means of accumulated energy. 
To further facilitate this approach for rotor blade monitoring, we employ a TDoA-based 
localization technique which may i) reduce the false alarm rate when more AE events occur at the 
same time but in different regions of the rotor blade and ii) inherently gives information about the 
potential damage position, which is of specific interest for further decision-making. In the 
following, we will introduce the simple amplitude threshold-based detection of damage events and 
the incorporation of the TDoA-based zonal localization. 

Detection of audio events with elevated peak sound pressure level. At first, all channels of the 
audio stream 𝑎𝑎𝑀𝑀,𝑖𝑖[𝑛𝑛] are preprocessed using a high-pass butterworth filter with a cutoff-frequency 
of 5 kHz. This is done to reduce environmental noise and enhance the signal-to-noise ratio as it is 
also suggested in [11]. After this filtering step, we arbitrarily choose one reference sensor (here: 
MIC 1) and process the corresponding audio stream 𝑎𝑎𝑀𝑀,1[𝑛𝑛] with a simple threshold on the peak 
sound pressure level. To achieve a good sensitivity, the threshold was set to 𝐿𝐿𝑝𝑝 = 80 𝑑𝑑𝑑𝑑 𝑆𝑆𝑆𝑆𝐿𝐿 here. 
Once a threshold crossing is detected at index 𝑖𝑖𝑡𝑡ℎ𝑟𝑟, we determine the absolute maximum amplitude 
within an approximate 224 ms long time window (Eq. 1) and finally extract a fixed length audio 
segment 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 according to Eq. 2 in all channels 𝑎𝑎𝑀𝑀,𝑖𝑖[𝑛𝑛] of the audio stream. Whenever an audio 
segment is extracted, the trigger is locked for 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  ≈ 171 𝑚𝑚𝑚𝑚 to avoid multiple detections within 
the same time window. This definition of a lockout phase can be often found in conventional AE 
systems [17].  

𝑘𝑘 =  arg max
𝑛𝑛

  𝑎𝑎𝑀𝑀1[𝑖𝑖𝑡𝑡ℎ𝑟𝑟 + 𝑛𝑛]   𝑤𝑤𝑖𝑖𝑤𝑤ℎ   𝑛𝑛 ∈ {0,1,2, … , 16383}.  (1) 

𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 [𝑛𝑛] = 𝑎𝑎𝑀𝑀,𝑖𝑖� (𝑖𝑖𝑡𝑡ℎ𝑟𝑟 + 𝑘𝑘) − 𝑤𝑤𝑝𝑝𝑟𝑟𝑠𝑠 , … , (𝑖𝑖𝑡𝑡ℎ𝑟𝑟 + 𝑘𝑘) + 3.2 ∗ 𝑤𝑤𝑝𝑝𝑟𝑟𝑠𝑠�  𝑤𝑤𝑖𝑖𝑤𝑤ℎ �
𝑤𝑤𝑝𝑝𝑟𝑟𝑠𝑠 = 5120
𝑖𝑖 ∈ {1,2} .  (2) 
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Once the audio segments of the different channels are selected, it is firstly verified that within each 
specific time segment, the threshold 𝐿𝐿𝑝𝑝  is also crossed in the corresponding line-of-sight 
microphone (here: MIC 2). If this is the case, a moving root mean square (RMS) 𝑅𝑅𝑀𝑀,𝑖𝑖[𝑛𝑛] is 
calculated for both zero padded signals (Eq. 3) and the time difference ∆𝑤𝑤12 of the two peak 
normalized moving RMS signals 𝑅𝑅𝑀𝑀𝑛𝑛,𝑖𝑖[𝑛𝑛]  is estimated using the cross-correlation function. 
Before applying Eq. 4, a peak picking algorithm is employed on the RMS signals 𝑅𝑅𝑀𝑀𝑛𝑛,𝑖𝑖[𝑛𝑛]  to 
discard anomalous audio segments with small pulse widths or multiple peaks with similar 
prominences [18]. 
 

𝑅𝑅𝑀𝑀,𝑖𝑖[𝑛𝑛] = � 1
960

 ∑ 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑤𝑤]2𝑡𝑡=𝑛𝑛
𝑡𝑡 = 𝑛𝑛 −959  𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑖𝑖 ∈ {1,2}. (3) 

𝐶𝐶𝐶𝐶1,2 [𝑛𝑛] =  ∑ 𝑅𝑅𝑀𝑀𝑛𝑛,1[𝑘𝑘 + 𝑛𝑛] ∗ 𝑅𝑅𝑀𝑀𝑛𝑛,2
𝐿𝐿= 𝐿𝐿−1
𝐿𝐿 = −𝐿𝐿−1 [𝑘𝑘] 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝐿𝐿 = 21504.  (4) 

Based on the estimated time differences of the two signals ∆𝑤𝑤12 and a simplified one-dimensional 
view of the rotor blade, the position of the audio source signal, i. e. the distance to the rotor blade’s 
root 𝐷𝐷𝑟𝑟 is obtained using Eq. 5.  

𝐷𝐷𝑟𝑟 = �
𝐷𝐷𝑀𝑀,1−𝑟𝑟 + 1

2
 �𝐷𝐷𝑀𝑀,2−𝑀𝑀,1 − 𝑣𝑣𝑎𝑎𝑖𝑖𝑟𝑟 ∗  ∆𝑤𝑤12�   𝑓𝑓𝑓𝑓𝑟𝑟  ∆𝑤𝑤12 ≤ 0 

𝐷𝐷𝑀𝑀,1−𝑟𝑟 + 1
2

 �𝐷𝐷𝑀𝑀,2−𝑀𝑀,1 + 𝑣𝑣𝑎𝑎𝑖𝑖𝑟𝑟 ∗  ∆𝑤𝑤12�   𝑓𝑓𝑓𝑓𝑟𝑟  ∆𝑤𝑤12 > 0
. (5) 

Here, 𝐷𝐷𝑀𝑀,1−𝑟𝑟 is the distance between MIC 1 and the rotor blade’s root, 𝐷𝐷𝑀𝑀,2−𝑀𝑀,1 is the distance 
between the two line-of-sight microphones MIC 2 and MIC 1 and 𝑣𝑣𝑎𝑎𝑖𝑖𝑟𝑟 is the estimated speed of 
sound (343 m/s at 20 ° C). Signal pairs with an estimated time difference that does not satisfy the 
inequality in Eq. 6 are discarded. This is done to filter out signals whose estimated source position 
lies outside the surrounded area of the two microphones. Consequently, we suggest that two line-
of-sight microphones (here: MIC 1 and MIC 2, see Fig. 1 / 2) shall be used to monitor the area 
between these two microphone positions only.  

|𝑣𝑣𝑎𝑎𝑖𝑖𝑟𝑟 ∗  ∆𝑤𝑤12|  ≤  𝐷𝐷𝑀𝑀,2−𝑀𝑀,1. (6) 

Finally, we calculate the arithmetic mean of the two corresponding audio segments 𝑆𝑆𝐸𝐸,𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛 in a 
limited frequency band (Eq. 7) and save it together with the approximate timestamp of the audio 
segment and the previously estimated source position to a database for further analysis. In Eq. 7, 
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘]  is the discrete Fourier transform of 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑛𝑛] and fs is the sampling frequency. The 
frequency band limits b1 and b2 correspond to a lower frequency of 15 kHz and an upper frequency 
of 20 kHz, respectively. The overall processing workflow is illustrated in Fig. 3.  

𝑆𝑆𝐸𝐸,𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛 = 1
2𝐿𝐿
∗ �∑ |𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠,1[𝑘𝑘]|2 +𝑏𝑏2

𝐿𝐿=𝑏𝑏1
∑ |𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠,2[𝑘𝑘]|2𝑏𝑏2
𝐿𝐿=𝑏𝑏1 � ∗  1

𝑓𝑓𝑠𝑠
. (7) 

 
Zonal acoustic emission activity using estimated sound source location. For the analysis in 

terms of accumulated AE energy, we partition the rotor blade in equally sized zones of two meter 
length and assign the accumulated energy of acoustic emissions within a fixed time period of one 
hour to the rotor blade zones based on their estimated source position. That way, we can finally 
monitor the course of AE energy per time unit and rotor blade zone to detect anomalous AE activity 
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throughout the fatigue tests. For the detection of a damage, we finally introduce a second threshold 
𝑇𝑇𝐴𝐴𝐸𝐸 = 2 [Pa²ms / h]. 
 

 
Figure 3: Illustration of the processing workflow for localized damage detection in rotor blades 

Results 
For the evaluation of the proposed method, we processed the continuous audio recordings from 
two different rotor blade fatigue tests described previously. After removing time periods in which 
the test was not running, we obtained more than 350 hours of audio recordings (see Tab. 1) that 
we processed with our algorithm as detailed in the previous section. The corresponding results are 
depicted in Fig. 4. For both rotor blade fatigue tests, it is possible to detect the structural relevant 
damages indicated by a shaded grey area using a simple threshold on the accumulated acoustic 
emission energy per hour. Further, our algorithm correctly identifies the rotor blade’s zone in 
which the damage occurred and therefore estimates the approximate position. Despite these 
promising results, the acoustic emission activity throughout the two rotor blades should be noted. 
During the 30 m rotor blade fatigue test, an elevated level of acoustic emission energy several days 
before the actual damage can be observed. Therefore, airborne sound acoustic emission activity 
may also allow early-stage indication of damages. In contrast, however, this increase of the 
acoustic emission energy before the actual damage cannot be observed in the 34m rotor blade 
fatigue test. A possible reason may be the heavy increase of the external load in this fatigue test 
which lead to a more sudden occurrence of damage and therefore did not show any fatigue-related 
indications beforehand.  
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Figure 4: Cumulative acoustic emission energy throughout the entire test period of the 30m rotor 
blade fatigue test (left) and the 34m rotor blade fatigue test (right). The different colors indicate 

the rotor blade zones, to which the detected acoustic emissions were assigned.  
Conclusion 
In this study, we proposed the use of localized airborne acoustic emission energy for damage 
assessment of rotor blades. For the evaluation of our method, we processed audio recordings of 
two different large-scale rotor blade fatigue tests and successfully detected the structural relevant 
damage in each of these rotor blades. Further, our algorithm correctly estimated the approximate 
position of the structural damage. Due to its simplicity, the algorithm is likely to have a good 
generalization performance and additionally provides good interpretability considering that one is 
able to listen to the selected audio events in case of a detection. Further, our algorithm utilizes only 
two simple thresholds whereby the second (TAE) can also be discarded, when the acoustic emission 
activity curve is inspected by humans, e.g. in a control room. However, more experiments should 
be conducted to further verify this approach. Another open research question is the applicability 
of the algorithm under real environmental and operational conditions with respect to false 
detections. If this turns out to be a limitation, further research could focus on the incorporation of 
additional damage-related features as suggested in other publications [11, 12]. With regard to the 
zonal localization, more sophisticated methods for the estimation of time differences of arrival 
(TDoA) could be investigated. 
Acknowledgments 
This research was funded by German Federal Ministry for Economic Affairs and Climate 
(BMWK) “Multivariate Damage Monitoring of Rotor Blades: Implementation and Analysis of the 
Effects of Repair Measures” (03EE2043C). 
References 
[1] IRENA. Renewable Energy Statistics 2021: International Renewable Energy Agency; 2021. 
[2] IRENA. Offshore renewables: An action agenda for deployment. Abu Dhabi: International 
Renewable Energy Agency; 2021. 
[3] Dao, C, Kazemtabrizi, B, Crabtree, C. Wind turbine reliability data review and impacts on 
levelised cost of energy. Wind Energy 2019: 1848–71. https://doi.org/10.1002/we.2404 
[4] García Marquez FP, Gómez Muñoz CQ. A New Approach for Fault Detection, Location and 
Diagnosis by Ultrasonic Testing. Energies 2020; 13(5): 1192. https://doi.org/10.3390/en13051192 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 228-235  https://doi.org/10.21741/9781644902455-29 

 

 
235 

[5] Denhof D, Staar B, Lütjen M, Freitag M. Automatic Optical Surface Inspection of Wind 
Turbine Rotor Blades using Convolutional Neural Networks. Procedia CIRP 2019; 81: 1166–70. 
https://doi.org/10.1016/j.procir.2019.03.286 
[6] Di Lorenzo E, Petrone G, Manzato S, Peeters B, Desmet W, Marulo F. Damage detection in 
wind turbine blades by using operational modal analysis. Structural Health Monitoring 2016; 
15(3):289–301. https://doi.org/10.1177/1475921716642748 
[7] Tsiapoki S, Häckell MW, Grießmann T, Rolfes R. Damage and ice detection on wind turbine 
rotor blades using a three-tier modular structural health monitoring framework. Structural Health 
Monitoring 2018; 17(5):1289–312. https://doi.org/10.1177/1475921717732730 
[8] Wahab MA, Zhou YL, Maia NMM, editors. Structural Health Monitoring from Sensing to 
Processing. InTech; 2018. https://doi.org/10.5772/intechopen.73069 
[9] Khan MTI. Structural Health Monitoring by Acoustic Emission Technique. In: Wahab MA, 
Zhou YL, Maia NMM, editors. Structural Health Monitoring from Sensing to Proc.. InTech 2018. 
https://doi.org/10.5772/intechopen.79483 
[10] Grosse CU, Ohtsu M, Aggelis DG, Shiotani T. Acoustic Emission Testing. Cham: Springer 
International Publishing 2022. https://doi.org/10.1007/978-3-030-67936-1 
[11] Krause, T, Ostermann, J. Damage detection for wind turbine rotor blades using airborne 
sound. Struct Control Health Monit. 2020. https://doi.org/10.1002/stc.2520 
[12] Solimine J, Niezrecki C, Inalpolat M. An experimental investigation into passive acoustic 
damage detection for structural health monitoring of wind turbine blades. Structural Health 
Monitoring 2020; 19(6):1711–25. https://doi.org/10.1177/1475921719895588 
[13] Beale C, Willis DJ, Niezrecki C, Inalpolat M. Passive acoustic damage detection of structural 
cavities using flow-induced acoustic excitations. Structural Health Monit. 2020; 19(3): 751–64. 
https://doi.org/10.1177/1475921719860389 
[14] Kim J-S, Lee K-S, Cho W-J, Choi H-J, Cho G-C. A Comparative Evaluation of Stress–Strain 
and Acoustic Emission Methods for Quantitative Damage Assessments of Brittle Rock. Rock 
Mech Rock Eng 2015; 48(2):495–508. https://doi.org/10.1007/s00603-014-0590-0 
[15] Knapp C, Carter G. The generalized correlation method for estimation of time delay. IEEE 
Trans. Acoust., Speech, SignalProcess.1976;24(4):320–7. 
https://doi.org/10.1109/TASSP.1976.1162830 
[16] Lu Z, Yang C, Wei G. Hilbert Transform Based Time-of-Flight Estimation of Multi-Echo 
Ultrasonic Signals and Its Resolution Analysis. IEICE Trans. Fundamentals 2014; E97.A(9): 
1962–5. https://doi.org/10.1587/transfun.E97.A.1962 
[17] Unnorsson R. Hit Detection and Determination in AE Bursts. In: Sikorski W, editor. Acoustic 
Emission - Research and Applications. InTech 2013. https://doi.org/10.5772/54754 
[18] The MathWorks, Inc. Signal Processing Toolbox: User's Guide (R2022a). 
 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 236-242  https://doi.org/10.21741/9781644902455-30 

 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

236 

Development of deflection measurement method using smart cables 
with distributed fiber optic sensors 

Takumi Nakashima1,a*, Kotaro Fujiwara1,b, Makito Kobayashi2,c,  
Hideaki Murayama2,d, Michio Imai1,e, Hideki Nagatani1,f and Junichi Kawabata1,g  

1Kajima Corporation, Tokyo, JP 
2The University of Tokyo, Department of Ocean Technology, Policy, and Environment, Tokyo, 

JP 
anakastak@kajima.com, bfujiwkot@kajima.com, cmakito.kobayashi@edu.k.u-tokyo.ac.jp,  

dmurayama@edu.k.u-tokyo.ac.jp, emichio@kajima.com, fnagatanh@kajima.com,  
gkawabata-j@kajima.com 

Keywords: Deflection Measurement, Distributed Fiber Optic Sensor, COTDR, Structural 
Monitoring, Smart Cable 

Abstract. The monitoring behavior of civil engineering structures under and after construction 
secures the quality and safety of structures. There is a possibility that spot measurements, which 
were frequently adopted in the past, fail to notice local deformation generated in non-measured 
points and such local deformation is sometimes generated in the ground and the concrete. 
Therefore, we paid attention to displacement measurement technology using fiber optic sensors 
capable of performing the distributed measurement. We considered measuring long civil 
engineering structures with a displacement accuracy of ±1 mm and conducted demonstration 
experiments to investigate this feasibility. In the experiment, we utilized 3DSensors (45 m and 170 
m) that have the sufficient characteristic for application to civil engineering structures, such as 
high workability for the ground and structures and the actual achievements of field experiments, 
and the TW-COTDR system capable of performing measurements with high accuracy and at long 
distance. As a result, we demonstrated to measure the deflection of 2.5 mm with high accuracy. 
Introduction 
Monitoring the behavior of civil engineering structures under and after construction secures the 
quality and safety of structures. Currently, spot measurements are often adopted as a monitoring 
method; for example, displacement measurements using the total station are generally applied as 
the monitoring method around construction [1]. However, localized changes, such as cracks in 
concrete or sinking of the ground, sometimes occur, and it is difficult to predict where they will. 
Therefore, spot measurements of limited measurement points may miss the maximum 
displacement. In addition, the frequency of measurement by total station is limited because it takes 
labor and time, and it is difficult to continuous monitoring. Also, the measurement is performed 
only for the surface of structures, the internal behavior of civil engineering structures cannot be 
directly measured. Distributed fiber-optic sensors can perform distribution measurement and 
continuous monitoring and can be attached to the interior of civil engineering structures, and 
therefore paid attention to in recent years [2]. 

Since the optical fiber itself of the distributed fiber-optic sensor functions as a sensor, physical 
changes (such as strain and temperature) along the total length of the fiber-optic sensor can be 
identified. When light is made incident on the fiber-optic sensor scattered light is generated 
everywhere. Although these scattered lights cause the attenuation of an optical signal in 
communication applications, its spectrum includes various types of information. This scattered 
light measures the distribution of physical changes generated in the fiber by utilizing the property 
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linearly related to elongation and contraction of the fiber. The scattered light consists of several 
types depending on the intensity. The Raman scattered light depends on temperature, it is widely 
used for the measurement of temperature distribution [3]. The Brillouin scattered light reacts to 
strain and temperature and has a feature capable of measuring comparatively large changes [4]. 
The Rayleigh scattered light is generated by particles smaller than the light wavelength and caused 
by the fluctuation of microscopic density and composition of molecules constituting fiber optics. 
This slight fluctuation has an inherent random pattern for each fiber-optic cable, and consequently, 
only peculiar wavelength satisfying conditions depending on a given strain is reflected. Since this 
is not a dynamic phenomenon, such as molecular vibration of the Raman and Brillouin scattered 
lights, the great advantage of strain measurement based on the Rayleigh scattered light is the high 
accuracy of strain distribution measurement [5]. OFDR (optical frequency domain reflectometry) 
and TW-COTDR (tunable wavelength coherent optical time domain reflectometry) are methods 
for analysis systems based on the Rayleigh scattered light. OFDR has a spatial resolution in the 
order of millimeters, and the measuring distance is less than 100 m [6]. TW-COTDR has a spatial 
resolution in the order of centimeters, and the measuring distance is 10 km or more [7]. 

There are several research topics related to the technology of displacement measurement using 
fiber-optic sensors. A multi-core fiber is a fiber containing multiple cores in a clad, and the shape 
of the multi-core fiber itself is calculated by sequentially integrating strain measured in each core 
from one end [8]. Since the multi-core fiber has a small diameter, a shape can be formed flexibly 
despite the hard glass, whereas it is twisted easily and the twist results shape sensing error. The 
3DSensor is a cable containing optical fibers specialized for civil engineering structures, and under 
development. It is composed of a certain composite material in which multiple fiber optics are 
built and a coating material with high workability and durability designed to make it applicable to 
civil engineering structures. The field experiment using this 3DSensor successfully measured 
banking of 48 m high [9]. 

We consider realizing the measurement of a civil engineering structure several hundred meters 
length with a displacement accuracy of ±1 mm. Since high displacement accuracy is required and 
long-distance measurement is performed, we adopted the measuring system of TW-COTDR. The 
3DSensor was also adopted because it has sufficient characteristics for application to civil 
engineering structures, such as high workability in the ground and structures and that has actual 
achievement in field experiments, was adopted. In this study we demonstrated the experiments 
utilizing 45 m and 170 m 3DSensors. 
Overview of experiments 
(1) Fiber-optic cable 
The picture and cross-sectional diagram of the 3DSensor is shown in Fig. 1. Size of the cross-
section is 15 mm high and 50 mm wide. In addition, four fiber-optic sensors are embedded inside 
the 3DSensor. The distance between the fibers is approximately 4.5 mm. In this study, 45 m and 
170 m 3DSensors were utilized. 
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Fig. 1: Left:The photograph of the 3DSensor Right: cross-sectional diagram of the 3DSensor 

 
(2) Measuring instrument 
NBX-7031 manufactured by Neubrex Co. was adopted as the measuring instrument. It is a TW-
COTDR system based on the Rayleigh scattered light, and the measuring distance was 27 km. In 
this study, the measuring instrument's readout resolution and spatial resolution were set at 5 cm 
and 5 cm, respectively, in the 45 m test and at 2.5 cm and 5 cm, respectively, in the 170 m test. 
 
(3) Method of experiments 
Figs. 2 and 3 show the schematic diagram and the general appearance of the experiment, 
respectively. the 3DSensor was installed on a flat surface linearly, and it was fixed by placing 
weights at intervals of 5 m. Forced displacement of 2.5 mm, 5 mm, and 7.5 mm was given in the 
vertical direction at the points 22.5 m (45 m test) and 85.5 m (170 m test) apart from the end of 
the 3DSensor connected to the measuring instrument, respectively. We utilized a jack to apply 
forced displacement (Table 1). Vertical displacement of the 3DSensor at 2.5 m forward and 
backward from the position provided with forced displacement was measured at intervals of 20 
cm using a laser displacement transducer. Strains of fiber-optic sensors in the 3DSensor before 
and after deformation were measured, and deflection was calculated from the measurement of the 
strain. 
 

 
Fig. 2: Schematic diagram of the experiment 
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Fig. 3: General appearance of experiment 

 
Table 1: Experiment cases 

 
 
(4) Method for calculation 
At the beginning, the averages of strains at upper and lower surfaces measured by fiber-optic 
sensors are calculated, and they are considered as upper and lower strains. The difference between 
the upper and lower strains is calculated as the bending strain. The bending strain is divided by the 
distance between the fibers to convert it to curvature. The curvature is integrated from the fixed 
point to calculate the deflection angle. The deflection angle is further integrated from the fixed 
point to calculate deflection. In addition, to correct the error of global deflection generated by the 
integration, the moving average of the curvature was subtracted from the curvature. In this study, 
width of the window of the moving average was set to be 7.5 m, which is sufficiently larger than 
the local deformation region of this experiment. As an example of the measurement result, the 
result of the experiment in which forced displacement was given at the 22.5 m point of the 45 m 
3DSensor is shown in Fig. 4. The deflection before calibration is found to be excessive at the 45 
m point, which is farthest from the 0 m point where the integration started, although the shapes at 
the position where forced displacement was given coincide. On the other hand, the deflection after 
correction is considered to have been well corrected because the shape at the point where forced 
displacement was given is well maintained, and the deflection error at the 45 m point is found to 
be sufficiently small. 
 
 

Cable length(m) 45 45 45 170 170 170

Forced displacement position(m) 22.5 22.5 22.5 85.5 85.5 85.5

Forced displacement amount(mm) 2.5 5.0 7.5 2.5 5.0 7.5
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Fig. 4: Upper left: strain; upper right: bending strain; middle left: curvature; middle right: 

deflection angle; lower left: deflection; and lower right: deflection after correction 
 
Results of experiments 
Fig. 5 shows the results of experiments conducted using the 45 m 3DSensor, and Fig. 6 shows that 
using the 170 m 3DSensor. The each of the left graph shows the result of the calculation of 
deflection by the 3DSensor over the total length, and the right graph shows the comparison 
between the calculated deflection by the 3DSensor and the measured deflection by the laser 
displacement transducer. The place provided with forced displacement shows the maximum 
deflection in the local shape, and the result of the laser displacement transducer and the shape 
coincide. However, negative deflection is calculated in the areas on both sides of the area where 
the maximum deflection was calculated. The reason is that a large value is subtracted in the 
correction of the error of global deflection when a large strain exists locally within the width of 
the window. This tendency is significantly recognized with the increase in the forced displacement 
amount. Also, the error of global deflection is almost improved because deflection sufficiently 
close to zero was calculated at the 45 m and 170 m point, which is the farthest from the 0 m point 
where the integration starts. From the above results, we found that deflection could be calculated 
with high accuracy both in the 45 m and 170 m tests. 
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Fig. 5: Results of tests in which forced displacement was given at 22.5 m points of the 3DSensor 

45 m long 
(Forced displacement: Upper 2.5 mm, middle 5.0 mm, and lower 7.5 mm) 

 

 
Fig. 6: Results of tests in which forced displacement was given at 85.5 m points of the 3DSensor 

170 m long 
(Forced displacement: Upper 2.5 mm, middle 5.0 mm, and lower 7.5 mm) 
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Conclusion 
This study conducted demonstration experiments to investigate feasibility of deflection 
measurement of long civil engineering structures based on distributed fiber-optic sensor. We 
adopted using the method for measuring strain distribution in the TW-COTDR system capable of 
performing measurements with high accuracy and at long distances and utilized 3DSensors (45 m 
and 170 m) that have the sufficient characteristic for applying to civil engineering structures of 
high workability for the ground and structures and the actual achievements of field experiments. 
As a result, we successfully estimated the local shapes with high accuracy in both 45 m and 170 
m tests. 
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Abstract. In order to develop an efficient and quantitative bridge inspection method using sensors, 
this study investigates feasibility of bridge damage detection using Bridge Weigh-In-Motion 
(BWIM) and deflection of the bridge. As deflection influence line changes due to damage in 
BWIM, a virtual axle is introduced to the vehicle and the process of axle weight identification so 
that the increase of identified wheel loads due to damage can be distributed to the virtual axle. 
Bridge damage thus can be detected by examining the wheel load on the virtual axle, which should 
theoretically be zero if the condition of the bridge has not changed from the reference state. 
Changes in the wheel load of the virtual axle due to damage in the bridge were observed from a 
laboratory experiment as well as simulations. The results also indicated that the wheel load of the 
virtual axle varied depending on the position of the virtual axle and the damage position. 
Observations demonstrated that the damage identification accuracy by means of the virtual axle 
can be improved by selecting the appropriate position of the virtual axle. 
Introduction 
How to efficiently inspect and maintain bridge structures has become a keen technical challenge 
worldwide. In Japan as an example, around 32% of bridges have reached their design life of 50 
years in 2020 [1]. Although Japanese bridge inspection regulates visual inspections once every 
five years for highway bridges of longer than 2m since 2014, it is unclear whether the visual 
inspections can continue in this way due to a lack of experts and budgetary restrictions. For this 
reason, efficient and quantitative bridge inspection methods are needed. Structural health 
monitoring (SHM) thus has attracted attention as a technique to assist conventional visual 
inspections.  

In monitoring bridges, displacement is an effective physical quantity that can assess changes in 
the structural performance of the bridge structure, however, a fixed point is required. Meanwhile, 
with the development of image processing technology and the increasing resolution of digital 
cameras, it is becoming possible to identify the bridge displacement by video image analysis [2]. 
Nevertheless, even if the displacement is identified, it is difficult to determine healthy or damage 
without information on external forces. 

This study focuses on utilizing BWIM theory and bridge displacement for bridge damage 
detection, and aims to investigate the feasibility of a method to detect bridge damage by 
introducing the virtual axle to the vehicle, which does not exist in the original vehicle, and 
examining the weight distributed to the virtual axle in the process of identifying the axle weight 
of the BWIM using bridge displacement. The method using the virtual axle has the advantage that 
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it does not require a driving test with a vehicle of known axle weight to obtain a new influence 
line, as long as a reference influence line has been obtained. 
Damage detection theory in BWIM 
When an 𝑵𝑵-axle vehicle runs, the displacement response at the measurement point is expressed as 
a function of time as a superposition of the responses produced by each axle. The deflection 
influence line is obtained from the vehicle parameters such as the vehicle speed, the axle spacing, 
and each known axle weight 𝑷𝑷𝒃𝒃. Using the deflection influence lines obtained here, we define the 
reference influence line matrix 𝑰𝑰𝒃𝒃 as 𝑰𝑰𝒃𝒃𝒃𝒃𝒃𝒃, where 𝑰𝑰𝒃𝒃𝒃𝒃𝒃𝒃 denotes the influence line at the time t (𝟏𝟏 ≤
𝒃𝒃 ≤ 𝑲𝑲) for the 𝒃𝒃th axle(𝟏𝟏 ≤ 𝒃𝒃 ≤ 𝑵𝑵). Assuming no change in the deflection influence line, each 
axle weight and gross vehicle weight are identified by minimizing the error function 𝑬𝑬 in Eq. 1 
[3]. Eq. 1 indicates that the sum of the squares of the residuals of the assumed theoretical values 
and measured responses, i.e. the derivative by the axle weight is zero [3]. Each axle weight can be 
obtained in Eq. 2. The vehicle speed and each axle spacing are assumed to be known. 
 
𝐸𝐸 = (𝑫𝑫𝑚𝑚 − 𝑰𝑰𝑏𝑏𝑷𝑷)𝑇𝑇(𝑫𝑫𝑚𝑚 − 𝑰𝑰𝑏𝑏𝑷𝑷).                 (1) 

 
𝑷𝑷 = �𝑰𝑰𝑏𝑏𝑇𝑇𝑰𝑰𝑏𝑏�

−1
𝑰𝑰𝑏𝑏𝑇𝑇𝑫𝑫𝑚𝑚.                  (2) 

 
where 𝑫𝑫𝒎𝒎＝{𝑫𝑫𝒎𝒎(𝟏𝟏),⋯ ,𝑫𝑫𝒎𝒎(𝑲𝑲)}𝑻𝑻 ∈ ℝ𝑲𝑲×𝟏𝟏   is the newly measured displacement response 

when this vehicle crosses the bridge, 𝑷𝑷＝{𝑷𝑷𝟏𝟏,⋯ ,𝑷𝑷𝑵𝑵}𝑻𝑻 ∈ ℝ𝑵𝑵×𝟏𝟏 is the identified axle weight in 
BWIM. 

Problem of Original BWIM. The fundamental assumption of the BWIM theory is that the 
influence line (here, deflection influence line (DIL)) of the bridge does not change. In other words, 
it is assumed that 𝑰𝑰𝒎𝒎 = 𝑰𝑰𝒃𝒃, where 𝑰𝑰𝒎𝒎 ∈ ℝ𝑲𝑲×𝑵𝑵 is the deflection influence line obtained from the 
newly measured displacement response. However, the deflection influence line increases when the 
bridge stiffness decreases due to damage. The deflection influence line of the damaged bridge is 
denoted as 𝑰𝑰𝒎𝒎 = 𝑰𝑰𝒃𝒃 + ∆𝑰𝑰, where ∆𝑰𝑰 is the change in shape of the deflection influence line due to 
damage. When the BWIM method is applied without considering the change in the deflection 
influence line (i.e. 𝑰𝑰𝒎𝒎 = 𝑰𝑰𝒃𝒃), the identified axle weight 𝑷𝑷 is larger than the real axle weight 𝑷𝑷𝒎𝒎. 
Thus, when the deflection influence line changes due to damage, the identified axle weight is 
identified as 𝑷𝑷𝒎𝒎 + ∆𝑷𝑷. If the heavily identified axle weight ∆𝑷𝑷 can be extracted somehow, it 
indicates the increase in the deflection influence line of the bridge due to damage. In order to 
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Fig. 1 Concept of virtual axle in BWIM 
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extract the heavily identified axle weight, the change in the influence line due to damage is 
identified as the weight of the virtual axle by adding the influence line of the virtual axle to the 
matrix 𝑰𝑰𝒃𝒃 as shown in Eq. 3. This study investigates the possibility of damage detection based on 
this value of the virtual axle. Cantero et al. (2015) showed the weight of the virtual axle is 
calculated as 0kN theoretically if there have been no changes in the influence line [4]. 

 

�
𝐼𝐼𝑏𝑏11 ⋯ 𝐼𝐼𝑏𝑏1𝑁𝑁
⋮ ⋱ ⋮

𝐼𝐼𝑏𝑏𝑏𝑏1 ⋯ 𝐼𝐼𝑏𝑏𝑏𝑏𝑁𝑁
� ∈ ℝ𝑏𝑏×𝑁𝑁 → �

𝐼𝐼𝑏𝑏11 ⋯ 𝐼𝐼𝑏𝑏1𝑁𝑁
⋮ ⋱ ⋮

𝐼𝐼𝑏𝑏𝑏𝑏1 ⋯ 𝐼𝐼𝑏𝑏𝑏𝑏𝑁𝑁 

𝐼𝐼𝑏𝑏1𝑁𝑁+1
⋮

𝐼𝐼𝑏𝑏𝑏𝑏𝑁𝑁+1
� ∈ ℝ𝑏𝑏×(𝑁𝑁+1).               (3) 

 
where 𝑰𝑰𝒃𝒃𝑲𝑲𝑵𝑵+𝟏𝟏 denotes the influence line for a virtual axle. 
Concept of Virtual Axle. To simplify the explanation, assuming that a single axle vehicle 

including the virtual axle with known axle spacing passes through a bridge. When the virtual axle 
is placed behind the real axle, the influence line of the virtual axle is placed later on the time axis 
than the real axle, as shown in Fig. 1(a). When the virtual axle is placed forward, the influence line 
of the virtual axle is placed earlier on the time axis. In a healthy condition, when BWIM method 
is applied, the axle weight is distributed to the real axle and a value of almost zero is distributed to 
the virtual axle. However, in the damaged condition, as shown in Fig. 1(b), the damage is 
distributed to the influence line of the virtual axle. As described above, this study focuses on the 
fact that, in the process of axle weight identification in BWIM, the difference between the 
reference deflection influence line and the damaged deflection influence line is calculated as the 
weight of the virtual axle by introducing the virtual axle into the identification system matrix. Note 
that the real axle weight and the newly deflection influence line are essentially unknown, and only 
the measured displacement identifies each axle weight including the virtual axle. 
Laboratory experiment 
A moving vehicle experiment on a model bridge is conducted to verify validity of the damage 
detection by means of the BWIM method. The model bridge is a simply supported beam with span 
length of 5.4m, and width of 303mm, as shown in Fig. 2(a). The entrance side is pin-supported 
and the exit side is roller-supported. We introduced artificial damage into the model bridge. The 
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Fig. 2 Schematic diagram and photos of the model bridge and car. 
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reinforced damaged section is regarded as the healthy condition (INT). The considered damage 
scenarios are shown in Fig. 2: DMG1 scenario models a local reduction in stiffness at the girder 
end near the exit support, DMG2 scenario models damage near the span center and DMG3 scenario 
considers both DMG1 and DMG2 scenarios. In DMG1 and DMG2, the damage areas other than 
the target damage area were reinforced by steel plates as shown in Fig. 2(b). For the moving vehicle 
experiment, a two-axle vehicle was used. Total weight of the vehicle was 0.215kN (0.107kN for 
both front and rear axles), and the axle spacing was 0.4m. The vehicle speed during the experiment 
was set to a constant velocity of 1.0497 m/s. Three measurement points (D1, D2, and D3) at 
quarter, center and three quarter span are considered. Laser sensors were installed at the entrance 
and exit to detect the entry and exit of vehicles. The sampling frequency was 200Hz. In each 
scenario (INT, DMG1, DMG2, and DMG3), the displacement for 10 times in a constant travel 
direction was measured. In the moving vehicle experiment, we applied a low-pass filter at 1Hz as 
a pre-processing step to smooth the displacement data to the extent that the waveform shape is not 
disturbed. The displacement responses from the sensors at the entrance and exit are measured and 
averaged. The measured and filtered displacement response at each measurement point for each 
scenario (INT, DMG1, DMG2, and DMG3) are shown in Figs. 3(a) and (b). The deflection 
influence line calculated at each measurement point of the model bridge is shown in Fig. 3(c). 

Result. Fig. 4 shows the difference in the deflection influence lines for each scenario. The 
deflection influence lines at the measurement points near the damage show more significant 
changes with damage than at the other measurement points. Fig. 4 also shows that the effect of 
damage on the overall shape of the deflection influence line is greater when the damage is located 
near the center of the bridge than when the damage is located near the edges. Therefore, it is useful 
for estimating the position of the damage when a difference in trend can be identified, such that 

 
(a) Original displacement          (b) Filtered displacement                  (c) Influence line 

Fig.3 Displacement responses and deflection influence lines. 
 

 
(a) INT-DMG1                (b) INT-DMG2                         (c) INT-DMG3 

Fig. 4 Difference of deflection influence lines for each scenario. 
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the weight of the virtual axle identified using the displacement at specific measurement point is 
more distributed than at other measurement points. In order to confirm the accuracy of the 
calculated deflection influence lines and the changes in the axle identification results due to 
damage, we identified each axle weight using the displacement responses at each measurement 
point in each scenario of the experiment with the reference deflection influence lines. The 
displacement responses for the INT condition were newly measured under the same conditions as 
the displacement responses for which the reference deflection influence lines were calculated. The 
identification results are presented in Table 1. We identified each axle weight with errors within 
±1.1% at each measurement point in the INT condition. However, the error of the identified axle 
weights gets larger at each measurement point in the DMG condition and is particularly large at 
measurement points near the damage. This result also shows that the error also increases when the 
damage is spread over several positions. 
Feasibility study 
Using the theory described in the previous section, this study applied BWIM including the virtual 
axle to investigate the possibility of damage detection focusing on the values distributed to the 
virtual axle. 

Simulation of Single Axle Vehicle and Virtual Axle Weight. In order to reduce errors caused 
by multiple axles and to clarify the effect of the damage on the virtual axle weight, this study 
considers a single axle vehicle where the noise and the dynamic effects have been neglected. A 
numerical simulation of a coupled vehicle-bridge interaction system is carried out to analyze the 
traffic vibration with a single axle vehicle [5].  

A bridge and vehicle in the simulation are shown in Fig. 5. The virtual axle is placed in sequence 
within a range of -5.4m to 5.4m forward and backward from the real axle. In order to investigate 
how the damage position and the position of the virtual axle affect identification of the virtual axle 
weight, the simulation considered the local damage near the measurement points, which reflected 
the effects of the damage. A total of four scenarios were investigated: without damage (INT), with 

Table 1 Axle weight estimation results using model bridge displacements  
(True value: 0.107kN for both front and rear axles) 

 INT DMG1 DMG2 DMG3 
axle[kN] front rear front rear front rear front rear 

D1 0.108  0.106  0.103  0.119  0.153  0.119  0.147  0.127  
D2 0.107  0.107  0.101  0.122  0.164  0.098  0.156  0.110  
D3 0.106  0.108  0.099  0.133  0.147  0.093  0.136  0.116  

 

Span length : 5.4m
Young`s modulus : 2.1×1011 N/m2

Cross-section area : 6600×10-6 m2

Second moment of area : 548000×10-12 m4
Black： element number
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Fig.5 Bridge and vehicle models for simulation. 
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damage at quarter span near D1 (DMG A), with damage at half span near D2 (DMG B), and with 
damage at the three quarters span near D3 (DMG C).  Damage scenarios simulated damage by 
reducing the bending stiffness of the specified element, assuming a reduction in stiffness due to 
corrosion or other damage.  

The relationship between the position of the virtual axle and the identified virtual axle weight 
are shown in Fig. 6. The horizontal axis represents the position of the virtual axle (distance from 
the real axle) and the vertical axis represents the relative magnitude as a percentage of gross vehicle 
weight (GVW). A negative distance means that the virtual axle is placed behind the real axle. A 
positive distance means that the virtual axle is placed in front of the real axle. It should be noted 
that when the virtual axle is placed in front of the vehicle, the virtual axle weight showed a positive 
value when the damage is near the entrance (DMG A), whereas it showed a negative value when 
the damage is near the exit (DMG C). In contrast, the positive and negative values of the virtual 
axle weight are reversed when the virtual axle is placed at the behind of the vehicle. However, the 

 
(a)DMG A                                   (b) DMG B                                      (c) DMG C 

Fig. 6 Relationship between gross vehicle weight (GVW) and position of the virtual axle at 
each measurement point. 

 

ξξξ

Pm1

direction

x

Pm2

Damage

ξξξ

Pm1

direction

x

Pm2

Damage

ξξξ

Pm1

direction

x

Pm2

Damage

(a)

(b)

(c)

X:Measurment point
Disp

Disp

Disp

Time
(or Position)

Time
(or Position)

Time
(or Position)

Estimate
Axle Weight

Estimate
Axle Weight

Estimate
Axle Weight

Displacement under 
damage at entrance Real axle DIL×P1(Ẵ Pm1)

Virtual axle DIL×P2(>0)

Displacement
under healthy state

Displacement under 
damage at entrance Real axle DIL×P1(>Pm1)

Virtual axle DIL×P2(<0)

Displacement
under healthy state 

Real axle DIL×P1(>Pm1)Displacement
under healthy state 

Displacement under 
damage at span center

Virtual axle DIL×P2(＝0)

Virtual axle DIL

Real axle DIL

 
Fig. 7 Relationship between damage position and axle weight distribution. 
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virtual axle weight was less distributed for damage near the center (DMG B) than for other damage 
scenarios. 

Relationship Between Damage Position and Virtual Axle Weight. This section discusses the 
relationship between the damage position and the virtual axle weight under different position of 
the virtual axle.  

As shown in Fig. 7(a), when the virtual axle is placed in front of the vehicle (influence lines are 
placed earlier on the time axis), the virtual axle weight is identified as a positive value because the 
location where the displacement response changes due to damage is similar to the location of the 
deflection influence lines of the virtual axle. In contrast, when the virtual axle is placed behind the 
vehicle (placed later on the time axis), as shown in Fig. 7(b), the virtual axle weight is identified 
as a negative value because the displacement response changes due to damage are largely 
distributed to the real axle. The reason why the weight of the virtual axle is identified near 0kN in 
the central damage is that, as shown in Fig. 7(c), the damage at the span center greatly affects the 
overall shape of the displacement response. Therefore, the damage is distributed to the real axle, 
and not distributed to the virtual axle. Therefore, in damage detection using the identified virtual 
axle weight, the virtual axle should be placed in front of the vehicle when the damage is on the 
entrance side. On the other hand, the virtual axle should be placed behind the vehicle when the 
damage is on the exit side. In the next section, an optimal position of the virtual axle is examined 
so that changes in deflection of the bridge due to damage are well reflected to the virtual axle 
weight. 

Optimal Position of Virtual Axle. Based on the discussion on relationship between damage 
position and virtual axle weight in the previous section, the optimal position of the virtual axle is 
investigated so as to provide a positive virtual weight due to damage. For this investigation 
experimental displacement responses are considered. Vehicle axle weights are identified by means 
of the BWIM method while changing the position of the virtual axle. We define the optimal 
position of the virtual axle as the position where the difference of the estimated GVW with virtual 
axle and without virtual axle is maximized. In each scenario, the virtual axle is placed in sequence 
within a range of -5.8m to 5.4m forward and backward from the real front axle, and the axle 
weights are identified.  

The results are summarized in Table 2. In INT scenario, the weight of the virtual axle was 
identified as a maximum of 0.0002kN. Each axle weight was identified within a maximum error 
of ±0.1%. The reason why the virtual axle weight is not identified as the true value of 0kN is 
numerical errors in the process of solving the inverse problem. This study considers a pseudo-
inverse matrix to solve the inverse problem, where the ℝ𝑏𝑏×𝑁𝑁  matrix changes to ℝ𝑏𝑏×(𝑁𝑁+1)  by 

Table 2 Axle weight estimation results using model bridge displacements with virtual axle 
(True value: 0.107kN for both front and rear axles; optimal represents the optimal position of 

the virtual axle[m]) 

  INT DMG1 
axle[kN] front rear virtual optimal front rear virtual optimal 

D1 0.105  0.109  0.000  -2.47  0.103  0.118  0.002  -2.18  
D2 0.104  0.110  0.000  -2.30  0.095  0.127  0.001  2.61  
D3 0.103  0.111  0.000  2.95  0.094  0.138  0.001  3.24  
  DMG2 DMG3 

axle[kN] front rear virtual optimal front rear virtual optimal 
D1 0.144  0.125  0.003  0.71  0.140  0.133  0.002  0.82  
D2 0.148  0.109  0.006  0.88  0.143  0.120  0.004  1.11  
D3 0.129  0.106  0.006  1.17  0.123  0.127  0.004  1.52  
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adding the deflection influence line of the virtual axle to the reference influence line matrix (see 
Eq. 3).  

It is observed that compared to the INT condition, the proportion of the total distribution to the 
virtual axle weight increased at the measurement points due to damage and the identified virtual 
axle weight showed positive value. In addition, the virtual axle weight in damaged condition 
showed a different trend at each measurement point. In the damage scenario considering damage 
near the exit (DMG1), for each measurement point (see Fig. 2), the measurement point (D1) 
located far from the damage identified the highest positive value on the virtual axle weight. 
However, it can be seen that damage near the girder ends does not significantly affect the 
displacements and has little effect on the virtual axle weight. In the damage scenario considering 
damage between the quarter and the span center (DMG2), the measurement point (D3) located far 
from the damage identified the highest positive value on the virtual axle weight. Similar to the 
simulation considered in the previous section, optimal position of virtual axle for each 
measurement point was located in the forward from the vehicle. However, there was no 
improvement in accuracy in multiple damages scenario (DMG3). 
Conclusions 
This paper investigates feasibility of damage detection of bridges utilizing displacement responses, 
BWIM and the virtual axle. The increase in virtual axle weight is adopted as damage indicator. A 
laboratory moving vehicle experiment on a bridge and simulation on vehicle-bridge interaction are 
carried out for the feasibility investigation. Increases of deflection influence lines and identified 
axle weights due to damage in the bridge were observed in both simulation and experiment. It is 
observed that when damage occurs at the bridge, the virtual axle weight varied from the healthy 
condition. However, the identified virtual axle weights were found to be positive or negative, 
depending on the position of the virtual axle and the position of the damage. Therefore the optimal 
position of the virtual axle was examined, and it shows that the virtual axle weight is identified as 
the highest positive value at measurement points far from the damage. In other words, it shows a 
possibility of damage identification and damage location identification using the weight and 
location of the virtual axle. 
References 
[1] Ministry of Land, Infrastructure, Transport and Tourism, Road Bureau, Annual Report on 
Road Maintenance, 2020 (in Japanese). 
[2] T. Ojio, C. Carey, E. O’Brien, C. Doherty, and S. Taylor: Contactless Bridge Weigh-in-
Motion, Journal of Bridge Engineering, ASCE, 21(7) (2016) 04016032. 
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000776 
[3] F. Moses: Weigh-in-motion system using instrumented bridges. Transportation Engineering 
Journal, ASCE, 105 (1979) 233-249. https://doi.org/10.1061/TPEJAN.0000783 
[4] D. Cantero, R. Karuomi, A. Gonzalez: The Virtual Axle concept for detection of localized 
damage using Bridge Weigh-in-Motion data, Engineering Structures, 89 (2015) 26-36. 
https://doi.org/10.1016/j.engstruct.2015.02.001 
[5] P.J. McGetrick, C.W. Kim, A. Gonzalez and E. O’Brien: Experimental validation of a drive-
by stiffness identification method for bridge monitoring, Structural Health Monitoring, 14(4) 
(2015), 317-331. https://doi.org/10.1177/1475921715578314 
 
 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 251-258  https://doi.org/10.21741/9781644902455-32 

 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

251 

A Mechanical method of classifying the state of solid matter 
beneath a floating cover over an anaerobic lagoon 

Dat Nha BUI1,a*, Thomas KUEN2,b, Benjamin Steven VIEN1,c,  
L.R. Francis ROSE3,d, Wing Kong CHIU1,e  

1Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3008, 
Australia 

2Melbourne Water Corporation, 990 La Trobe Street, Docklands, VIC 3008, Australia 
3Defence Science and Technology Group, 506 Lorimer Street, Fishermans Bend, VIC 3207, 

Australia 
aDat.Bui1@monash.edu, bThomas.Kuen@melbournewater.com.au, cBen.Vien@monash.edu, 

dFrancis.Rose1@defence.gov.au, eWing.Kong.Chiu@monash.edu 

Keywords: Structural Health Monitoring, HDPE Membrane, Geomembrane, Floating 
Cover, Scum, Sewage Treatment, Wastewater Treatment, Impact Hammer, Tap Testing 

Abstract. The formation and accumulation of scum—a layer formed from fats, oils and greases 
(FOG) and solid particles in the sewage—can occur under the geomembrane of a covered 
anaerobic wastewater treatment lagoon. Monitoring the state of scum is important for both 
operational reasons in the management of a wastewater treatment plant and for physical reasons 
related to the structural health assessment and monitoring of the covers. This task is challenging 
and currently involves an inspector physically assessing the scum through various sampling ports 
across the membrane. Another more subjective and less expensive method is where an experienced 
assessor classifies the state of the scum by walking on the cover and “feeling” its response to the 
impact of their footsteps. The development of a new objective, rather than the current subjective, 
approach to assessing the state and extent of the scum under the covers is proposed. In 
collaboration with Melbourne Water, we investigate an in-situ mechanical method to 
quantitatively assess the state of this scum. In this study, the frequency response functions of the 
membrane-scum system of different states of scum excited using a low-energy mechanical 
excitation were estimated. Our findings indicate that the high-gain frequency range of the cover-
scum system is higher with the scum of a harder state ranging from 30-40 Hz for soft-to-fluffy 
scum up to 60-80 Hz for hard scum. Our findings also indicate that the response of the cover-scum 
system is highly damped. Differences between different states of scum have been observed in both 
the gain and the phase angle of the frequency response functions. Numerically, the area under the 
frequency response function curves decreases with the hardness of scum. This information paves 
the way for the next steps of this work, including improving the accuracy in modelling the scum 
and developing a mechanical means to quantitatively monitor the scum formation. 
Introduction 
Anaerobic lagoons have been widely adopted in wastewater secondary treatment processes as they 
are cost-effective [1,2]. To prevent the unpleasant odours and greenhouse gases from being 
released into the environment, uncovered lagoons rely on a naturally formed crust layer on top of 
them [3,4], which is not as effective as employing geomembranes as floating covers for the 
lagoons. Furthermore, in covered lagoons, the biogas generated during anaerobic digestion of the 
sewage, which is rich in methane, can be collected and utilised to generate electricity [1]. 

Scum—a layer formed from fats, oils and greases (FOG) and solid particles in the sewage—
can form, and accumulate under the cover of a covered anaerobic lagoon. It has been observed in 
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the dairy and meat processing industries that accumulated scum in the lagoons can have some 
undesireable impacts such as reducing the effective operation volume and clogging the gas 
collection system hence reducing the biogas yeild [5,6]. The scum layer can also consolidate and 
solidify over time forming the so-called scumbergs. In certain circumstances, their buoyance and 
movement can result in high-level stresses to the cover, or even cause irreversible damage to it [7-
10]. 

The ability to monitor the state and extent of the scum, and predict the timing and extent of its 
future spread, is therefore important in helping to manage the operation of these anaerobic lagoons 
and mitigate any unwanted impacts on either the wastewater treatment processes or the structural 
integrity of the floating covers. 

Melbourne Water’s (MW) Western Treatment Plant (WTP) has two covered anaerobic lagoons, 
and they also experience the development of scum. Here, a cover-walk inspection is the current 
method to determine the extent and state of scum under the covers. In this method, an experienced 
operator qualitatively classifies the scum as “fluffy, soft, medium” or “hard” by walking on the 
cover and “feeling” its response to the impact of their footsteps [11]. A quantitative and objective 
method will provide a more useful, valuable, accurate, consistent, and automatable scum 
assessment procedure. 

Recently, in the collaboration between MW Corporation and the research team from Monash 
University Acoustic Laboratory, efforts have been made to deal with the problem of how to 
quantitatively determine the extent and state of the scum under the covers. Several non-contact 
scum assessment methods with different approaches including thermography [11,12] and 
photogrammetry [8,13] have already been developed. This paper on the other hand demonstrates 
the potential additional benefits of a technique using mechanical vibrations to characterise the state 
of scum underneath the cover. 
Materials and Methods 
In this study, the cover-scum system (the system) was considered a single-input single-output 
(SISO) system which was excited by tapping an impact hammer on a striking plate placed on the 
cover. The input force was recorded by the in-built force transducer of the hammer; and 
simultaneously, the output acceleration was measured using an accelerometer placed next to the 
excitation point (Figure 1a). This was done repeatedly at various locations on the cover to assess 
different states of scum across the lagoon (Figure 1b). 

The recorded data length was maintained sufficiently long to ensure each tap is fully captured 
i.e., the input and output have decayed to near zero at the end of the recording. Assuming that all 
the taps are independent of each other, each recorded tap can then be considered an independent 
observation of the system’s dynamic characteristic. By maintaining a consistent experiment setup 
for all the measurements across the lagoon, and since the size of the lagoon is significantly large 
(approximately 450 m × 175 m) that the energy from the excitation is expectedly dissipated before 
the boundary effect could take place, any change in the dynamic response, therefore, would imply 
a change in the state of the scum underneath the cover. 

The states of scum reported in the latest cover-walk inspection provided by MW up to the 
experiment day at the related locations were assigned to the collected tap data (Figure 1c & d). 
The recorded time series data was transformed into the frequency domain. The frequency response 
function (FRF) was then evaluated in terms of gain and phase angle. Finally, the area under the 
FRF gain curves (AUC) across certain frequency bandwidths were calculated for every tap and 
statistically analysed to check if they are significantly different across different states of scum. 
Further details of the whole procedure are described below. 
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Experiment Setup 
The striking plate used in the experiment is a 65×65×8 mm steel plate. The accelerometer 
mounting plate was sized 86×115×8 mm and placed next to the striking plate. The mounting plate 
was used as the sensor cannot be attached directly to the cover, while the striking plate was a safety 
precaution to avoid directly tapping the cover. The selection of the plates was to ensure that they 
maintain contact with the cover by their weights under the low-energy excitation from the hammer, 
yet they are light enough not to absorb all the energy. The edge-to-edge distance between the two 
plates was 10 mm. Both the hammer and the accelerometer were connected to a multi-channel data 
acquisition device so that their readings were recorded simultaneously.  

For each state of scum (so-called “class”) 𝑐𝑐, 𝐿𝐿[𝑐𝑐] locations were tested. At each location 𝑙𝑙 ∈
�1,2, … , 𝐿𝐿[𝑐𝑐]�, 𝑆𝑆[𝑐𝑐,𝑙𝑙]  taps were performed repeatedly, and 𝑆𝑆[𝑐𝑐,𝑙𝑙]  data blocks �𝑥𝑥[𝑐𝑐,𝑙𝑙,𝑠𝑠],𝑦𝑦[𝑐𝑐,𝑙𝑙,𝑠𝑠]� with 
𝑠𝑠 ∈ �1, 2, … , 𝑆𝑆[𝑐𝑐,𝑙𝑙]� were recorded accordingly at Δ𝑓𝑓 sampling frequency. 

 
Figure 1. (a) Experiment setup, (b) tested locations ( ) across the lagoon, (c) the cover-walk 
inspection report provided by MW, and (d) the scum states used in the cover-walk assessment. 

 
Data Processing 
Each data block was verified automatically with an in-house developed tap qualification function 
followed by a visual inspection of the time series plots. After the verification process, any tap with 
a double-hit or too weak (“under range”) input was discarded. The remaining valid taps were then 
truncated to the same length 𝑇𝑇  and rearranged into 𝑀𝑀[𝑐𝑐,𝑙𝑙]  truncated sub-records 
�𝑥𝑥[𝑐𝑐,𝑙𝑙,𝑚𝑚][𝑛𝑛], 𝑦𝑦[𝑐𝑐,𝑙𝑙,𝑚𝑚][𝑛𝑛]� , where 𝑛𝑛 ∈ {0, 1, … ,𝑁𝑁 − 1} , 𝑁𝑁 = 𝑇𝑇Δ𝑓𝑓 , and 𝑚𝑚 ∈ �1, 2, … ,𝑀𝑀[𝑐𝑐,𝑙𝑙]� , 
𝑀𝑀[𝑐𝑐,𝑙𝑙] ≤ 𝑆𝑆[𝑐𝑐,𝑙𝑙]. To reduce leakage error, a 2% exponential window was applied to both 𝑥𝑥[𝑐𝑐,𝑙𝑙,𝑚𝑚] and 
𝑦𝑦[𝑐𝑐,𝑙𝑙,𝑚𝑚]. 

For each valid tap 𝑥𝑥[𝑐𝑐,𝑙𝑙,𝑚𝑚] and 𝑦𝑦[𝑐𝑐,𝑙𝑙,𝑚𝑚], input and output power spectral density (PSD) 𝐺𝐺𝑥𝑥𝑥𝑥 and 
𝐺𝐺𝑦𝑦𝑦𝑦, cross power spectral density (CPSD) 𝐺𝐺𝑥𝑥𝑦𝑦, and FRF 𝐻𝐻 were calculated. For each location, 
squared coherence values 𝛾𝛾𝑥𝑥𝑦𝑦2  were also evaluated. 

The averaged AUC values over a bandwidth [𝑓𝑓𝑎𝑎 ,𝑓𝑓𝑏𝑏] is defined as the integration of the FRF 
gain over that bandwidth. With discretized frequencies, the integration is approximated using a 
trapezoidal sum as below: 

 𝐸𝐸𝑓𝑓𝑎𝑎
𝑓𝑓𝑏𝑏

𝐻𝐻 = 𝐸𝐸𝐻𝐻[𝑎𝑎, 𝑏𝑏] =
𝑑𝑑𝑓𝑓
2
�(|𝐻𝐻[𝑘𝑘]| + |𝐻𝐻[𝑘𝑘 + 1]|)
𝑏𝑏−1

𝑘𝑘=𝑎𝑎

, (1) 

with 𝑓𝑓𝑎𝑎 = 𝑎𝑎𝑑𝑑𝑓𝑓, 𝑓𝑓𝑏𝑏 = 𝑏𝑏𝑑𝑑𝑓𝑓; 𝑎𝑎, 𝑏𝑏 ∈ �0,1, … , �𝑁𝑁
2
�� and 𝑏𝑏 > 𝑎𝑎. 
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Results 
Table 1 shows the classes of scum used in the cover-walk reports sorted by the level of hardness, 
and the number of valid locations and taps collected for each class. In total, 672 taps were collected 
on two anaerobic lagoons on days D+139, D+180 and D+188, where D was the day of the cover-
walk report being used for scum class reference values. 462 of these taps were accepted and further 
processed. They were measured at 33 unique locations across 7 different states of scum. Figure 2a 
shows the waveforms of the input force and response acceleration of 18 taps collected at the same 
location, “25W.26”, during the first 100 ms. To compare the shape of these waveforms, they are 
normalized by their local maximum value and plotted in Figure 2b. PSD, CPSD, FRF gain and 
phase angle of these 18 taps are shown together with the squared coherence values of the related 
location in Figure 3. 

The FRF gain and phase angle calculated for each of all 462 valid taps at all locations are plotted 
in Figure 4a&b; the corresponding coherence values of 33 related locations are shown in Figure 
4c. The colour of a line on these plots represents its related scum class. Note that in Figure 4a&b, 
FRF curves of taps that belong to the same location tend to stay very close to each other forming 
a “bundle” of lines that visually appears as a thick line.  

Standard notched box charts described in [14] were used to visualize the AUC values calculated 
over two different frequency bandwidths [10, 20] Hz and [20, 50] Hz (Figure 5, left and right 
respectively). Each box represents the data of one scum class. 
 

Table 1. Scum classes used in cover-walk reports. 

Abbreviation Scum Class Total Locations  
with Valid Taps 

Total Valid Taps 

A Air 4 43 
W Water 4 59 
W/F Water/Fluffy - - 
F Fluffy 8 99 
F/S Fluffy/Soft - - 
S Soft 6 120 
S/M Soft/Medium 5 42 
M Medium 1 17 
M/H Medium/Hard - - 
H Hard 5 82 

 
Discussion 
Waveform Reproducibility and System Linearity 
In the time domain, it can be seen from Figure 2a that the peak of the impact force ranges from 
4.16 N to 26.21 N. Accordingly, the maximum absolute response acceleration recorded in the 
lightest tap is 0.71 m/s² while the value is 3.35 m/s² for the hardest tap. Figure 2b further shows 
that all the taps share the same waveform. In addition, the width of the impulse is about 5 to 6 ms. 

In the frequency domain, the input PSD curves (Figure 3a) of all taps gradually decrease with 
frequency and reach -20 dB attenuation from their maximum at above 300 Hz. In other words, 
with such excitations, the frequency characteristics of the system can be effectively analyzed up 
to 300 Hz. As mentioned previously, the level of excitation is different for each tap, hence the 
magnitudes of both input and output PSD are also different; however, the PSD and CPSD curves 
of all taps have a similar shape (Figure 3a,b&e). This similarity can be seen more clearly in the 
FRF gain and phase angle plots (Figure 3c,d) in which the curves of all taps stay very close to each 
other over the frequency range of 15 up to 150 Hz. This is an indication of good linearity of the 
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system over this bandwidth which is further confirmed by very high (> 0.95) squared coherence 
values (Figure 3f). Beyond 150 Hz, the output PSD curves of most of the taps start to degrade 
resulting in a degradation of the CPSD and FRF. 

 
Figure 2. Recorded time series of all the taps collected at location “25W.26” of soft scum plotted 
in absolute values (a, b) and normalised-to-maximum values (c, d).  
 

  
Figure 3. PSD, FRF and CPSD of all taps at location “25W.26” and squared coherence value of 
the location. PSD, FRF and CPSD are plotted on logarithmic scale. 

 
Frequency Response Function 
Relatively flat gain curves with slow, steady change in phase angles of the FRFs of all tested 
classes (Figure 4) indicate that the scum-cover system is highly damped. 

A change in the gain curves can be seen when the state of scum changes. For instance, an 
attenuation in the gain with a slope of about 10 dB per 10 Hz started to appear with the locations 
of fluffy scum and appeared more obvious with harder scum classes. The gain levelled out over 
the 30-40 Hz frequency band for “Fluffy” scum before slowly decreasing again. This high-gain 
frequency band slightly shifted to the right for harder scum, which was about 40-80 Hz for 
Soft/Medium scum and 60-80 Hz for “Medium” and “Hard” scum. 
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Figure 4. FRF gain (top) and phase angle (middle) of all valid taps and squared coherence values 
of each location (bottom). FRF gain is plotted in dB magnitude with reference value of 1 (m/s²)/N. 

 

   
Figure 5. AUC calculated over frequency bandwidths [10, 20] Hz and [20, 50] Hz. 

Similarly, a change in the phase plot can be seen in Figure 4. Although the rate of change of the 
phase angle appeared to be similar across all the tested states of scum, the phase plots of harder 
scum appeared to the right of those of softer scum. Specifically, for locations of “Air” and “Water”, 
the phase angle crossed 90° at around 30-50 Hz, while the observed range for “Fluffy” scum is 30-
80 Hz. The ranges for “Soft, Soft/Medium” and “Hard” are 40-80 Hz, 60-100 Hz and 70-120 Hz 
respectively. 
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These observations demonstrate the potential of FRF to classify the states of scum and are 
further confirmed by the statistical results regarding the extracted AUC values (Figure 5). 
Specifically, over both [10, 20] Hz and [20, 50] Hz frequency bandwidths, the median (shown as 
the horizontal line within the box) of the AUC values calculated for the locations of “Air” is the 
highest, followed by that of “Water” and further decreased when the scum was harder.  

Over the [10, 20] Hz bandwidth, the median of “Soft” scum is significantly lower than those of 
“Air, Water” and “Fluffy” and significantly higher than those of “Soft/Medium, Medium” and 
“Hard”, indicated by non-overlapping notches of the boxes. However, large variations in the 
results indicated by longer boxes and whiskers can be seen for “Air, Water” and “Fluffy”.  

The [20, 50] Hz bandwidth shares a similar trend with the [10, 20] Hz bandwidth providing 
slightly better differentiation among “Soft/Medium, Medium” and “Hard” but is poorer in 
distinguishing other states of scum. AUC calculated for “Air, Water” and “Fluffy” groups have 
smaller variation with [20, 50] Hz bandwidth compared to [10, 20] Hz while it was the opposite 
for “Soft” and “Soft/Medium”. 

 
Errors and Sources of Errors 
The squared coherence values of most tested locations were higher than 0.8 from 20 Hz to over 80 
Hz confirming good linearity of the collected data over this frequency range. However, sharp dips 
can be seen in coherence at 50 Hz which correspond to furious peaks/dips in the FRFs. It was later 
confirmed that these dips were due to electrical interference caused by the 50 Hz AC power grid 
used to power the data acquisition device and did not happen after the device was replaced with a 
battery-powered one. 

Bias errors in the scum class reference values also contributed to the uncertainty of the current 
results. First, these reference values (“ground truths”) were taken from a cover-walk report which 
as discussed above are subjective. Second, the data was aggregated from measurements done on 
three different days (which are 41, 8, and 49 days apart); additionally, these days are more than 
130 days later than the day the cover-walk inspection was performed. During these long periods 
of time, the state of scum may have changed.  
Summary 
This paper demonstrated the potential to differentiate the states of scum underneath the floating 
cover of an anaerobic lagoon using FRFs calculated from the force and acceleration data collected 
when the cover is excited using an impact hammer. Some differences can be seen in both the gain 
and the phase angle plots of the FRFs. AUC values extracted from the FRF gain further confirmed 
this observation numerically as they decreased with harder scum. Nevertheless, further studies are 
yet to be done to improve the capability of using FRFs to classify the state of scum by (1) 
optimising the frequency range in the AUC value calculations, (2) incorporating more features 
extracted from FRFs including the phase angles and the coherence values into the statistical 
classification model, (3) improving the instrumentation setup including optimising the selection of 
striking and sensor mounting plates, and (4) reducing the bias errors. 
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Abstract. This paper proposes a new amplitude-modulation vibro-acoustic (AMVA) technique to 
detect thermal damage in pristine graphene (PRG) mortar materials. A new third-order solution 
for an amplitude-modulated low-frequency pump wave and a high-frequency probe wave in 
infinite isotropic material is presented. The solution includes higher-order sidebands generated by 
intrinsic and acquired nonlinearities. A nonlinear parameter is defined according to the third-order 
solution to assess the different levels of thermal damage. The experimental study demonstrates the 
sensitivity and feasibility of the AMVA technique by comparing the nonlinear parameter with the 
linear measurements of the ultrasonic pulse velocity (UPV) test. The results show that the proposed 
AMVA technique is a potential tool to detect and monitor thermal damage in cement-based 
structures. 
Introduction 
The exceptional durability and excellent mechanical properties of cement-based material are the 
primary reasons cement-based material is one of the most popular construction materials 
worldwide. However, material limitations, design and construction practices, and severe exposure 
conditions can cause cement-based material to deteriorate, which leads to aesthetic, functional, or 
safety problems [1-3]. Therefore, there is a powerful incentive to develop nondestructive testing 
(NDT) techniques for damage detection and structural health monitoring (SHM) techniques for 
long-term in-situ monitoring of structures. 

The vibro-acoustic technique is one of the promising techniques for damage detection in 
cement-based material since the low-frequency (LF) pump wave can provide an intensive field to 
perturb the defects and cracks while the high-frequency (HF) probe wave is sensitive to microscale 
damages because of its small wavelength [4-7]. The interaction of the pump wave and probe wave 
in the nonlinear system, which contains distributed nonlinearity or localized nonlinearity, reveals 
as sidebands in the frequency spectrum. Assuming the frequency of LF pump wave is 𝑓𝑓𝐿𝐿, while 
HF probe wave is 𝑓𝑓𝐻𝐻, thus it can be found that the sidebands show at the frequency of 𝑓𝑓𝐻𝐻 ± 𝑁𝑁 ∙
𝑓𝑓𝐿𝐿 (𝑁𝑁 = 1,2,3 … ). The index for damage evaluation is generally related to the sidebands and 
fundamental components. Furthermore, the measurements of the vibro-acoustic technique are less 
affected by unwanted nonlinear sources, such as the data acquisition system and coupling 
conditions. The combination of the LF pump wave and the HF probe wave brings benefits to 
damage detection, but it also has some deficiencies in applications. First, the selection of frequency 
of LF pump wave is a key procedure. When choosing a higher LF pump wave, the frequency range 
of sidebands 𝑓𝑓𝐻𝐻 ± 𝑁𝑁 ∙ 𝑓𝑓𝐿𝐿 is broad, and hence, a broadband receiving instrument is needed, such as 
a laser vibrometer or broadband transducer which is usually costly. While using a lower LF pump 
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wave will result in a large burden to the emitting instrument, such as an electro-forced shaker, 
particularly for a long-term monitoring. Therefore, studies have been carried out to develop a 
vibro-acoustic technique by i) enhancing the practical procedures, ii) inducing novel signal 
processing approaches, and iii) utilizing new pump and probe waves. 

It is interesting that many studies have been conducted to apply pump and probe waves in vibro-
acoustic techniques. Duffour P et al. carried out a study that a swept HF wave was applied, and 
LF excitation is the resonant response of the steel beam [8]. Frouin J et al. proposed a vibro-
acoustic technique in which the LF pump wave was fixed while HF was swept wave in a broad 
range [9]. Dziedziech K et al. used swept waves for pump wave and probe wave [10]. Apart from 
the swept wave, Yin T et al. proposed three amplitude-modulated vibro-acoustic methods where 
LF pump wave was pre-amplitude-modulated to achieve lower energy consumption and versatility 
[11, 12]. However, in the previous study, the effect of higher-order sidebands sometimes was not 
considered, but it is sensitive to defects and cracks, resulting in increasing amplitude and numbers 
of sidebands. This study investigates the effect of higher-order sidebands in the amplitude-
modulated vibro-acoustic technique. Meanwhile, a nonlinear parameter based on the higher-order 
sidebands is established for the characterization of thermal damage in cement-based material. 
Theory 
Considering the 1D elastodynamic wave equation written as,  

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑐𝑐2[1 − 𝛽𝛽 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
− 𝛾𝛾 �𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
�
2

] 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝜕𝜕2
.  (1) 

where 𝑢𝑢 is the particle displacement, and the total solution 𝑢𝑢 = 𝑢𝑢1 + 𝑢𝑢2 + 𝑢𝑢3 is valid under the 
assumption 𝑢𝑢1 ≫ 𝑢𝑢2 ≫ 𝑢𝑢3. In addition, 𝑡𝑡 is the time, and 𝑥𝑥 is the Lagrangian coordinate. 𝛽𝛽 and 𝛾𝛾 
are the nonlinear parameters. Hence, Eq.(1) can be decoupled into, 
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The input signal of AMVA technique is, 

𝑢𝑢1 = 𝐴𝐴𝐻𝐻cos(𝜔𝜔𝐻𝐻𝜏𝜏 + 𝜙𝜙𝐻𝐻) + 𝐴𝐴𝐿𝐿2cos(𝜔𝜔𝐿𝐿2𝜏𝜏 + 𝜙𝜙𝐿𝐿2)[1 + 𝐴𝐴𝐿𝐿1cos(𝜔𝜔𝐿𝐿1𝜏𝜏 + 𝜙𝜙𝐿𝐿1)].  (5) 

where 𝐴𝐴𝐻𝐻cos(𝜔𝜔𝐻𝐻𝜏𝜏 + 𝜙𝜙𝐻𝐻) is the HF probe wave, and the subscript 𝐻𝐻 denotes the probe wave. 
Furthermore, 𝐴𝐴𝐿𝐿2cos(𝜔𝜔𝐿𝐿2𝜏𝜏 + 𝜙𝜙𝐿𝐿2)[1 + 𝐴𝐴𝐿𝐿1cos(𝜔𝜔𝐿𝐿1𝜏𝜏 + 𝜙𝜙𝐿𝐿1)]  is the amplitude-modulated LF 
pump wave.  

Inserting Eq.(5) into Eq.(3), it can be found that the nonlinear parameter is related to sidebands 
as follow, 

𝛽𝛽(2)~𝐴𝐴(𝜔𝜔𝐻𝐻±𝜔𝜔𝐿𝐿2) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴(𝜔𝜔𝐻𝐻±𝜔𝜔𝐿𝐿2±𝜔𝜔𝐿𝐿2).  (6) 

where the superscript (2) of 𝛽𝛽 indicates the nonlinear parameter only considering the second 
displacement field 𝑢𝑢2. Substituting the solution of 𝑢𝑢1 and 𝑢𝑢2 into Eq.(4), it can be seen that, 
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𝛽𝛽(2+3)~𝐴𝐴(𝜔𝜔𝐻𝐻±𝜔𝜔𝐿𝐿2),𝐴𝐴(𝜔𝜔𝐻𝐻±𝜔𝜔𝐿𝐿1)，，
𝐴𝐴(𝜔𝜔𝐻𝐻±2𝜔𝜔𝐿𝐿2),𝐴𝐴(𝜔𝜔𝐻𝐻±𝜔𝜔𝐿𝐿2±𝜔𝜔𝐿𝐿2),𝐴𝐴(𝜔𝜔𝐻𝐻±2𝜔𝜔𝐿𝐿2±𝜔𝜔𝐿𝐿2) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴(𝜔𝜔𝐻𝐻±2𝜔𝜔𝐿𝐿2±𝜔𝜔𝐿𝐿2).  (7) 

where the superscript (2+3) of 𝛽𝛽 indicates the nonlinear parameter considering the second and 
third displacement field 𝑢𝑢2 and 𝑢𝑢3. From the solution of 𝑢𝑢2 and 𝑢𝑢3, all sidebands components are 
related to 𝐴𝐴𝐻𝐻 and 𝐴𝐴𝐿𝐿2. Hence, the nonlinear parameters of AMVA technique can be defined as 

𝛽𝛽(2) 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽(2+3)~ ∑𝐴𝐴𝑠𝑠
𝐴𝐴𝐻𝐻𝐴𝐴𝐿𝐿2

.  (8) 

where 𝐴𝐴𝑠𝑠 is the amplitude of sideband components. 

Experiment 
The PRGs were produced by the First Graphene Ltd in Perth, WA, Australia, and the particle size 
is 43 𝜇𝜇𝜇𝜇. Ordinary Portland cement (OPC) was provided by Adelaide Brighton Cement LTD 
following Australian Standard AS 3972-2010 [13]. The fine coarse was nature sands with 2.36 
mm maximum particle size. In addition, MasterGlenium SKY 8100 complying with Australian 
Standard AS 1478.1-2000 was the superplasticizer. The designed mix of PRG mortars used the 
optimized PRG dosage in previous studies [2, 3], which investigated the improvement of 
mechanical strength of PRG cement-based material. The details are listed in Table 1. There were 
three specimens of this batch in the size of 40𝜇𝜇𝜇𝜇 × 40𝜇𝜇𝜇𝜇 × 180𝜇𝜇𝜇𝜇, namely S1, S2, and S3. 
These PRG mortar specimens were tested by the AMVA technique and UPV technique at the intact 
state. Afterward, thermal damages were induced into these specimens. Specimen S1 was heated to 
100℃ while the target temperature of S2 and S3 were 250℃ and 360℃, respectively. 

Table 1. Designed mixed of PRG mortar specimens 

PRG 
[%] 

PRG size 
[𝜇𝜇m][14] 

Cement 
[kg/m3] 

Water 
[kg/m3] 

Sand  
[kg/m3] 

Superplasticizer 
[kg/m3] 

0.07 43 527 255.6 1448 1.4 
* The percentage of PRG is based on the weight of cement binder. 

The schematic set-up of AMVA technique is presented in Fig.1. A pre-modulated LF pump 
wave 𝐴𝐴𝐿𝐿2cos(𝜔𝜔𝐿𝐿2𝜏𝜏 + 𝜙𝜙𝐿𝐿2)[1 + 𝐴𝐴𝐿𝐿1cos(𝜔𝜔𝐿𝐿1𝜏𝜏 + 𝜙𝜙𝐿𝐿1)]  was input into the signal generator and 
then fed by a power amplifier. The electromagnetic shaker was used to emit the LF pump wave 
with the help of a design clamp which was used to provide connection between the specimen and 
shaker firmly. In addition, a continuous HF probe wave 𝐴𝐴𝐻𝐻cos(𝜔𝜔𝐻𝐻𝜏𝜏 + 𝜙𝜙𝐻𝐻) was generated by the 
functional generator, transmitted into the signal amplifier and then emitted by a transducer. The 
LF pump wave and HF probe wave propagated through the PFG mortar specimen and were 
received by another transducer. The receiving signal was obtained by the digitizer for further 
analysis. Furthermore, the UPV tests were conducted following ASTM C597-09 [14]. 
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Fig. 1 Schematic set-up of AMVA technique 

Results and discussions 
The receiving signals of AMVA technique were processed by fast Fourier transform (FFT) into 
frequency domain as shown in Fig.2. It can be seen that, at the intact state, there are still some 
sidebands generated, which indicates that the PRG mortar specimens have some inherent defects 
even at the intact state. In general, these defects are the weakened parts of the structures that 
develop and combine with other damages to form macro-scale damages to threaten the safety of 
structures. Hence, these inherent defects should be noted and monitored. After the thermal 
treatment, the number and magnitude of the sidebands increase. It was found that in the PFG 
specimen after exposure to the high temperature, the sidebands corresponding to (𝜔𝜔𝐻𝐻 ±
𝜔𝜔𝐿𝐿2), (𝜔𝜔𝐻𝐻 ± 𝜔𝜔𝐿𝐿1), (𝜔𝜔𝐻𝐻 ± 2𝜔𝜔𝐿𝐿2), (𝜔𝜔𝐻𝐻 ± 𝜔𝜔𝐿𝐿2 ± 𝜔𝜔𝐿𝐿2), (𝜔𝜔𝐻𝐻 ± 2𝜔𝜔𝐿𝐿2 ± 𝜔𝜔𝐿𝐿2)  and (𝜔𝜔𝐻𝐻 ± 2𝜔𝜔𝐿𝐿2 ±
𝜔𝜔𝐿𝐿2) all showed in the frequency domain, instead of only (𝜔𝜔𝐻𝐻 ± 𝜔𝜔𝐿𝐿2) and (𝜔𝜔𝐻𝐻 ± 𝜔𝜔𝐿𝐿2 ± 𝜔𝜔𝐿𝐿2) 
derived from 𝛽𝛽(2). Therefore, it is meaningful to consider higher order effects to evaluate damages 
using AMVA techniques. 

 

 

Fig. 2 Frequency domain: (a) intact state, (b) after thermal treatment  
All nonlinear parameters of 𝛽𝛽(2) and 𝛽𝛽(2+3) were transferred into dimensionless indexes for 

better comparison. It can be seen that with more intensive thermal treatments, all the dimensionless 
indexes increased sharply. However, the tendency of dimensionless index of wave velocity 𝑐𝑐 is 
quite gentle. These results demonstrate that the nonlinear measurements are significantly sensitive 
compared with the wave velocity. Nevertheless, the tendency of 𝛽𝛽(2) and 𝛽𝛽(2+3) were similar, the 
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results considering higher-order effects are more consistent with the phenomena seen in the 
experiments. 

 

Fig. 3 Dimensionless index of 𝛽𝛽(2) ,𝛽𝛽(2+3) and 𝑐𝑐 

Conclusion 
In this study, a new AMVA technique for assessing thermal damage in PRG mortar is proposed. 
In addition, a nonlinear parameter is established using a new third-order solution for an amplitude-
modulated low-frequency pump wave and a high-frequency probe wave propagating in an infinite 
isotropic material. The experimental results demonstrate that the nonlinear parameter of AMVA 
technique can characterize the different levels of thermal damage in PRG material, and it is much 
one to two orders larger than the linear measurements of UPV test. In conclusion, the proposed 
AMVA technique is a potential tool to detect and monitor thermal damage in cement-based 
structures. 
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Abstract. For ensuring the structure integrity and safety of aircraft during flight, aircraft health 
monitoring requires real-time perception of aircraft structural state and service environment 
parameters, such as impact, damage, vibration, temperature, humidity and air pressure. At the same 
time, airborne monitoring environment also puts forward requirements for device including aspect 
of wireless communication and power consumption. In this paper, a wireless multi-parameter 
monitoring device is reported. This device has the function of monitoring random impact on 
aircraft structure through connected PZT sensor array adopting digital sequence method, and is 
able to reliably monitor vibration, temperature, humidity and air pressure by several digital 
sensors. In addition, the multi-parameter monitoring function verification experiment is 
performed, showing that the reported device obtains the signal from PZT and accurately locates 
the impact region, and some results of vibration, temperature, humidity and air pressure monitoring 
are given, thus proving its multi-parameter monitoring ability for aircraft structure. 
Introduction 
During the service of aircraft, due to its complex structure and harsh service environment, it is 
necessary to monitor the structural status and various environmental information in real time to 
ensure flight safety [1,2]. The on-line structural health monitoring of aircraft provides a favorable 
technical means. Through various sensors or wireless sensor networks arranged on the aircraft, 
various monitoring parameters of the aircraft can be collected or transmitted wirelessly, which can 
be used to judge the structural state and guide decision-making [3,4]. 

People often pay attention to the stress and strain of aircraft structure, structural temperature 
and whether the aircraft skin is impacted during flight. For the structural health monitoring of 
aircraft, Wu[5] et al. proposed a WSN node for distributed strain monitoring. By bonding 16 
resistance strain sensors to the skin of carbon fiber composite wing box section, the multi-point 
strain monitoring function of WSN node is realized. Demo [6] et al. proposed a WSN node for 
aircraft structure corrosion monitoring based on Luna's intelligent sensor. The intelligent sensor 
measures the linear polarization resistance by sacrificing interdigital electrodes, so as to measure 
the instantaneous corrosion rate of materials. According to the requirements of aircraft impact 
monitoring, Qiu [7] proposed a system for aircraft impact monitoring, which uses 32 piezoelectric 
sensors distributed on the aircraft surface to monitor the impact position. Also, Qiu [8] et al. 
developed a stretchable large-scale guided wave sensor network that can be applied to active and 
passive guided wave-based health monitoring of composite structures, including damage imaging 
and impact imaging. 

Although the conventional wireless sensor can achieve the health monitoring of the aircraft 
corresponding parts, the it will face a more complex environment in the flight process. A single 
monitoring parameter is difficult to reflect the actual health status of the aircraft, so it is particularly 
important to realize the multi parameter monitoring of the aircraft in service [9-12]. Nyulászi et al. 
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[13] designed a fault monitoring system using multi-sensor network, which can mainly monitor 
parameters such as combustion chamber temperature, engine nozzle temperature, intake pressure 
and fuel pressure. Hall et al. [14] studied a multi parameter WSN node, which can obtain 
environmental parameters such as particle concentration, temperature, humidity and air pressure 
in the engine room in real time. Zhang et al. [15] designed an aircraft condition monitoring node 
based on ZigBee WSN and proved through experiments that the node has the monitoring functions 
of vibration, temperature, humidity and light intensity. 

In this paper, a wireless multi-parameter monitoring device for aircraft is reported. The device 
adopts PZT array to realize random impact monitoring and positioning, and can reliably monitor 
vibration, temperature, humidity and air pressure through multiple connected digital sensors. 
Digital Monitoring Method 
In order to realize structural impact monitoring and the impact region location, the reported device 
adopted a digital sequence feature identification method based on a characteristic parameter. 
During impact monitoring, the characteristic parameter from each sensor can be calculated 
respectively, and then the regional characteristic parameter of the four sensors constituting the 
impact monitoring sub region can be calculated. The region with the largest regional characteristic 
parameter is the impact occurrence region. The specific method for positioning the impact region 
is as follows: 

(1) Calculate the characteristic parameter of the digitized signal by each piezoelectric sensor, 
as shown in Eq 1. Where r is the serial number of the piezoelectric sensor, s is the length of the 
digital sequence of each sensor, j is the serial number of the sampling point, and Wj is the digital 
level value corresponding to the j-th point in the sampling point, which is 1 or 0. 

∑ [(𝑆𝑆 + 1 − 𝑗𝑗) × 𝑊𝑊𝑗𝑗]𝑠𝑠
𝑗𝑗=1  (1) 

(2) Calculate the regional characteristic parameters for each impact monitoring sub region by 
summing the characteristic parameters of the four piezoelectric sensors that make up the impact 
monitoring sub region. 

(3) Calculate the serial number of impact monitoring sub region with the largest regional 
characteristic parameters, which is the region where the impact occurs. 

For the digital sensor encapsulated into a chip, the sensing unit and conditioning unit are 
integrated inside, which can convert environmental parameters into electrical signals. In order to 
realize the data transmission between the sensor and the microcontroller, the sensor also integrates 
digital interfaces, including Inter-Integrated Circuit (I2C) and Serial Peripheral Interface (SPI). 
Implementation of Multi-Parameter Monitoring Device 
The multi parameter monitoring device includes four parts: digital piezoelectric impact monitoring 
unit, digital sensor state environment monitoring unit, core control unit and wireless 
communication unit. Piezoelectric sensor is used for impact monitoring, and digital monitoring 
unit is designed for the analog signal of piezoelectric impact, which is processed in the digital 
circuit after A/D conversion. The core control unit of the monitoring system is designed to control 
the working state of the system and calculate, store and convey the collected sensor data. After 
collecting and processing sensor data, each node in the sensor network transmits the data to the 
communication base station through wireless communication. Fig 1 shows the architecture of the 
multi-parameter monitoring device. 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 265-270  https://doi.org/10.21741/9781644902455-34 

 

 
267 

 
Fig 1 Overall architecture of multi-parameter monitoring device 

The impact monitoring adopts piezoelectric sensor, and the direct output is analog signal. A 
voltage limiting circuit based on Zener diode is designed. Each Zener diode corresponds to a PZT. 
After digital processing based on Zener diode and TTL level standard, the piezoelectric signal is 
collected through the General-Purpose Input-Output (GPIO) interface of microprocessor. Based 
on the different time required for vibration propagation to different piezoelectric sensors, the 
reverse weighted sum algorithm is used to locate the impact region. 

Vibration, temperature, humidity and air pressure parameters are collected by digital MEMS 
sensors. According to the monitoring requirements, this paper selects three sensors namely 
BMA250 sensor with triaxial vibration sensing function, BMP280 sensor with temperature and air 
pressure sensing function and SHT30 sensor with temperature and humidity sensing function. 

The microprocessor sets the parameters of the digital sensor through the Inter-Integrated Circuit 
(I2C) communication interface, reads the sensing data stored in the sensor register, and then 
calibrates and calculates the data to obtain the structural vibration and temperature and humidity 
parameters. 

In addition, after acquiring the state parameters of the aircraft structure and environment, the 
device first stores the data in the internal memory, and then uploads the data through the upper 
computer control when the user needs it. The data is transmitted between the microcontroller and 
the upper computer through wireless communication. And ZigBee is adopted as the wireless 
communication mode. 

The multi-parameter monitoring device consists of two PCB layers and a wireless 
communication unit. One PCB layer mainly integrates the core control unit, and the other layer 
integrates the digital piezoelectric impact monitoring unit, digital sensor multi-parameter 
monitoring unit, power management circuit, sensor interface, power interface, etc. They are 
connected by row pins and fixed with screws. 
Monitoring function verification 
In order to verify the impact monitoring function of multi-parameter monitoring system, a test 
system as shown in Fig 2 is built, 400×400mm aluminum plate is the test piece, and its surface is 
pasted with 3×3 piezoelectric sensors array, with sensor spacing of 100mm, forming four impact 
monitoring sub regions, and all sensors are connected to the interface of the monitoring system in 
turn. After collecting the impact data and calculating the signal characteristic value, the system 
uploads the data to the computer through wireless communication. 
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Fig 2 Impact monitoring test system 

Fifty impacts were carried out in different regions of the aluminum plate specimen, of which 
47 were precisely located, with a positioning accuracy of 94%. Therefore, through the impact 
digital sequence, the characteristic parameter of piezoelectric sensors and the regional 
characteristic parameter test results, it is proved that the multi-parameter monitoring system can 
effectively realize impact monitoring. 

In addition, verification experiments have been conducted for in-service environmental 
monitoring. Fig 3(a) illustrates the experimental setup for the vibration monitoring validation of 
the multi-parameter monitoring device. Fig 3(b) shows the vibration acceleration data collected by 
the digital vibration sensor under 50 Hz sinusoidal vibration, and it can be seen that the test data 
has good periodicity, which can reflect the actual vibration state and vibration intensity of the 
structure. 

                

(a) Monitoring test settings                                        (b) Test result 
Fig 3 Vibration monitoring test 

Fig 4(a) shows the physical diagram of the temperature monitoring test, using thermocouples 
as a reference during the test. The output temperature data was recorded during the heating of them 
with a heat gun and their cooling, and the test results are shown in Fig 4(b). It is clear that digital 
temperature sensors can accurately measure the actual temperature of an object and how it changes. 

               
(a) Monitoring test settings                                           (b) Test result 

Fig 4 Temperature monitoring test 
Since the ambient humidity and air pressure are difficult to control, the experiments were 

conducted to verify the multiparameter monitoring function of the device by using digital sensors 
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to measure the humidity and air pressure values at a certain moment and comparing them with 
traditional sensors. Fig 5 shows the physical diagram of humidity monitoring test and air pressure 
monitoring test. 

       
(a) Humidity monitoring test            (b) Air pressure monitoring test 

Fig 5 Multi-parameter monitoring test 
The humidity of the environment is about 23.5% RH obtained from the hygrometer in the 

experiment, and the humidity data collected from the SHT30 sensor in the control center is 23.15% 
RH, which shows that the multi-parameter monitoring device can accurately monitor the humidity 
parameters. 

Also in the experiment, the pressure of the environment is about 105120Pa obtained through 
the barometer, and the air pressure data collected by the control center from the BMP280 sensor 
is 104917Pa, which shows that the multiparameter monitoring device can accurately monitor the 
air pressure parameters. 
Conclusion 
A wireless multiparameter monitoring device is reported in this paper. The device is capable of 
converting analog signals from PZT sensor arrays to digital signals, and adopts a impact 
monitoring and positioning method based on the inverse weighted sum and a digital sensor 
environment monitoring method based on the I2C bus, which can realize the monitoring of 
multiple parameters such as impact, vibration, temperature and humidity of the vehicle structure. 
In addition, the functional verification experiments of the multiparameter monitoring equipment 
were carried out. For the impact monitoring verification, the equipment showed good monitoring 
positioning accuracy under multiple impacts. Moreover, the verification experiments for vibration, 
temperature, humidity and air pressure monitoring were carried out to verify the capability of the 
device for multi-sensor monitoring by comparing with conventional sensors. 
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Abstract. Structural health monitoring (SHM) is an important technology to realize structural 
reliability evaluation, which can increase the safety and reduce the maintenance costs of 
engineering structures. Piezoelectric guided wave SHM technology has broad application 
prospects because it is sensitive to small damage and can realize multi parameter monitoring such 
as damage and impact. However, the reported piezoelectric guided wave SHM system is large, 
which is not conducive to engineering applications. In this paper, aiming at the ground rapid 
monitoring application of aircraft structure, a compact and portable SHM system for piezoelectric 
guided wave is developed. Firstly, an overall architecture of hierarchical design is proposed, and 
then the software and hardware design of the system is studied. The volume of the system is only 
273×184×59mm3, the mass is less than 3kg, it can support 32 sensor channels, the excitation 
voltage amplitude can reach 140Vpp, and the maximum sampling rate can reach 60MS/s. Finally, 
a verification experiment is carried out to realize the accurate location of the damage of carbon 
fiber composite structure. The results show that the system is a high-performance portable system 
suitable for aircraft ground applications. 
Introduction 
Structural health monitoring technology is based on the sensor integrated with the structure, 
structural health monitoring system and advanced damage diagnosis algorithm to identify the 
cracks, corrosion and other damage discrimination, which can greatly improve the safety of 
engineering structures and reduce maintenance costs. Many countries in the world have 
successively put forward a series of strategic plans for the application of structural health 
monitoring technology in aircraft. For example, NASA's SBIR&STTR plan [1] specifies that 
future manned space missions will need spacecraft and launch vehicles that can monitor the 
structural health of aircraft, diagnose and report the performance degradation of aircraft. Airbus, 
Honeywell and other companies estimate that the global aircraft health monitoring market will 
receive an investment of $5.5 billion in 2020-2025 [2], so as to enhance the real-time information 
of aircraft health management and reduce aircraft maintenance costs. Horizon Europe, Europe's 
scientific research funding framework for the next seven years (2021-2027), clearly points out that 
health monitoring systems are one of the mature signs of intelligent technology in space research 
strategies [3]. The vision of China's science and technology and society in 2049 published by the 
Chinese Aeronautical Society: Aeronautical Science and technology and future aviation mentioned 
that the intelligent structure of aircraft in the future can detect, locate and evaluate the structural 
damage caused by fatigue, impact, corrosion, temperature changes, etc. At the same time, the 
prediction and health management (PHM) system will become an important airborne system and 
be widely used by aircraft in the future [4]. 
SHM technology based on piezoelectric guided wave has the advantages of high sensitivity, 
independent of structural load, multi parameter monitoring such as damage and impact, sensitive 
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to small damage, large monitoring range, both online monitoring and offline processing, and 
applicable to metal and composite structures. Therefore, SHM technology based on piezoelectric 
guided  wave has great application prospects [4-9]. 

The function of the structural health monitoring system is to excite the guided wave signal, 
acquire the sensing signal and use the damage identification algorithm to process and analyze the 
obtained guided wave signal, so it is one of the core links of SHM technology for piezoelectric 
guided wave. Some fully integrated [10-12] and semi-integrated [13-17] structural health 
monitoring systems have been applied and studied. Professor yuan from Nanjing University of 
Aeronautics and Astronautics has designed and developed an airborne miniaturized piezoelectric 
guided wave structural health monitoring system, which supports the access of 32 channel sensors, 
with a volume of only 127×90×45mm3, mass 472g, excitation voltage up to 140Vpp, maximum 
sampling rate of 60MS/s. However, the system needs to be equipped with an independent power 
module and an external computer to realize damage diagnosis, so the integration is not high. 
Acellent Corporation of the United States launched the ScanGenie Mini system [18], which 
supports the access of 32 channel sensors, with a volume of 102 × 112 × 40mm3, the mass is about 
200g, the excitation voltage is 90Vpp, and the maximum sampling rate can reach 48MS/s, but it 
needs to send the acquired data to the external data download and processing module for 
processing. Honeywell International has designed a structural health monitoring system [19] in 
which the control module (SCU) and the channel switching module (SSU) are separated. The size 
of the control module is 120×80×70mm3, the mass is 50g, excitation voltage up to 150V, single 
channel switching module can access 32 channels of piezoelectric sensors, its size is 
97×79×69mm3, weighing 400g. Although the system has achieved miniaturization, the separation 
design leads to the low integration of the system. Therefore, the system integration can be further 
improved, and the data processing module and the image display module can be integrated 
internally to meet the actual engineering application requirements. 

In this paper, aiming at the ground rapid monitoring application of aircraft structure, a compact 
and portable SHM system is developed which has the advantages of integrated, miniaturized 
design, simple operation, and convenient carrying. Finally, the effectiveness of the system is 
verified by experiments. 
System Architecture Design 
This paper proposes the architecture design of the structure health monitoring system for 
piezoelectric guided wave, which is divided into human-computer interaction layer, system 
application layer, task working layer, hardware control layer and functional hardware layer, as 
shown in Fig. 1. 

 
Fig. 1 system architecture design 
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The main function of human-computer interaction layer is to display monitoring results and 
touch response. The system application layer is responsible for monitoring mission control. 
According to the user instructions of the human-computer interaction layer, it sends the work 
enable signal, monitoring parameters, etc. to the task working layer, and stores the monitoring 
signals. At the same time, it provides damage diagnosis tools, and outputs the diagnosis results to 
the graphical display of the human-computer interaction layer. The main function of task working 
layer is to perform monitoring tasks according to the instructions issued by the system application 
layer, including starting signal acquisition and uploading monitoring signals. The hardware control 
layer realizes the bottom hardware control, initializes the hardware circuit according to the 
working parameters transmitted from the task working layer, and realizes the precise timing 
control of each hardware module. The functional hardware layer realizes guided wave excitation 
and guided wave acquisition. The required guided wave excitation signal is generated according 
to the control signal of the hardware control layer, and the guided wave sensing signal is acquired 
according to the set acquisition parameters. 
System Hardware Design 
According to the architecture design of the system, the hardware of the system is divided into five 
modules to realize miniaturization design, including guided wave module, control and processing 
module, image interaction module, power module and interface module, as shown in Fig. 2. 

 
Fig. 2 system hardware architecture 

The guided wave module is the operation platform of task working layer, hardware control layer 
and functional hardware layer. It can realize guided wave excitation signal output, channel 
switching and guided wave data acquisition, and upload the monitoring signal to the control and 
processing module through Ethernet communication. Guided wave module takes embedded 
microprocessor as the core, including communication unit, guided wave signal acquisition unit, 
guided wave excitation unit, channel switching unit and storage unit. Small volume electronic 
components and high-density component layout are selected to realize the miniaturization design 
of the waveguide module, with a volume of only 140×70×38mm3, the mass is less than 400g. The 
finally designed guided wave module supports 32 piezoelectric sensors. The maximum excitation 
voltage amplitude can reach 140Vpp and the maximum sampling rate can reach 60MS/s. 

The control and processing module is the operation platform of the system application layer, 
which controls the start and stop of the guided wave task, and realizes the monitoring signal storage 
and damage diagnosis. This module is based on the industrial embedded single board computer, 
adopts the advanced hardware integration method, takes the CPU as the core, integrates all the 
necessary components of the computer on a circuit board, and designs many I/O interfaces to meet 
the needs of the industrial field. It has the advantages of high performance, small volume, low 
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power consumption, etc. the maximum main frequency is 2.5GHz, supports 8G of memory, and 
the volume after adding the heat sink is 145×102×28mm3, the system is powered by +12V single 
power supply, static power consumption no more than 6W, maximum no more than 15W, and its 
data processing capacity can meet the operation requirements of damage diagnosis algorithm, such 
as path imaging and delay accumulation imaging algorithm. 

The image interaction module is the human-computer interaction interface platform. It’s main 
function is to display the monitoring results graphically and respond to the touch to realize the 
visual operation of the system. The module is realized by the touch screen group after the 
integration of the touch screen and the image display screen. The display screen is responsible for 
the image display, and the touch screen is responsible for the touch response. The final selected 
touch screen group is 247×166mm2, display area is 217×136mm2, the display interface is VGA, 
and the display resolution is 1280×800dpi, what’s more, the power consumption is less than 
4.56W. 

The final realized system is shown in Fig. 3, and the technical indicators are shown in Table 1. 

 
Fig.3 compact and portable piezoelectric guided wave structure health monitoring system 

Table 1 system technical indicators 

category technical indicators specification 

hardware 

excitation voltage >140 Vpp 
bandwidth 10kHz~700kHz 

sampling Rate 60MS/s 
number of channels 32 

computing 
performance 

main frequency 2.5 GHz 
memory 8 GB 

volume and weight volume 273×184×59mm3 
weight <3kg 

System Software Design 
User application software includes two main functions. (1) Acquisition function of guided wave 
monitoring signal: it is required to control the system hardware and set parameters to obtain the 
guided wave monitoring signal stably and reliably. It also includes sub functions such as signal 
display, display storage, signal analysis and signal export. (2) Alarm and location function of 
structural damage: responsible for running the damage diagnosis algorithm to give the diagnosis 
results, including such sub functions as damage alarm and damage location. In addition, the user 
application software also includes a self-test function for communication detection, and a one 
touch shutdown function for realizing quick shutdown. 

The user application software is implemented based on the labview2017 programming platform. 
The main interface of the designed software is shown in Fig. 4, including eight function buttons 
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and communication connection status indicators which greatly improves the monitoring efficiency 
of the system. 

 
Fig.4 main interface of user application software 

Experimental Verification 
The damage monitoring effect of the designed portable system is verified by the simulated damage 
arranged in the area of the piezoelectric smart sandwich integrated with carbon fiber composites 
[14]. The monitoring structure selects a carbon fiber composite material specimen of 
1000mm×1000mm×3mm. As shown in Fig. 5, two piezoelectric smart interlayers are arranged on 
the specimen to form two monitoring areas: area 1, area 2, The piezoelectric smart interlayers are 
integrated on the surface of the structure through the surface-mounted co-curing process, and has 
the characteristics of oil-proof, waterproof and moisture-proof. 

 
Fig. 5 carbon fiber composite material 

The experimental setup is shown in Fig. 6, including the carbon fiber composite material 
structure, the signal cable, and compact and portable piezoelectric guided wave structure health 
monitoring system. 

 
Fig. 6 experimental setup 
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First select the guided wave monitoring frequency as 50kHz, the excitation voltage as 140Vpp, 
the sampling rate as 10MS/s, and the average of 100 times as the acquisition parameters. 

In this experiment, the health signal of the current structure is first acquired as the benchmark, 
and then the damage of the structure is simulated by arranging the simulated damage - wave 
absorbing adhesive, which is an acoustic damping material, and will change the propagation 
characteristics of the guided wave. The simulated damage traverses each monitoring sub region, 
and gives the typical signal, damage difference signal, and damage imaging cloud image in Fig. 7. 

 

(a) typical signal 

  

(b) damage difference signal               (c) damage imaging cloud image 

Fig. 7 experimental result 
The amplitude of the difference signal can reach more than 150mV, which can clearly reflect 

the impact of the damage on the guided wave propagation. 
The statistical table of damage location error is shown in Table 2. The damage location error of 

5 areas is less than 5mm. 
Table 2 statistics of damage location error 

Monitoring 
location 

Actual damage 
coordinates (mm, mm）  

Damage location 
coordinates） mm, mm）  error 

1 ） 82） 24）  ） 82） 23）  1mm 
2 ） 249） 23）  ） 251） 23）  2mm 
3 ） 424） 23）  ） 423） 22）  1mm 
4 ） 594） 23）  ） 598） 19）  4mm 
5 ） 766） 23）  ） 765） 22）  1mm 
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According to the damage monitoring results of the carbon fiber composite, the system designed 
in this paper can accurately identify the damage of the composite structure and give the accurate 
damage location, which ensures the damage monitoring effect while achieving portability. 
Summary 
In this paper, a compact and portable structural health monitoring system for piezoelectric guided 
wave is designed and implemented for the ground rapid monitoring application of aircraft 
structure. A simple and fast user monitoring software is developed for this system. The size of the 
system is only 273×184×59mm3, and the mass is less than 3kg, supports 32 sensor channels, the 
excitation voltage amplitude can reach 140Vpp, and the maximum sampling rate can reach 
60MS/s. What’s more, the system integrates touch screen and data processing module, and the 
embedded diagnosis algorithm supports real-time damage diagnosis, which can accurately monitor 
the damage of the carbon fiber composite structure. It is a high-performance portable system 
suitable for rapid monitoring applications of multiple parts of the aircraft. 
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Abstract. As one of the non-destructive test methods, self-sensing cementitious composites have 
been developed for concrete structures to monitor the health condition. In this study, the focus was 
put on the self-sensing capacity for low amplitude strain which was often overlooked in the 
previous research. Carbon black nanoparticles were added as conductive filler in cementitious 
composites and their piezo-resistivities were recorded in low-amplitude cyclic loadings. Besides, 
hammer induced stress wave was utilized to activate the self-sensing mechanism in composites. 
Because the tunnelling effect occurs at several nanometres and is extremely sensitive to the micro 
strains, these signals were collected as the electrical resistance variance between two closely 
contacted electrodes and compared with the signals from lead zirconate titanate (PZT) sensors. 
The developed materials provides the potential of high-resolution strain measurement and stress 
wave detection without any external instruments.  
Introduction 
Concrete is the major construction material for a variety of structures including building, bridges 
and dams. In recent years, the serious consequence led from failure of concrete structures has 
brought attention to the health monitoring of these concrete components and technologies such as 
optical fiber and strain gauge are now widely applied. However, these monitoring approaches still 
face some inevitable issues in installation, measurement and maintenance. Therefore, self-sensing 
cementitious materials, which have the advantage of high sensitivity and compatibility to the host 
material, has drawn more interest in this area. With the addition of electrically conductive fillers 
like carbon fibers, the composite materials have been proved excellent ability to capture the 
external stress by measuring the electrical properties [1-3]. This property has been successfully 
applied in pavement for traffic monitoring purpose [4, 5]. Apart from its stress sensing properties 
in elastic range, it has demonstrated potential for damage identification and quantification in 
tensile, compression, flexural and impact scenarios [6-9]. Dong et al. [6] have investigated the 
behaviour of self-sensing composite under a combination of cyclic and impact test. It not only 
displayed endured sensing ability after damage but also quantitively reflected the accumulation of 
damage. In addition, the response of electrical information under dynamic compression was also 
found to be consistent with results from the accelerometer and strain gauge by Ding et al [10]. 
However, these experiments are all limited in a relatively high stress scenario within a low 
frequency range. The responses of self-sensing composites to lower stresses have not been 
explored and their feasibility at higher frequencies is not studied. In this research, the self-sensing 
ability for carbon black nanoparticle reinforced cementitious composites has been investigated in 
both static and dynamic cases through low-amplitude cyclic loadings and impact waves, 
respectively. 
  



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 279-284  https://doi.org/10.21741/9781644902455-36 

 

 
280 

Experiment set up 
Material preparation. The self-sensing cementitious composites in this work are composed of 
2%wt of carbon black nanoparticles which are acting as conductive fillers and form a stable 
network in the cementitious cube. The production of the composites follows the standard 
procedure in ASTM C1738 with a ratio of 0.9:0.45:0.1:0.02:0.01 between cement, water, silica 
fume, carbon black and superplasticizer. The carbon black nanoparticles are first mixed with water 
and superplasticizer and then sonicated in water bath prior to the mixing with binder to avoid 
agglomeration as possible. 

Cyclic loading set up. In the cyclic loading test, cube specimen of 50 mm×50 mm×50 mm is 
made with electrodes mesh embedded inside in Figure 1. Strain gauges are attached on different 
surfaces and average values are taken to evaluate the overall strain of the specimen. During the 
experiment, the surface of electrodes is perpendicular to the loading direction. At first, three cycles 
of loadings in 0.5, 1 and 1.5 kN, respectively were applied on the sample for verifying its 
piezoresistivity. Then the loadings were lowered to 5 N and increased to 80 N with a factor of 2 
times. The electrical resistance, strains and loadings were recorded throughout the test.  

 

 
Figure 1. Cyclic test set up 

Hammer-induced impact wave. The carbon black reinforced cementitious composites are 
embedded inside a concrete slab of 300 mm×300 mm×45 mm. PZT sensors and needle shape 
electrodes are surface-bonded and embedded in both plain concrete and self-sensing composites 
respectively as shown in Figure 2(a). The electrical resistance between the electrodes will be 
collected by an ad-hoc designed signal amplifier by which the resistance will be converted into 
voltage signals and collected by the oscilloscope. 

In the experiments, hammer will introduce an impact wave at the right bottom corner of the slab 
indicated in Figure 2(b). The PZT sensor and two pairs of electrodes on the self-sensing composite 
is labelled as P2, S1 and S2, separately, while the PZT on the concrete slab is label as P1. 
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Figure 2. Impact test components (a) location (b) labels 

Results 
In the first experiment, relatively high loadings are applied on the cube specimen first. The 
electrical resistance data is converted to fractional resistance change (FRC): 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑅𝑅𝑡𝑡−𝑅𝑅0
𝑅𝑅0

  (1) 

Piezoresistivity: In Figure 3, strains from strain gauge and FRC are plotted against the loadings. 
It can be seen that the pattern of both matches well with the loadings. When the loadings drop back 
to zero in each cycle, the electrical resistivity also returns to the initial value, indicating that 2% 
carbon black nanoparticle-reinforced cementitious materials have a good repeatability for the 
sensing purpose and piezoresistivity for capturing the external stress variation. 

 
Figure 3. (a) Strain and (b) FRC response in high loading cyclic test 
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Low-amplitude cyclic loading: At the loading of 5 N, data from strain gauge fluctuates around 
0 but shows rough trend with the applied stress while the FRC barely has any response in Figure 
4. However, starting from 10 N till 80 N, FRC presents a clear pattern with the stress and the 
increasements at each loading stage are linearly proportional to the increasement of the loading 
which is double of the previous step. In terms of the strain gauges, more noise is observed 
especially in the range of 10-40 N where the strain change does not correspond to the amplitude 
of applied loadings. This is because the effective measurement range of strain gauges is quite local 
and the non-uniform deformation on the surface limits the ability of strain gauge to accurately 
evaluate the overall deformation of the composites. In contrast, since the FRC is acquired by the 
measurement from surface to surface resistance, the coverage area is larger and it can more reliably 
reflect the overall applied stress. 

 
Figure 4. (a) Strain and (b) FRC response in low amplitude loadings 

Hammer-induced impact wave: In Figure 5, signals received on each sensing location are shown 
in the time domain after wavelet-based denoise. Both PZTs and sensors have demonstrated 
excellent ability to capture the propagation of impact wave. Besides, the arrival time of P1, P2 and 
S2 is almost the same as the input wave. Thus, it is hard to determine the velocity of wave in this 
case unless higher frequency wave is actuated. In addition, the orientation of each pair of electrodes 
as well as their gap can significantly influence the way they capture the waves and it is nearly 
impossible for carbon black particles to uniformly distributed in cement matrix perfectly. 
Consequently, the wave form collected from S1 is noticeably different from other channels and a 
bit delay is found in the time of arrival. In the future work, the orientation and the gap of electrodes 
would be considered and ultrasonic wave will be activated to testify its piezoresistivity in higher 
frequency.     
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Figure 5. Signals from (a) P1 (b) P2 (c) S1 (d) S2 (e) input in time domain 

Conclusions  
The work presents the piezoresistivity capacity of carbon black reinforced cementitious 
composites in both cyclic and impact test. The results indicate an excellent piezoresistivity of the 
self-sensing material even at low strains, achieving a comparable sensing ability as to the 
traditional sensors. These findings extend the understanding of the conductive mechanism in self-
sensing cementitious materials and establish a solid foundation for its further application in 
acoustic and ultrasonic based defect inspection.  
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Abstract. Railways are important ways of transportation that are used massively. This makes it 
important to create an optimized asset management model that helps in reducing its Operation and 
Maintenance (O&M) costs while maintaining the quality of service and safety. Reinforcement 
learning (RL) is an adequate model for optimizing decisions based on unrelated factors as it 
connects the decision to a final goal without understanding the problem details. Also, it allows for 
automatic policy updates without any user intervention. On the other hand, the Petri net (PN) 
model, which is a bipartite graph of transitions and places, are adequate to be combined with 
Reinforcement learning since RL actions can be directly described by the PN transitions. In 
addition, PNs are suitable for maintenance modeling since it can model heterogeneous 
information, parallel operations, and synchronization, and provide a graphical interpretation. In 
this study, the Petri net method is used with Reinforcement Learning to create a tool for modeling 
and optimizing decisions within the maintenance of railway sections while taking into account 
several factors. 
Introduction 
Railways are a climate-smart and efficient way to move people and freight deployed in most 
countries worldwide. They are easy for long-distance travel, play an important role in national 
integration, and can carry huge loads for short and long distances. Only the UK railway industry 
employs around 710,000 people and contributes £42.9 billion to the economy [1]. However, as 
reported by Network Rail, the railways‘ Operation and Maintenance (O&M) costs are expensive, 
with £7.5 billion for 2020/21 [2]. This gives vital importance to find an optimal strategy for 
performing maintenance with reduced costs while maintaining good service. 

The degradation of track geometry is subjected to much uncertainty and can be related to many 
factors, such as weather, traffic loads, and speed. Maintenance actions should be performed before 
the condition reaches a point where the asset become unfit for purpose, which may, at the best, 
result in system downtime, and, at worst, in potential safety risks. An example of catastrophic 
failure is the Potters Bar train derailment, which resulted in 7 fatalities, 76 injuries, and a 
£3,150,000 fine for Network Rail [3]. Besides, as the track geometry worsens, the probability of 
having rail faults increases [3]. These faults can result in breaks, safety issues, and speed 
restrictions if the right measures are not performed. Grinding or welding are two main actions that 
can be done to correct the rail faults, and sometimes replacing the rail can be considered depending 
on the severity of the case [3]. The track geometry can be restored by ballast maintenance 
techniques, which are tamping and stoneblowing, or by ballast renewal if the ballast state is highly 
fouled. The tamping operation causes ballast breakdown, which may result in a higher degradation 
rate and faster track settlement, and this result in the necessity to reduce the time interval between 
required tamps until it becomes no longer economical [4]. At this stage, stoneblowing, which is a 
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more expensive and slower alternative to tamping that causes less ballast breakup can be 
considered [5]. 

Several aspects should be considered when modeling the O&M of the rail including the factors 
that may affect the degradation rate including the maintenance history, the factors that may cause 
rail faults including the condition and the age of the track, the effectiveness of each maintenance 
action, the consequences of different conditions of the rail, and the costs of maintenance actions. 
Petri net (PN) are powerful for modeling O&M as they are able to account for resource availability, 
concurrency, synchronization, and heterogeneous information [6]. For this, it is chosen to create 
an asset management model for the case of the railway while taking into account different 
complexities. Then, Monte Carlo Reinforcement Learning (MCRL) is used to teach an RL agent 
through interacting with the PN model so that it reaches an optimal maintenance policy that 
reduces the O&M costs while avoiding bad consequences.  
Monte Carlo Reinforcement Learning with Petri Net Model 
The term reinforcement learning (RL) is applied to machine learning methods that reward or 
punish desired or undesired behaviors respectively. The method teaches a learning element, called 
the agent, by trial and error. The agent’s actions change the state of the environment and result in 
rewards that are used to evaluate how good that action was. The evaluation of the actions is known 
as the state-action value function and is used to find the optimal policy [7]. This study adopts the 
Monte Carlo Reinforcement learning (MCRL) method, which works by generating episodes 
following an initial random policy referred to as  𝑆𝑆0,𝐴𝐴0,𝑅𝑅1, 𝑆𝑆1,𝐴𝐴1,𝑅𝑅2, … , 𝑆𝑆𝑇𝑇−1,𝐴𝐴𝑇𝑇−1,𝑅𝑅𝑇𝑇, where 
𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡, and 𝑅𝑅𝑡𝑡 are the state, action, and reward at time 𝑡𝑡 respectively, and 𝑇𝑇 is the terminating state 
of the episode. The summation of the future rewards accumulated from time step t, and discounted 
by discount rate 𝛾𝛾, is called the discount expected return, Gt and can be calculated as follows: 

𝐺𝐺𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑅𝑅𝑡𝑡+2 + 𝛾𝛾2𝑅𝑅𝑡𝑡+3 + ⋯ = � 𝛾𝛾𝑘𝑘−𝑡𝑡−1𝑅𝑅𝑘𝑘

𝑇𝑇

𝑘𝑘=𝑡𝑡+1

 
(1) 

Thus, a value function Q(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) is updated based on the expected return at time t as follows: 

𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) = 𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡) + 𝛼𝛼[𝐺𝐺𝑡𝑡 − 𝑄𝑄(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡)] (2) 

where 𝛼𝛼 ∈ [0,1] is a learning rate parameter, with 𝛼𝛼 =1 meaning that the effect of the latest update 
will be dominant. The value functions are evaluated to find the optimal policy that increases the 
long-term rewards. To do this, the actions with higher Q-values are favored to update the initial 
policy; this is also called greedy policy. A problem in the greedy policy is that it does not allow 
the agent to try actions with lower Q-values, which may be better than how they look if they are 
updated. This is known as the exploration-exploitation dilemma and can be seen in almost all RL 
methods. An alternative that solves this issue is the 𝜀𝜀-greedy strategy, where the action 𝐴𝐴𝑡𝑡 is given 
by: 

𝐴𝐴𝑡𝑡 = �𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑄𝑄
(𝑆𝑆𝑡𝑡,𝑎𝑎) 𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑡𝑡𝑝𝑝(1 − 𝜀𝜀)

𝐴𝐴 ∈𝑅𝑅 𝐴𝐴(𝑠𝑠) 𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑡𝑡𝑝𝑝𝜀𝜀  (3) 

with 𝜀𝜀 = [0,1] being the exploration rate parameter and 𝐴𝐴(𝑠𝑠) is the set of actions available at state 
𝑠𝑠. To ensure that all actions will be visited and updated despite their low Q-values, this method 
keeps a probability equal to 𝜀𝜀. 
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Besides, a PN is defined as a directed bipartite composed of connected transitions and places. 
Each place contain a number of tokens that define the marking of that place and the marking of all 
places defines the state of the PN. From a mathematical point of view, a PN is defined as a tuple 
𝑁𝑁 = ⟨𝑃𝑃,𝑇𝑇,𝐹𝐹,𝑊𝑊,𝑀𝑀𝑜𝑜⟩ , where 𝑃𝑃,𝑇𝑇,𝐹𝐹,𝑊𝑊,  and 𝑀𝑀𝑜𝑜  are the sets of places, transitions, arcs, arcs’ 
weights, and initial marking respectively [8]. If the number of tokens in the pre-set places of a 
transition is greater than or equal to the weights of its pre-set arcs, the transition can fire. This is 
called the firing rule and it controls the dynamics of the PN. When a transition fires it consumes 
tokens from pre-set places equal to the pre-set arcs’ weights and produces tokens in the post-set 
places equal to the post-set arcs’ weights. This causes a change in the markings, which can be 
described using the state equation defined as: 

𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘 + 𝐴𝐴𝑇𝑇𝑢𝑢𝑘𝑘 (4) 

where 𝑢𝑢𝑘𝑘 is the firing vector, which is a binary vector describing the firing states of the transitions, 
and 𝐴𝐴𝑇𝑇  is the incidence matrix, which represents the difference between weights of input and 
output arcs connecting places and transitions. Additional definitions are used to model the 
complexity of practical applications. For this study, timed transitions, inhibitor arcs, and reset arcs 
are used. Timed transitions takes a delay time before it fires after satisfying the firing rule, and this 
delay can be a fixed value or sampled from a stochastic distribution. The inhibitor arc, which is an 
arc with a circular ending, prevents the firing of the transition if the marking of the inhibiting place 
is more than or equal to the weight of the inhibiting arc. The reset arc, which is an arc with a filled 
circular ending, assigns the post-set place a marking equal to the weight of the reset arc. To 
combine RL with PN, an action groups, g, is defined as a group of conflicting transitions that are 
fired by RL agent after enabling they are enabled based on the RL policy. 
Case study 
A 220-yard rail section, known as poskey, with a track speed equal to 10 MPH and small concrete 
sleepers was modeled through PN, and RL was used to find the optimal maintenance schedule. 
The degradation rate of the section for each condition is sampled from a Weibull distribution 
whose parameters are related to the track speed, sleeper type, and maintenance history [3]. For a 
rail with a speed between 5-60 MPH and small concrete sleepers, the Weibull’s shape and scale 
parameters, (𝛽𝛽, 𝜂𝜂) , are: (5.64e-1,2.13e-4), (1.3,1.7e-4), (9.73e-1,1.80e-4),  (1.77,1.47e-4), 
(4.3,7.97e-5), (1.82,1.56e-4), (1.34,1.66e-4), and (1.34,1.66) after renewal, 1st tamp, 2nd or 3rd 
tamps, 4th or 5th tamps, 6th tamp, 7th tamp, 1st stoneblowing, and 2nd stoneblowing respectively [3]. 
The degradation rate is given in m/Equivalent Million Gross Tonnage (m/EMGT), so to calculate 
the increase in SD, the following formula is used: 

𝑆𝑆𝑆𝑆2 = 𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑅𝑅(𝑈𝑈2 − 𝑈𝑈1) (5) 

where 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑅𝑅, and 𝑈𝑈 represent the standard deviation, the degradation rate, and the usage of the 
rail respectively, and subscripts 2 and 1 represent the next and the current states. The rate of having 
rail faults for one poskey was related to the deterioration level of the rail [3]. Stacked fault rates 
are available for the 12 groups of rail fault types: squat, tache ovale, bolt hole, weld, other, rolling 
contact fatigue (RCF), wheel burn, lipping, side wear, headwear, corrugation, unknown (all). 
These rates can be calculated using the following formula: 

𝐹𝐹𝑅𝑅[𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝑀𝑀𝐺𝐺𝑇𝑇⁄ ] = 𝐴𝐴 ∙ 𝑆𝑆�́�𝑆1 + 𝐵𝐵 ∙ 𝑆𝑆�́�𝑆2 + 𝐶𝐶 ∙ 𝑆𝑆�́�𝑆1 + 𝑆𝑆 ∙ 5.3 (6) 
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where 𝑆𝑆�́�𝑆 is the average standard deviation, and parameters A, B, C, and D are given in Table 1 
for each faults group [3]. Based on the stacked rates, the probability of having a particular fault in 
a certain period can be modeled as follows: 

• Calculate the usage (𝑈𝑈2 − 𝑈𝑈1)[EMGT] and 𝑆𝑆�́�𝑆 [mm] over the modeled period. 
• Generate 𝑅𝑅, a random number between [0,1], ⇒ 𝑟𝑟 = 𝑅𝑅 �𝐿𝐿 ∙ (𝑈𝑈2 − 𝑈𝑈1)�⁄ . 
• If 𝑟𝑟 < 𝐹𝐹𝑅𝑅12: (there is a probability of having one of the faults)  

 For i=1,…11: 
o If 𝑟𝑟 < 𝐹𝐹𝑅𝑅𝑖𝑖: there is a probability of having fault i, exit loop. 

• Else: there is no probability of having any of the faults 
Table 1 Parameters of stacked rail fault rate against track vertical geometry polynomial fits [3]. 
  1-squat 2-tache ovale 3-bolt hole 4-weld 5-other 6-RCF 
A 7.64E-05 7.85E-05 6.90E-05 9.38E-05 1.18E-04 1.13E-04 
B -6.45E-04 -6.55E-04 -5.45E-04 -7.96E-04 -6.94E-04 -5.46E-04 
C 3.44E-03 3.73E-03 3.56E-03 4.85E-03 5.22E-03 5.07E-03 
D 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
 7-wheel burn 8-lipping 9-side wear 10-headwear 11-corrugation 12-unknown 
A 1.12E-04 7.34E-05 1.66E-04 1.61E-04 1.60E-04 1.70E-04 
B -3.87E-04 1.31E-04 -3.48E-04 -1.98E-04 -1.92E-04 -2.31E-04 
C 4.93E-03 3.87E-03 4.61E-03 4.28E-03 4.27E-03 4.33E-03 
D 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Now, several maintenance actions can be done for each of the faults, which are given as stacked 
probabilities in Table 2. Other than the faults, the deterioration of the rail can have a bad 
consequences including speed restriction and accidents. Three maintenance actions can be done to 
fix deteriorated rails: tamping, stoneblowing, and renewal. Each of the actions has a maintenance 
effectiveness that is described as the reduction of the poskey’s SD. This study adopts the Network 
Rail (NR) maintenance effectiveness model given as [9]: 

𝑆𝑆𝑆𝑆2 = 𝐴𝐴𝐺𝐺 + (𝑆𝑆𝑆𝑆1 ∙ 𝐵𝐵𝐺𝐺) (7) 

where 𝐴𝐴𝐺𝐺  and 𝐵𝐵𝐺𝐺 for a track speed less than 20 MPH is 0.365 and 0.754 respectively for tamping 
and 0.88 and 0.577 respectively for stoneblowing. It is assumed that the renewal return the SD of 
the poskey to 0.  

A PN model shown in Figure 1 was created to model the degradation, inspection, and 
maintenance of the poskey. Transition 𝑡𝑡1 represents the periodic inspection that is performed every 
half a year. It is assumed that the super-Red condition can be revealed visually since it causes 
noise, vibration, and great fluctuation in the poskey, and this is modeled by transition 𝑡𝑡7. Place 𝑝𝑝1 
represents that a change occurred in the poskey condition, and action is required. This enables the 
transitions in the action group 𝑟𝑟1, which are 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4, and 𝑡𝑡5 and they represent the no-action, 
renewal, tamping, and stoneblowing decisions respectively. Accordingly, RL agent chooses an 
action using the followed policy and based on the RL-state. Choosing any of the available repair 
types marks 𝑝𝑝2, which represents that logistic preparation starts, then after this period ends, 𝑡𝑡6 is 
fired to represent the maintenance of the poskey. An additional node type called function is defined 
in this PN model. If a function is connected from a transition, it runs when the transition fires; 
otherwise, it runs every time the state of the PN changes. Function 𝑓𝑓1 updates the condition and 
the SD of the poskey and includes the faults rate and degradation rate models. Function 𝑓𝑓2 
calculates the time needed of the poskey to change to super-Red condition and assigns a delay for 
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transition 𝑡𝑡7 accordingly. Function 𝑓𝑓3 checks the available actions at the current condition (the 
tamping action can’t occur after the stoneblowing). Function 𝑓𝑓4 updates the maintenance history 
of the poskey according to the chosen action. Function 𝑓𝑓5 calculates the logistic time based on the 
condition and assigns the delay of 𝑡𝑡6 accordingly, and finally, function 𝑓𝑓6 updates the SD of the 
poskey based on the maintenance effectiveness model and updates the degradation rate based on 
the degradation model. 

 
Figure 1 PN model for the degradation and maintenance of rail poskey. 

The RL rewards were assigned in terms of the maintenance costs and the consequences of rail 
bad condition. For a rail with a track speed between 5 and 20 MPH, the condition is considered 
super-red, poor, good, very good, and excellent for SD more than 9900, 8300, 7400, 5200, and 0 
[𝜇𝜇𝑟𝑟] respectively [9]. The RL environment is defined to include the deterioration level of the 
vertical geometry, the age, and the maintenance history of the rail. The deterioration level is 
assigned by discretizing the SD between values 5200 and 9900 to 10 levels, while the aging in 
considered by discretizing the age into intervals of 2 years each. A learning process with 400’000 
episodes was considered to find the optimal maintenance strategy that reduces the Operation and 
Maintenance (O&M) costs while elongating the life of the rail. An episode terminates when a 
renewal action is chosen or when the life of the rail reaches 200 years. The RL rewards for a state-
action pair were calculated as the summation of the O&M costs coming after that state divided by 
the time from taking the action until the end of the episode. If the rewards are not normalized by 
the time, the agent will choose the action with the minimal cost without considering the effect on 
the life of the rail, and this leads to increasing the costs per time. The O&M costs include the 
vertical geometry maintenance costs which are assigned as 1000, 2000, and 20’000 units for the 
tamping, stoneblowing, and renewal respectively, the faults maintenance costs which are assigned 
as 120, 100, and 80 units for the rerail, weld, and grind actions respectively, and the consequences 
of being in a super-red condition which is assigned as 1 unit per minute of service. 

Table 2 Stacked probabilities for each maintenance action according to fault type [3]. 

  squat tache ovale bolt hole weld other RCF 
Rerail 0.328 0.722 0.9 0.519 0.641 0.508 
Weld 0.954 0.963 0.919 0.904 0.918 0.786 
Grind or other 1 1 1 1 1 1 
 wheel burn Lipping side wear headwear corrugation unknown 
Rerail 0.267 0.029 0.044 0.213 0.706 0.464 
Weld 0.874 0.134 0.338 0.752 0.765 0.63 
Grind or other 1 1 1 1 1 1 

Results 
Figure 2 shows the increase of the total rewards of each episode as a function of episode number. 
It can be noted that the curve has reached stability by the end of the learning process, which results 
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in a decrease in the annual O&M costs. The learning process resulted in finding the optimal action 
for 3878 different states. The effect of the final policy can be seen in Figure 3 which shows the 𝑆𝑆𝑆𝑆 
and maintenance history for 20 random poskeys as a function of time. The figure shows that once 
a tamping action is taken, the frequency of maintenance actions increases. This is because each 
tamping operation causes ballast breakup of as much as 20 EMGT of traffic [10], resulting in 
fouling, faster settlement of subgrade, and faster degradation rate [4, 5]. For some of the samples, 
tamping was not considered at all, and this may be due to the advantages of stoneblowing over 
tamping including the maintenance effectiveness and degradation rate. The resulting policy takes 
into account various factors including the relation between the 𝑆𝑆𝑆𝑆 and the probability of having 
faults, the costs of maintenance actions, the consequences of being in a bad condition, the effect 
of each action on the life of the poskey, the maintenance history, and the age of the poksey. For 
this, the decisions at the same vertical geometry conditions are not the same for all poskeys. This 
shows the importance of considering the age of the rail and the maintenance history in the RL 
environment. 

 
Figure 2 Total rewards as a function of episode number 

 
Figure 3 SD and maintenance history of 20 random Poskey samples as a function of time 
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Conclusion 
A PN asset management model was created and optimized through RL for railway sections. 
Different factors are considered in the created model including the effectiveness of the 
maintenance, the effect of the rail condition on the probability of having faults, the factors 
influencing the degradation rate, the consequences of bad rail condition, and costs of the 
maintenance actions. The RL rewards are all expressed in monetary terms, and RL agent was left 
to interact with the PN model, which reached at the end an optimized maintenance strategy that 
can reduce the O&M costs while maintaining the safety and quality of service. Additional work 
can be done by considering a full track with different sections that has different properties when 
creating a full asset management model.  
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Abstract. Physical, tactical, and field training are critical for improving warfighter physical 
performance and capabilities. Exercises and training events are typically supervised; however, 
group/team training and field exercises lack personalized supervision. While technologies such as 
optical motion capture (mocap) can capture detailed biomechanics, they are most conveniently 
used in indoor laboratory settings or in a pre-staged outdoor area. Commercial wearable sensors 
are readily available, but the data typically correspond to a discrete bodily location and only 
provide limited information about whether someone is moving, as opposed to how movements are 
being performed. To fill this gap, a self-adhesive, elastic fabric, nanocomposite skin-strain sensor 
was developed, extensively tested, and validated through human subject studies. It was found that 
these “Motion Tape” sensors were not only able to measure skin-strains during functional 
movements, but its measurements were also correlated with how muscles engage. In this study, 
Motion Tapes were worn at major muscle groups, and participants performed exercises that 
simulated military marksmanship training activities. Mocap measurements were also obtained to 
acquire baseline biomechanical movement data and to quantify typical marksmanship outcomes. 
Individuals (civilians) were first asked to perform a simulated rifle shooting task (i.e., incorrectly), 
before being asked to repeat the task (i.e., correctly) after being provided with instructions that 
targeted improved performance. The results confirmed that Motion Tape skin-strain measurements 
were able to differentiate between “incorrect” and “correct” movement sequences.  
Introduction 
Rifle marksmanship is a crucial aspect of military training and qualification, especially for the U.S. 
Marine Corps. However, training exercises that involve the handling of weapons are not only 
dangerous and time-consuming, but trainees also rely heavily on individual feedback from an 
instructor to improve. Such personalized attention and feedback require significant manpower 
investment and may be difficult to achieve in field exercises or during group sessions. Often, one’s 
marksmanship is assessed according to shot score and/or accuracy [1, 2]. Although using such a 
quantifiable metric makes sense and may seem objective, a shot score does not provide detailed, 
actionable information for one to learn from and improve. In fact, poor marksmanship can be 
caused by movement deficiencies (e.g., sight misalignment or uncoordinated steps during 
execution) or uncontrolled respiration, which can only be identified visually by a seasoned trainer.  

In an attempt to increase training efficiency and decrease time and manpower investments, 
Chung et al. [3] explored the possibility of using multimedia-based instruction, as well as 
incorporating sensing apparatuses, for improving marksmanship skills and performance. It was 
found that, while computer-based instruction could increase participants’ skills, the extent of 
improvement was limited. Interestingly, participants that received individualized instruction along 
with sensor data performed better versus those that did not receive any instruction. These findings 
are baselined against the fact that no differences were observed between participants who did and 
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did not receive individualized instruction without sensor data. Such findings suggested that sensing 
data can potentially be used by the trainer as a diagnostic tool or can be directly relayed to the 
trainee in the form of actionable feedback [3]. 

In another study, sensors were utilized to help objectively quantify metrics that are too subtle 
to be observed by the naked eye during shooting exercises. For example, Nagashima et al. [1, 4] 
aimed to develop sensor-based skill measures of breath and trigger control. They instrumented a 
force-pressure sensor on the trigger of the weapon, and participants also wore a respiration belt. 
With the incorporation of a classification model, it was demonstrated that the sensor-based 
measurements contributed to a reliable method that could differentiate between expert and novice 
marksmanship skills. However, marksmanship involves more than respiration and trigger pull to 
include limb and body movement control, especially in more complicated shooting scenarios [5, 
6]. 

Therefore, the objective of this study was to test the hypothesis that body movement 
measurements provide rich information about marksmanship performance. Movement 
measurements were obtained using a self-adhesive, elastic fabric, wearable sensor called “Motion 
Tape.” Previous studies showed that Motion Tape can be mounted on practically anywhere on the 
body to acquire accurate skin-strain measurements. This paper begins with a brief explanation of 
how Motion Tape was fabricated and its working mechanism, followed by a summary of sensor 
performance characterization based on prior laboratory load frame and human subject testing. 
Next, the human subject marksmanship test protocol, which involved participants wearing Motion 
Tape, is explained in detail. Then, the results from the human subject tests are shown and analyzed. 
This paper concludes with a brief summary and discussion of how Motion Tape can be employed 
to enhance marksmanship training in the future. 
Experimental Details 
Motion Tape Fabrication and Characterization. A low-profile, self-adhesive, elastic fabric, 
nanocomposite skin-strain sensor – Motion Tape – was designed and fabricated for human 
movement and muscle engagement monitoring. In essence, a graphene nanosheet and ethyl 
cellulose dispersion was formulated and spray-coated as is onto commercial off-the-shelf 
kinesiology tape (K-Tape) to produce these piezoresistive Motion Tape skin-strain sensors. 
Electrodes were established at opposite ends of each nanocomposite sensing element by depositing 
conductive silver ink, followed by soldering multi-strand wires. A schematic of the fabrication 
process is shown in Fig. 1a, and the detailed fabrication procedure is described in Lin et al. [7]. 
Fig. 1b shows a typical Motion Tape sample used for testing. 

A comprehensive electromechanical sensor characterization study was conducted by subjecting 
Motion Tape samples to tensile cyclic load frame tests. The results showed that Motion Tape 
exhibited stable, linear, low-hysteresis, and high-sensitivity response, with repeatable linear-
elastic strain sensing properties up to ~12%. Furthermore, it is worth noting that its strain 
sensitivity can be tailored between 10 and 100 depending on the specific graphene nanosheet ink 
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formulation and fabrication parameters used. The laboratory characterization results can be found 
in Lin et al. [7].  

Human subject tests with participants wearing Motion Tapes over major muscle groups (e.g., 
biceps, quadriceps, and trapezius) were also performed. Motion Tape were applied as individual 
sensors, or they can be applied together to form a unique pattern to cover desired muscle groups, 
such as the ‘Y’ pattern that covered the triceps, middle deltoid, and posterior deltoid, as shown in 
Fig. 2a. To demonstrate muscle engagement monitoring in this test, the subject performed side 
shoulder raises five times, while a data acquisition system (Keysight 34401A digital multimeter) 
was used to simultaneously measure and record the electrical responses from each of the three 
Motion Tape sensing elements. From Fig. 2b, it is clear that Motion Tape resistance measurements 
can capture unique waveforms of how the muscle groups engaged in order to produce functional 
movements. In fact, Lin et al. [8] showed that Motion Tape resistance measurements were highly 
correlated with skin-strains estimated using a Vicon optical motion capture (mocap) system that 
tracked the relative displacement between two retroreflective markers mounted adjacent to Motion 
Tape. In addition, the high sensitivity of Motion Tape allowed it to capture very small skin-strain 
differences associated with different extents of muscle engagement during functional movements. 
Previous studies found that greater changes in electrical resistance were measured when 
participants performed biceps curls using heavier weights. Overall, these results demonstrated that 

  

(a) (b) 

Figure 2. (a) A ‘Y’ pattern Motion Tape Network was affixed onto the subject’s upper 
arm/shoulder area. (b) Electrical resistance measurements were acquired while the subject 

performed side shoulder raises, and the results are shown. 
 

  

(a) (b) 
Figure 1. (a) A schematic of the fabrication process of Motion Tape and (b) a Motion Tape 

sample is shown. 
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Motion Tape is a versatile wearable sensor that can be used to measure how functional movements 
are performed. 

Marksmanship Human Subject Test Protocol. In this study, a simulated marksmanship training 
exercise was designed and conducted in the laboratory. The participant was asked to emulate the 
process of aiming and shooting at a target located 90º on the right of the individual. The entire 
movement sequence started with the participant standing still while holding an M4 rifle replica. 
The rifle was then raised, while facing forward, so that its stock rested on the chest and the 
participant could see and aim through the sights without any significant head tilt. Then, the first 
set of movements corresponded to the “untrained” or “incorrect” movement sequence. The 
participant first turned his head towards the right side to identify the target, before rotating his 
upper body and rifle to aim at the target. On the other hand, the second set of movements, after 
being coached with verbal instructions, corresponded to the “trained” or “correct” movement 
sequence. With the rifle pointed forward, the participant was instructed not to turn his head but 
instead rotate his entire upper body and rifle in unison to then aim at the target. In this movement 
sequence, the participant’s head was always pointed in the direction of the rifle. For both cases 
and upon successfully aiming at the target, the reverse sequence of movements was performed to 
return to the original standing posture. Fig. 3a and 3b show full body optical motion capture 
snapshots corresponding to the incorrect and correct movement sequences, respectively. In 
essence, the main movement difference lies in whether the participant rotated his head/neck. 

Motion Tape and Marker Placement. During the aforementioned marksmanship human subject 
tests, each participant wore five Motion Tapes and was also outfitted with a full body set of 
retroreflective mocap markers. First, two Motion Tapes were placed, one each, on the left and right 
deltoid. Motion Tape was also affixed near the left and right trapezius, as well as one on the trigger 
finger. Fig. 4a and 4b show pictures of where Motion Tapes were mounted on the participant. 
Second, a 12-camera Vicon optical motion capture system was employed to measure the kinematic 
movements of the participant during testing, as is shown in Fig. 4c. The 3D positions of the 
retroreflective markers were recorded at 100 Hz. In addition, Motion Tapes were connected to the 
Vicon Lock Lab analog interface so that time-synchronized electrical resistances (i.e., through the 
use of voltage dividers) could be acquired. The Motion Tape signals were conditioned and filtered 
using a fourth-order Butterworth low-pass filter with a cut-off frequency of 60 Hz. Last, two 
retroreflective markers were also mounted on the target (i.e., with its midpoint defined as the 
bullseye), and two additional markers mounted along the rifle barrel were used to define the linear 
shot trajectory. 
Results and Discussion 
The results of the simulated marksmanship tests are shown in Fig. 5. Fig. 5a corresponds to the 
measurements acquired when the incorrect movement sequence was performed, while Fig. 5b was 
for the correct movement sequence. To visualize and be able to directly compare the Motion Tape 
sensing streams, the normalized change in electrical resistance (ΔRn) was calculated and plotted 
with respect to time.  
 ∆𝑅𝑅𝑛𝑛 = 𝑅𝑅𝑖𝑖−𝑅𝑅0

𝑅𝑅0
 (1) 
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where Ri is the resistance of Motion Tape at any time instance, and R0 is its nominal resistance 
(i.e., the baseline resistance of Motion Tape when the subject was standing still in a neutral 
position). 

When compared against one another, it can be observed that, prior to marksmanship instruction 
(i.e., incorrect movement sequence), Motion Tape data from both the deltoids and the trapezius 
muscles showed large variability during target identification and aiming. In contrast, Motion Tape 
data at these same locations showed significantly smaller variability and more stable responses for 
the correct movement sequence. This smaller variability was expected, since the correct movement 
sequence corresponded to the participant not rotating his head during target identification. These 
results confirmed that Motion Tape possessed sufficient sensitivity to capture these small 
movement differences. 

 

  

(a) 

 

  

(b) 
Figure 3. Optical motion capture image frames of (a) an incorrect rifle shooting posture (i.e., 

head turning before body rotation) versus (b) a correct shooting posture (i.e., head turning 
together with body rotation) are shown. 
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The mocap data collected during the simulated marksmanship tests were also analyzed. In 
particular, the two retroreflective markers on the rifle barrel were used to define a linear line, and 
its direction was assumed to be the shot trajectory or aim of the rifle. Shot accuracy – or more 
specifically inaccuracy – was also calculated by comparing the deviation of the shot trajectory with 
respect to the midpoint of the target. The results showed that prior to instruction, inaccuracy was 
73.3 ± 20.2 mm; after instruction and by performing the correct movement sequence, inaccuracy 
decreased to 52.2 ± 29.1 mm. These results confirmed that the correct movement sequence yielded 
better marksmanship performance.  

Finally, shooting speed was quantified as the time from the start of movements to when the 
participant pulled the trigger. Analysis of the mocap and trigger finger Motion Tape results showed 
that it took the participant 1.94 ± 0.10 s to pull the trigger when the incorrect movement sequence 
was performed. After instruction, the correct movement sequence resulted in faster behavior, 
taking only 1.38 ± 0.19 s. Overall, the accuracy and speed results demonstrated that performing 
the correct movement sequence yielded improved marksmanship performance. Motion Tape 

  

(a) (b) 
Figure 5. (a) Motion Tape measurements during an incorrect rifle shooting posture versus (b) 

the correct shooting posture are compared. 
 

 

  

(a) (b) (c) 
Figure 4. (a) Two pairs of Motion Tapes were affixed on the left and right side of the neck 

and shoulder region, as well as (b) a Motion Tape on the trigger finger, as indicated by the 
red arrow. (c) A full-body retroreflective marker set was used to capture kinematic 

movements. 
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measurements of skin-strains near the deltoid and trapezius muscle groups showed observable 
differences between correct versus incorrect movements.  

Based on the data collected from the marksmanship tests, Motion Tape sensing streams can 
potentially provide the trainer and trainee with movement specific data that cannot be readily 
obtained using commercial off-the-shelf wearable sensors. Unlike mocap, Motion Tape does not 
have to be used in a laboratory setting and can be potentially used in field exercises where it would 
be difficult or impractical to install mocap cameras. Furthermore, it was previously shown that 
Motion Tape measurements are correlated with the degree of muscle engagement [9]. Such 
detailed information about movement and muscle engagement means that Motion Tape can 
provide muscle-specific feedback to help guide individuals about how to alter the execution of 
functional movements that lead to improved performance. 
Conclusions 
In this study, a stretchable, elastic fabric, skin-strain sensor (i.e., Motion Tape) was employed to 
monitor subtle human movements during simulated marksmanship training exercises. Its simple 
fabrication process, as well as ease of application onto the human body, made Motion Tape an 
appropriate sensing apparatus for monitoring human movements during complex activities such 
as shooting a rifle. During the experiment, the participant wore Motion Tapes at key locations on 
the upper body, in addition to mocap retroreflective markers, which were used as reference for 
verification. The results showed that each Motion Tape was able to acquire disparate waveforms 
before and after verbal instructions, where the overall variation of signal amplitudes was reduced 
after performing movement sequences correctly, indicating steadier postures and hence better 
performance. Further, analysis of the mocap data showed that, after receiving instructions on 
proper marksmanship, the participant achieved faster and more accurate target aiming.  

Overall, this study demonstrated that the use of Motion Tape during training could help provide 
feedback on how one performs functional movements, which is something that most wearable 
sensors today cannot do. The long-term goal of this work is to use sensing streams from a limited 
number of Motion Tapes as inputs for a machine learning method to infer how one moves and how 
those movements affect performance. The vision is that this technology can facilitate efficient and 
effective training by providing actionable feedback and diagnostic information for both trainers 
and trainees. Future work will focus on improving the linear sensing range of Motion Tape as well 
as miniaturization of the portable data acquisition system. 
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Abstract. Human performance monitoring in complex operational environments calls for sensing 
solutions that measure human physiology as well as human interactions with their surroundings. 
Recent advances in multimodal sensing have led to the development of intelligent environments 
that analyze human activities with high granularity. One of the greatest challenges is to unify 
multiple discrete sensing systems through synchronization and integration of multimodal data 
streams. This paper describes an intelligent environment that consolidates wearable skin-strain 
sensors for physiological monitoring; geophones and microphones to record ambient vibrations 
and sounds; and video cameras to visually observe human activities. We show proof-of-concept 
functionality by using the system to differentiate walking effort in human subjects. First, the work 
shows the alignment of wearable and ambient sensor time-history records. Then, data features are 
extracted and correlated to walking speed using three sensor modalities. Finally, feature-level 
analysis is done to associate the data features with the perceived walking exertion for each subject.  
Introduction 
Wearable devices that measure physiological signals such as heart rate, skin temperature, 
electrodermal activity (EDA), and electrocardiogram (ECG) are increasing in popularity. Wrist-
worn devices offer satisfactory monitoring capabilities when an overall metric of well-being is 
desired, for example, fitness tracking in sports applications [1], fatigue monitoring of construction 
workers [2], and performance evaluation of military populations [3]. However, physiological 
signals provide only limited information about the activities or surroundings of the person wearing 
the device. When perception of the activities in an environment takes precedent over physiological 
monitoring, one may instead embed sensors into the environment itself: so-called intelligent spaces 
or environments [4, 5]. These intelligent environments aim to understand what happens within 
using visual, depth, and motion sensors. Relatively less work has attempted to combine the 
paradigms of wearable and ambient sensing to monitor human activity and performance at a fine-
grained level. Such unified sensing solutions would benefit team operations where there is a clear 
interplay between environmental conditions and personal well-being (e.g., military operations, 
construction, and industrial operations). 

Intelligent environments with different sensor types face the challenge of integrating multiple 
heterogeneous data sources to create unified analyses of human performance. In general, wearable 
and ambient sensors are not time-synchronized. Multimodal unification is commonly achieved 
using a feature-level data fusion approach. In contrast to raw data fusion where different sensor 
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records are combined on a sample-by-sample basis, feature-level fusion requires only rough 
alignment since data features are extracted from the raw data before being combined into feature 
vectors [6]. 

In this paper, an intelligent environment is proposed to consolidate ambient sensing with 
wearable sensing for the purpose of human performance monitoring. The ambient sensors 
integrated into the environment are video cameras, geophones, and microphones. The wearable 
sensors are graphene “motion tape” skin-strain sensors [7] capable of monitoring muscle 
engagement and respiration [8]. The system is used in a validation case study to characterize 
perceived walking effort (i.e., pace). Two volunteers are instructed to walk at different speeds 
(which correlate to subject exertion effort) ranging from slow to fast while being monitored by the 
multisensory intelligent environment. From the video cameras, computer vision techniques are 
employed to estimate the subject walking velocity. The geophones, which measure ground 
vibrations to reveal footstep impacts, are used to compute subject step rates. Motion tape sensors 
mounted on the chests of subjects are used as respiration monitors where sensor signals contain 
information on the rate and duration of breaths. The features from the three different sensing 
modalities are then combined to associate each trial with the perceived walking effort. The results 
inspire future human subject monitoring experiments aimed at activity detection and quantification 
of physical exertion through unified wearable and ambient sensing.   
System Hardware 
Wearable sensors: motion tape is a new type of skin-strain sensor manufactured by spray-coating 
athletic kinesiology tape with a graphene nanosheet to give it piezoresistive properties [7]. This 
study uses motion tape placed on a chest band to monitor breathing (Fig. 1a). The manufacturing 
process permits flexible shapes and sizes for the sensor, which results in a varying resistance range 
for each sensor.  The sensors connect to a custom-designed wearable data acquisition node which 
keeps time based on its internal oscillator but synchronizes across nodes by connecting them to a 
base-station computer at the start of the experiment. Motion tape data is acquired at a sampling 
frequency of 20 Hz.  

Ambient sensors: geophones and microphones record ambient ground vibrations and sounds, 
respectively. Geophones are sensors that convert the velocity of motion into voltage. They can be 
used to reveal the vibration response of footstep ground impacts. The geophone of choice is a GS-
14-L9 from Geospace Technologies (Fig. 1b). Raw geophone signals are passed through a 10-150 
Hz band-pass filter for anti-aliasing and a 2000 times amplification to improve the signal strength 
prior to analog-to-digital conversion. The microphone is an omnidirectional micro-
electromechanical systems (MEMS) microphone from STMicroelectronics (Fig. 1c). It is small 
enough to integrate into printed circuit boards. It features a flat, extended frequency response up 
to 80 kHz for recording sounds through the ultrasound range. Raw audio signals are passed through 
a 28 Hz–78.5 kHz band-pass filter and onboard amplification of 360 times. All geophones and 
microphones are sampled at 100 kHz; this high rate is intended to take advantage of the ultrasound 
range of the microphones. A National Instruments PXI modular data acquisition system (DAQ) is 

 

  

 

(a) Motion Tape (b) GS-14-L9 Geophone (c) IMP23ABSU Microphone (d) GW5037IP Camera 
 

Figure 1: Overview of sensors used as part of the intelligent environment. 
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used for data collection.  The DAQ synchronizes the geophones and microphones using its real-
time operating system. Video of the environment and subjects is recorded using a standard 1080p 
IP camera (Fig. 1d) using a 24 frames per second frame capture rate. Video footage is streamed to 
a base station computer using Real Time Streaming Protocol (RTSP) and backed up to a Network 
Video Recorder (NVR). 

In summary, four sensor types (motion tape, geophone, microphone, camera) and three different 
data acquisition platforms are utilized to create an intelligent environment with elements of both 
physiological monitoring and ambient environmental sensing. Each DAQ records a UTC 
timestamp to ensure system-wide synchronization. It is assumed that the timestamp labels are 
accurate down to the second. Post-processing alignment of multimodal sensor feeds from the three 
DAQ platforms begins by extracting the starting timestamp of each DAQ record and shifting time 
histories relative to one another to get sub-second resolution. Alignment is manually verified by 
observing prominent signal features corresponding to impulsive events like subject stomping, 
clapping, or running which are visible in all sensors time histories. 
Experiment 
The sensing system is implemented in a validation study at Mcity [9], an outdoor smart city 
laboratory at the University of Michigan in Ann Arbor. The laboratory’s open outdoor space and 
information technology (IT) infrastructure enable comprehensive human subject tests. In this 
study, the focus is on single-person walking tests with two different subjects as a case-study to 
demonstrate the integration of wearable and ambient sensors. Subject 1 is asked to walk with two 
different walking efforts: “slow” pace in Test 1, which is close to a natural walking pace, and 
“moderate” pace in Test 2, which is brisk but not jogging. Subject 2 is asked to walk with three 
different efforts: “slow” pace in Test 1, “moderate” pace in Test 2, and “jogging” pace in Test 3, 
where moments of the stride have both feet off the ground. The trajectories of the subjects are 
visualized in Fig. 2. It is noted that future holistic testing could recruit a larger number of subjects 
and use a documented effort scale such as Borg’s Rating of Perceived Exertion (RPE) [10], which 
has widely been used to rank the difficulty of tasks in other physiological studies.  

The goal of the experiment is to determine the walking effort in both subjects by unifying data 
features from the wearable motion tape sensors with features from the ambient geophone and 
visual sensors. In this specific work, the microphones are primarily used to assist with data 
alignment. The alignment of all sensors is illustrated in Fig. 3, taken from Subject 1, Test 2. Several 
important physiological and activity features appear in the data. The top two data streams show 
the walker’s (x, y) coordinates, computed using computer vision techniques from the video feed 
(see section Methodology for more details). The next four data streams come from the geophones 
which reveal transient oscillations for each footstep. As the walker approaches then leaves the 
vicinity of each geophone, the envelope of the vibrations increases then decreases in amplitude 
correspondingly. The amplitude swells first at Geophone 1 then 2, 3, and 4, indicating that the 
subject is walking counterclockwise. The data from the motion tape sensor on the subject’s chest 
clearly shows peaks for each inhale occurring at approximately once every two seconds. The 
motion tapes on the left and right sides of the subject’s abdomen also reflect walking motion. The 
frequency of peaks in each abdominal record is approximately half of the step rate (visible in the 
geophone data). Each time the left leg steps forward, a peak in the left abdomen sensor occurs, and 
vice-versa for the right abdomen. The sum of the peaks from the left abdomen and right abdomen 
(20 peaks each) is equal to the number of footsteps visible in the geophone feeds (40 oscillations). 
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Methodology 
Motion tape: using the chest-worn motion tape sensors, two data features are computed: subject 
respiration rate, measured in breaths per second, and normalized signal power. The respiration rate 
is computed as the frequency corresponding to the peak of the motion tape data in the frequency 
domain. The fast Fourier transform (FFT) algorithm [11] is used to compute the discrete Fourier 
transform (DFT) of the data. Although the breathing rate is generally expected to increase with 
physical effort, it is also influenced by the rhythm of the physical activity itself. Historical studies 
have shown the entrainment of breathing rate with the rhythm of motion [12], which is not rigidly 
tied to the exercise intensity. For this reason, an additional signal power feature is computed which 
aims to account for the intensity of breaths. The data is pre-processed using a digital low-pass filter 
with a 2 Hz cutoff frequency to isolate breathing motion. The signal is normalized to have 
maximum and minimum values of +1 and a mean of zero. Then, the signal power 𝑃𝑃𝑥𝑥 is computed 
as the signal energy per unit time: 𝑃𝑃𝑥𝑥 = 1

𝑁𝑁
∑  |𝑥𝑥(𝑛𝑛)|2𝑁𝑁−1
𝑛𝑛=0  for a discrete signal 𝑥𝑥(𝑛𝑛) of length 𝑁𝑁. An 

illustration of the signal power feature is given in Fig. 4, where the more profound peaks in the 
jogging signal result in higher signal power than the slow walking signal. 

Geophones: the geophones are used to compute a step rate, in steps per second, by counting 
the number of footstep events per unit of time. The event detection algorithm first implemented by 
Pan et al. [13] is used with minor modifications. The algorithm intakes windowed vibration time 
series data and determines whether the current window represents ambient vibration or a footstep 
event. First, the acquired discrete signal 𝑥𝑥(𝑛𝑛) of length 𝑁𝑁  is windowed every 0.1 seconds in 
increments of 20 msec. Next, a signal energy feature Ex = ∑  |𝑥𝑥(𝑛𝑛)|2𝑁𝑁−1

𝑛𝑛=0  is computed. The signal 

 
(a) Subject 1 

 

(b) Subject 2 
 

Figure 2: Visualization of routes taken by Subject 1 and Subject 2 at Mcity. Red squares 
numbered 1 through 4 represent the locations of the sensor boxes containing co-located 

microphones and geophones. The coordinate system is chosen by the authors with the origin 
at sensor box number 3. The video camera (not shown) is located at (𝑥𝑥,𝑦𝑦) = 

(−484, 28.2) cm. 
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Figure 3: Alignment of multimodal sensor data. Subject 1 location (top two plots), 

geophones (next four plots), microphones (middle four plots), and motion tape sensors 
(bottom five plots). 

 

 
Figure 4: Signal power feature on normalized motion tape chest data, different efforts. 
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energy is compared to a Gaussian noise model X ∼  N(μ,σ2) whose parameters are continuously 
updated based on non-footstep-event data. If the current window's energy feature exceeds three 
standard deviations (3σ) above the mean energy of the noise (μ), then the window is labeled a 
potential step event. The potential step event is re-labeled as a confirmed step event if the next 
window also exceeds the μ + 3σ threshold, and if at least two out of the four geophones label it as 
such. Finally, consecutive windows labeled as footstep events are merged. Visualization of the 
algorithm is shown in Fig. 5 where shaded windows of the plot indicate footstep events. The step 
rate is the number of steps divided by the duration of the record. Also shown in Fig. 5 is the short-
time Fourier transform (STFT), showing that footstep impulses registered by the geophones 
primarily consist of the frequencies below 200 Hz after signal conditioning. 

Video: The video camera is used to estimate an average walking velocity of the person in the 
intelligent environment (limited to a single person in this study). The YOLO object detector [14] 
detects the person in each video frame and draws a bounding box surrounding the subject (Fig. 
6a). It is assumed that the detected person is standing on the ground, which represents a height 
coordinate of 𝑧𝑧 = 0 in the world coordinate system. Successive coordinate transformations as 
described by the pinhole camera model (Fig. 6b) are used to convert from pixel coordinates of the 
base of the YOLO bounding box to 3D coordinates in a world system. The inverse projection is 
made tractable by the 𝑧𝑧 = 0 assumption. Since location estimates using this method can jitter 
frame-by-frame, a 12-point (0.5 seconds) simple moving average (SMA) is applied to the 
coordinates extracted. Once the coordinates of the monitored subject are computed for each video 
frame, the instantaneous walking velocity is estimated as the change in Euclidean distance from 
one frame to the next divided by the time between video frames. The data feature is the average 
walking velocity over all video frames in each test. 

 
(a) Person detection using YOLO 

 
(b) Pinhole camera model for 3D reconstruction [15] 
 

Figure 6: Person localization using computer vision from video feed. 

 
 

Figure 5: Top: Geophone signal with footstep events in shaded windows, computed using 
signal energy method. Bottom: time-frequency representation of geophone signal using the 

short-time Fourier transform (STFT). 
 

Ground 
contact 
(𝑧𝑧 = 0) 
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Results 
Fig. 7 shows the four data features computed across tests for the two subjects walking with 
differing levels of exertion. Step rate and walking speed show similar patterns in line with 
expectations: both subjects exhibit faster step rates and higher average walking speed when told 
to walk with higher effort. Individual differences are also evident between the two subjects. 
Subject 1 walking with moderate effort uses a step pace similar to Subject 2’s jogging effort (Fig. 
7a), however the speed is not as fast (Fig. 7b), indicating shorter stride length. Subject 1 breathes 
faster walking with moderate speed than slow speed (Fig. 7c). This is also true of Subject 2, but 
Subject 2 breathes more slowly while jogging than walking moderately. We attribute the reduction 
in respiration rate to entrainment with running pace. Subject 2’s jogging step rate is 2.6 
steps/second and respiration rate 0.5 breaths/second; therefore, the subject breathes approximately 
once every five steps. On the other hand, the signal power data feature for Subject 2 increases 
according to perceived effort, while that is not true for Subject 1. It appears that increased effort 
results in faster, shallower breaths by Subject 1 but slower, deeper breaths by Subject 2. The overall 
impression of the four multimodal data features agrees with subjects’ perceived walking effort. 
Step rate and walking speed show identical trends that can pick out the walking rate despite person-
specific breathing patterns. The breathing features give an understanding of the adaptations to 
breath rate and depth that subjects make with higher physical effort.  
 

 
(a) Step Rate (geophones) 

 
(b) Walking Speed (video) 

 
(c) Respiration Rate (motion tape) 

 
(d) Signal Power (motion tape) 

 
Figure 7: Walking features computed across sensor modalities. Sensor type indicated in 

parentheses. Perceived walking effort by the subject is color-coded. 
Conclusion 
This paper advances recent efforts to integrate physiological and environmental monitoring to 
create unified metrics of human performance. Using video cameras, geophones, and wearable 
motion tape skin-strain sensors, four data features related to perceived walking exertion are 
computed. The data features are shown to accurately reflect walking effort in a case study from an 
outdoor validation experiment with two volunteers. Next steps in quantifying physical effort in an 
intelligent environment could involve controlled human subject experiments where each volunteer 
is asked to perform repetitions of an activity at different RPE levels. Additional physiological 
sensors that measure heart rate and/or ECG would complement the respiration measurement by 
chest-worn motion tapes. Since the work herein shows proof of concept, the research team is 
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actively pursuing more advanced human performance monitoring tasks using the same multimodal 
sensor suite. Other tasks include localization of multiple people and detection of actions and poses. 
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Abstract. Current approaches to maintenance of rolling stock bogies are focused on compliance 
to wear limits as stipulated by OEM specifications. OEM recommendations are critical to 
providing an industry wide approach to safety and compliance. These are not operation specific 
and are often not the most cost-effective solutions. A system approach to reliability is an 
established approach that is applied in less complex systems where the relationships between 
components are well defined with historical data and predictable conditions. Extending this 
approach to more complex multi-variate systems where many relationships are not intuitively 
obvious or mathematically defined presents a challenge. Machine learning techniques have been 
applied to address such problems with examples in image recognition, tool wear prediction using 
multiple sensory inputs and estimating railway bogie wear using vibration inputs. [8,9,10] The aim 
of the study is to extend and adapt machine-learning techniques to the area of developing 
maintenance strategies for optimal business benefit with a specific focus on railway bogie 
maintenance. This study aims to present an insight into the variables, which includes bogie 
tracking condition affecting track side wear rate. A finding is that an in-depth study of each 
independent variable’s individual impact is a necessary step to efficient modelling. These include 
track geometry, operating and bogie component wear variables.  Track side wear, curve radius, 
superelevation and track top variance have been found to be significant predictors of track side 
wear rate. These impact predictions are not consistent between the different rail tracks and are not 
exhaustive. Specifically, the impact of bogie performance requires inclusion. Combining these 
variables mathematically using statistical inference and convolutional theory with maximum 
likelihood estimators would establish a predictor for side wear rate for the specific operation. The 
paper finally discusses the relationship of area wear rate to side wear rate and the influences of 
grinding frequency and rail material type.  
Introduction 
Logical reasoning is used for significant maintenance /renewal programmes in the heavy haul rail 
industry. This approach generally lacks analytical accuracy on determining the optimal outcome 
regarding business value generated. The challenge in creating the optimal strategy is due to the 
inherent complexity of relationships between components, assets and business value metrics with 
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multiple feedback loops and differences in the timing of impacts. A closed form mathematical 
solution will in general not be able to account for all variables and conditions. Such a solution 
needs to be uniquely derived for specific operations due to the different environments in which 
railways operate. These challenges lend itself to computational modelling with real-time learning 
to account for changing environmental conditions. The research question is if such modelling can 
be developed by embedding the techniques of deep machine learning to achieve the business value 
outcome.  

A body of research exists on linking maintenance strategies with maximising business value 
such as improving asset up time and reducing total maintenance cost spend. [1,2,3,4] Topics of 
research that combine the subject of maintenance strategies with machine learning include fault 
detection using condition monitoring data [5], sensor inputs to condition monitor tool wear [6] and 
fault diagnosis in bearings [7]. In these examples, machine learning is utilised to achieve reliable 
fault detection through condition monitoring. The goal is improved business shareholder value by 
productivity improvement and/or cost reduction. More specifically, in railway maintenance 
applications, machine learning has been researched for bogie maintenance [8], track defect 
detection [9] and for predicting wheel and rail interface wear [10]. 

This paper discusses the key variables to be analysed and the approaches in developing a 
learning model to link the impact of physical railway rolling stock, operating and track variables 
to the track wear rate. These variables are a core aspect of the larger framework to be defined 
which links the cost of maintenance activity on specific components to the net business value add, 
usually measured in terms of net revenue. The learning to be applied represents the gathering of 
condition data that describes the wear patterns of track and rolling stock under different operating 
and geometrical constraints. The specific focus will be on the impact of bogie condition on track 
maintenance.  

Bogie fleet operational performance is represented by the mean and variance of the fleet flange 
difference. The current mean+3 standard deviations of the transformed data will be added as a 
constant term in the regression. This is because the track variables are currently measured across 
the track network at a single time-stamp, and given that the fleet operates randomly on all sections 
of the track network. The extension of the modelling to include data at different time stamps is 
discussed. 
Modelling Approaches and Assumptions 
Track maintenance and consequential downtime is primarily influenced by grinding or re-railing 
activity. Re-rail occurs once the track has been ground to minimum acceptable vertical height. 
Grinding is carried out to restore track profile after wear (both top and gauge) and remove surface 
defects (rolling contact fatigue). The wear rate due to the rolling stock may be influenced by GMT, 
asymmetrical loading due to wheel wear and changes in lateral loading due to operating speed, 
curve radius, superelevation and TCI. Ballast condition and tamping frequency may also play a 
role in wear rates as an influence on the dynamic behaviour of the rolling stock.    

The modelling approach is initially based on single time-stamp data with limited available data 
at different time-stamps. For single time-stamps, the data is 2-dimensional and explains the 
relationhips of the variables to SWR spatially across the network. The time-dimension is excluded 
and more specifically implies that the variable that explains bogie performance across the rolling 
stock fleet is necessarily represented as a constant. This is a consequence of the entire train fleet 
operating randomly over all parts of the network. The constant chosen will be represented by the 
wheel fleet flange difference mean + n*standard deviations calculated for wheel trip range <100 
to more closely represent bogie condition and not fleet-wide wheel condition. The value of integer 
“n“ can be in the range of 1 to 3. 
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The impact of bogie condition is expected to directly influence side wear (gauge) rate (SWR) 
due to its impact on bias tracking and consequential flange wear difference (FD) across a wheelset. 
The use of data at multiple time-stamps will enable individual sections of the track to be analysed 
for the relationship of bogie FD to track SWR where track variables Curve radius, Superelevation 
and Gradient become constants.  

The approach will be to formulate multiple regressions on individual track sections with 
significant SWR across time stamps. Combining the regression across time-stamps, where SWR 
is significant, with that at a single time-stamp across the network will result in a set of simultaneous 
equations to be solved to relate SWR to bogie FD in combination with the other variables of 
significance. An upgrade to the recording instruments and database storage is in progress which 
will enable the capturing of more wear rate data across multiple time-stamps.  

The use of data across multiple time-stamps for individual track sections may indicate that the 
analysis at a single time stamp is redundant. However, the data where SWR has significant 
movement is limited to only certain track sections. The limited time-stamps currently available 
and the extended periods of time required to collect additional data implies that the number of data 
points available for regression at each track section is limited by a factor of 100 or more compared 
to single time-stamp data across the network. The relation of bogie condition to side wear rate on 
each track section will then be an input to  the maintenance plans required for each section 
respectively. Summing across the rail network will provide the overall downtime impact. A 
complication is that Area wear which is the sum of side and top wear significantly influences 
grinding frequency and hence downtime impact.   

The selection of regression technique is dependent on the behaviour of SWR with each of the 
variables. With multiple variables, the solution calls for multiple regression. Linear multiple 
regression requires each variable to have a linear relationship with SWR. This is not true from the 
data behaviour discussed further on. An adaptation for applying linear regression is for non-linear 
relationships to be transformed into linear forms. This can be complex but not impossible where 
there is a mixture of linear and non-linear relationships to SWR. In applying non-linear regression, 
the initial step is to choose representative function types for each variable. This can be derived 
from a study of the data scatter plots. Representative nonlinear functions can be polynomial, power 
terms, logarithmic, combinations thereof [16] or specialised forms of these described in [17] such 
as Richards’ curve, Gompertz Growth Curve and the Michaelis-Menten Model. Combining these 
into an additive equation is a further assumption that will require validation. Where a variable is 
likely dependent on another variable, adding in a multiplication term may compensate [16].  

SWR may behave differently for different ranges of each variable. Unique regressions may then 
be applied for different combinations of variable ranges. The selection of a non-linear function can 
be simplified where the data range for each variable is split piecewise where less complex 
polynomial approximations can be developed. For n variables where each variable is split into  r1, 
r2, r3,....,rn distinct ranges respectively , the total regression combinations required to be analysed 
is r1r2r3....rn. The total number of regressions necessary can be reduced where a variable has an 
insignificant relationship to SWR in any of the ranges. In such cases, the variable is removed or 
the range is limited to only significant ranges of the variable. Each regression equation then 
predicts the SWR for specific track sections. In combination, the regressions will explain the SWR 
across the network. 

A general multiple non-linear regression equation is as below [17] where Y is the dependent 
variable, X = {X1, X2, X3,….,Xp}is a p-dimensional vector of  independent variables, β = 
(β0,β1,β2,β3,…,βk) is a k-dimensional vector of parameters and ε is the random error term or 
residual. 
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Y = ƒ(X,β)+ ε        (1) 
     

The assumptions necessary for non-linear regression are the same as for linear regression [14], 
[15] and [16]:  

1. No correlation between independent variables.  
2. Linearity and independence of residuals or no autocorrelation between residuals. 
3. Residuals should be normally distributed with zero mean 
4. The residuals should be distributed with equal variance ( Homoscedasticity) 

In non-linear regression, assumptions (3) and (4) are not necessarily satisfied but meet the 
normality criteria where the sample size is large enough because of asymptotic theory [17] 

Methods used in non-linear modelling include Newton’s, Gauss-Newton or the Levenberg-
Marquardt Methods.[17] A gradient descent algorithm together with a function to optimise will be 
explored.[17] This is either the ordinary least squares formula (OLS) to minimise or the likelihood 
estimator to maximise (MLE). Both estimators yield the same result for normally distributed 
residuals [14]. 
Data cleansing and analysis 
The variable data was initially taken in a single time stamp across the track network. The track 
network comprises an east track (carrying empty trains to the Mine) and west track (carrying 
loaded trains back to Port).  

For each of the variables analysed, initial regression plots showed significant difference in 
relationships with SWR for each of the tracks.  
Table 1: Summary of individual correlations of independent variables to SWR split between East  

and West tracks

 
To improve the regression accuracy across the variable range, scatter plot boundaries were 

defined for changes in the relationship. Estimating these change over points visually lead to the 
development of piecewise regression estimation in a single variable for each case. 

This approach benefited with a more detailed investigation into the relationship which often 
hightlighted new signficant variables or showed dependence between variables. It also helped to 
understand and distinguish correlation with and without causation. An example was the study of 
the variable SW on SWR for the east track. At R squared = 38%, SW potentially represents the 
most signficant relationship to SWR. 
Data range for SW was split into ranges from 0 to 1.37, 1.37 to 4mm and above 4mm. 0 to 1.37 
represents 80% of the data points, whilst the range above 4mm represents less  data but indicates 
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a change in relationship that shows much higher correlation at R squared = 53%. Individual 
scatter plots for these regions are shown in Fig 1 and 2.  

 

Fig 1 (a) East Track Population  Fig 1 (b) East Track SW < 1.37 

 

Fig 2 (a) East Track 1.37 < SW <4  Fig 2 (b) East Track SW > 4 

For range SW < 1.37, two distinct populations are evident and are defined with SWR > 0.6 and 
SWR<0.4 respectively and were compared across the following variables: Track grinding 
frequency within last year, curve radius, location, vertical wear, TQI and rail material type. Test 
used was 2-sample T for each variable except for a proportion test for rail material type. 

There was significant difference between the 2 populations with respect to grinding frequency, 
vertical wear, TQI, curve radius and rail material type. These variables did not show sigificant 
correlations to SWR with R squared summing to a maximum of 14% . Aspects to investigate 
include track gauge variation and operating variables of speed and braking.   

For SW >4, two populations were also defined with SWR >2.5 and SWR <1.5. Comparing 
these populations using the same techniques showed significant difference with respect to grinding 
frequency and rail material type. Seperating the data for THH rail material type showed significant 
polynomial R2 correlations of SWR to AWR (32%), AW (22%), Grinding frequency (6.6%), 
Curve Radius (5%) and Cant (3.4%) except at extreme SWR values where there were 6 data points 
with large residuals.  The outliers had excessive Cant angle for the average speeds recorded 
through each section. 

A strong R2 correlation between Grinding frequency and AWR  (60%) is also evident except at 
5 extreme AWR values with large residuals. These points are the same outliers as above. Other 
variables of significance have since been identified from the previous analyis include grinding 
frequency, area wear, area wear rate and rail material type. It also shows that the data may be 
further seperated with respect to rail material type to improve the regression correlations. The same 
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analysis will also need to consider operational and remaining track geometry variables for any 
significant dependence and determine any further seperation necessary. 
Conclusion 
For the railway system analysed, the individual relationships were defined intuitively and then 
tested using regression analysis with the available data. This has led to the classification of 
significance amongst the variables.  

Splitting the analysis between the east and west tracks with different side wear rate behaviour 
was a significant step in the data analysis. The split resulted in a wide range of correlation 
significance across the variables. Variables of note include side wear, curve radius, top and 
superelevation and to a lesser extent braking and speed as depicted in Table 5.   

Further splitting of the data where there are distinct sub-populations in the scatter plots that are 
influenced by other sub-variables helped improve the regression accuracy and exposed any multi-
collinearity between variables. An example was the impact of grinding frequency and rail material 
type (HH and THH) on the dependence of SWR on SW for the east track. 

The intent is that each variable is split into a maximum of three distinct ranges to limit the 
number of regression combinations that would need to be calculated but simultaneously enabling 
the application of simpler polynomial functions to the multiple non-linear regression method. 
There is a risk that the approach is data pre-processing biased, reducing the flexibility of the 
machine-learning model to process raw data. Alternatively, these steps can be automated or a 
possible trade off developed with fewer but more complex regressions.  

Multiple non-linear regression using Python Scipy curve fit optimisation method with a least 
squares optimisation function will be explored [18]. With remaining variables being analysed 
initially at a single time-stamp due to limited instances of different time-stamp data for track wear, 
the bogie fleet will be represented by the mean and standard deviation of the fleet-wide FD relevant 
to the current time-stamp. Multiple time-stamp data will subsequently introduce bogie fleet 
performance as a variable in the analysis. 

The data analysed is not exhaustive and more variables may likely be included once the initial 
multiple regression is completed. These include mileage since last wheel turn and wheel 
hollowing.   
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Abstract. Ultrasonic methods are widely used for the detection and characterisation of defects in 
multi-layered bonded composites. However, quantitative reconstruction of defects, such as 
disbonds, which can affect adhesive bond integrity and severely reduce the strength of assemblies, 
remains challenging. In this work, a supervised full convolutional network (FCN)-based ultrasonic 
method is used to quantitatively reconstruct defects hidden in multi-layered bonded composites. 
This proposed method consists of a training process and a predicting process. In the training 
process, the FCN builds a non-linear mapping from the ultrasound data to the corresponding 
longitudinal (L-wave) velocity model. In the predicting process, the network obtained from the 
training process is used to directly reconstruct the L-wave velocity models from the new measured 
ultrasonic data of adhesively bonded composites. The simulation results show that the FCN-based 
ultrasonic inversion method has the ability to achieve the accurate quantitative reconstruction of 
ultrasonic L-wave velocity models of the high contrast defects, which has potential in online 
detection of multi-layered bonded composites. 
Introduction 
Multi-layered bonded composites are widely used in aerospace, marine, nuclear and offshore 
industries due to their advantages of easy assembly, low manufacturing cost, and uniform 
distribution of mechanical loads resulting in reduced stress concentration [1]. However, decreased 
bond strength or defects may occur in composite materials due to external loads, various harsh 
environmental conditions or natural ageing [2]. Therefore, an accurate and efficient assessment of 
the bond quality is critical for structural integrity and reliability. Ultrasonic non-destructive 
evaluation methods have proven to be useful for assessing the health status of multi-layered 
bonded composites [3]. 

The detection of deep defects can be provided by ultrasonic bulk wave testing, which can be 
broadly divided into techniques applied in the time domain and the frequency domain [4]. For 
example, through-transmission and analysis of pulse-echo signals in the time domain [5], as well 
as the fundamental through thickness resonance frequency [6] have been used for detecting 
disbonds, albeit at a degree of quantitative assessment of the multi-layer structures. Nevertheless, 
when extended to the quantitative detection of disbonds and other defects, little work has been 
carried out to achieve quantitative reconstructions of these high contrast defects in adhesively 
bonded structures by building accurate ultrasonic velocity models.  

There are two major groups of velocity model building techniques: exploiting the focusing 
properties of migration and using information like traveltime extracted from the data [7]. Many 
techniques in these two major groups may require either repeated application of the migration or 
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time-consuming picking of traveltime information from the measured data [8]. Therefore, there is 
a need for a method that can surpass the accuracy of these conventional methods based on all the 
information contained in the measured data while avoiding computational complexity and 
inversion constraints. 

Deep learning is a subset area of machine learning that has demonstrated the potential to 
alleviate these restrictions [9]. Deep learning can exploit all signal content in the data for predicting 
models, can offer computational advantages over traditional inversion methods, and does not 
depend on the reliability of the initial model [10]. In deep learning, the convolutional neural 
network (CNN) is one of the most commonly used frameworks among deep neural networks, 
which is capable of approximating nonlinear mapping from input to output [11]. CNNs enable 
image and label recognition and different types of data association, especially for inverse problems 
such as model/image reconstruction and image super-resolution [12]. This development opens up 
new perspectives for signal inversion and velocity model reconstruction, where some work has 
already made progress [13]. However, when using standard multilayer perceptrons in CNNs, i.e. 
fully-connected layers, CNNs are computationally expensive because of the large number of 
dimensions involved, and too many parameters in fully-connected layers slow down the training 
speed of the network [14]. Besides, conventional CNNs cannot well identify highly complex 
settings containing different backgrounds and a lot of overlap [15]. To address these issues, a fully 
convolutional network (FCN) is proposed to replace the fully-connected layers with only 
convolutional layers, which can better preserve the neighbourhood information in the pixel-wise 
outputs [16]. Furthermore, a modified FCN with an encoder-decoder structure can yield more 
precise predictions. It contains a contracting path for capturing the useful features and a symmetric 
expanding path for enabling precise localization or reconstruction, showing good performance in 
velocity model reconstruction. 

In this work, we propose a new FCN-based encoder-decoder network that can directly 
reconstruct the ultrasonic longitudinal wave (L-wave) velocity models of multi-layered bonded 
composites containing high contrast defects from raw ultrasonic data [17]. The proposed FCN-
based network can be utilised to approximate a nonlinear mapping from the full matrix capture 
(FMC) data (input) to the corresponding ultrasound L-wave velocity model (output) in the training 
process. In the predicting process, the trained network can be used to predict the unknown multi-
layered bonded structures using the new measured FMC data. The remainder of this work is 
organized as follows. The FCN-based ultrasonic inversion method is introduced. Then, numerical 
models and results of adhesively bonded structures with various defects are presented. Finally, the 
conclusions are summarized. 
FCN-based ultrasonic inversion method 
The purpose of this work is to directly use the FMC data (input in the data domain) to reconstruct 
a 2D ultrasound L-wave velocity model (output in the model domain), and therefore the FCN-
based ultrasonic inversion method is proposed. The basic idea of this method is to establish the 
non-linear mapping between input and output, which can be expressed as 

ˆ = ( ; ),Netv d Θ  (1) 

where v̂  denotes the 2D predicted L-wave velocity models, and d is the measured ultrasonic FMC 
data. This method includes a training process and a predicting process, as shown in Fig. 1. Before 
training, the true L-wave velocity models of adhesively bonded composites with different defects 
(e.g., location and length) are randomly created and then the measured ultrasonic FMC signals are 
obtained from simulations.  
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Figure 1. Structure of FCN-based ultrasonic inversion method. 

 
To achieve the ultrasonic velocity model reconstruction directly from the measured ultrasonic 

FMC data, the proposed encoder-decoder architecture of the network has two major modifications 
compared to the conventional FCN architecture to match the linear phased array ultrasonic testing 
of multi-layered bonded composites. First, the ultrasonic FMC data instead of images is acquired 
as input, and the number of transmitters in each model is used as the number of channels for the 
input. Second, the input and output of traditional FCN are in the same image domain, while the 
proposed architecture is used to realize the domain transformation from the data domain to the 
model domain. 

In the modified FCN structure, the process of extracting the feature maps from the input 
ultrasonic FMC data is a down-sampling process (encoder), as shown in Fig. 2. Taking the 
simulated FMC data of 2000×64×64 (sampling points × receivers × transmitters) as an example, 
the time step is 5e-9 s (i.e., the total time is 1e-5 s) in this work and this data contains 64 × 64 time 
traces. The feature map obtained by the convolutional operation has 64 channels and its dimension 
is 500 × 64 × 64. Then, the number of channels is doubled in each operation of the encoder path. 
After that, the feature map extracted by the encoder is enlarged by the corresponding decoder (up-
sampling process). Finally, a cropping process is added after the last feature map to ensure that the 
output size is the same as the input size. 
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Figure 2. An illustration of the network architecture used in the FCN-based ultrasonic inversion 
method. Note that conv, BN and ReLU denote 2D convolution, batch normalization and Rectified 

Linear Unit, respectively; (2000×64×64) represents (sampling points × receivers × 
transmitters); (201×401) is the number of grids in the vertical and horizontal directions of the 

velocity models.  

In the training process, the proposed network requires fitting a nonlinear function from the FMC 
data to the corresponding L-wave velocity model, so the network is constructed by solving an 
optimization problem: 

n n
1ˆ = arg min ( , ( ; ))

N

n=1
L Net

mN ∑Θ
Θ v d Θ , (2) 

where N is the number of training dataset and m represents the total number of pixels in one 
velocity model. The loss function L measures the difference between the predicted velocity models 

nv̂ and true velocity models nv . In the modified FCN, L is set to n n n nˆ ˆ( , ) = ( (-log( )) - )L β∑ × ×v v s v v , 
where s represents the matrix of pixel-wise probability. β is a user-defined weight matrix based on 
the matrix s to make a trade-off between different colours. | · | represents the absolute value. In this 
work, we use a small subset of the whole training dataset (i.e., the mini-batch size h) in each 
iteration to calculate Lh due to the relatively large number of the training dataset N. Then, Eq. (2) 
can be rewritten as 

n n
1ˆ = arg min ( , ( ; ))

h

h
n=1

L Net
mh∑Θ

Θ v d Θ . (3) 

The small batches of the shuffled training data are sequentially processed to ensure one epoch 
e (i.e., single pass), which requires exactly one forward and one backward pass through all training 
data. In this work, the Adam algorithm is used to update learnable parameters to minimise the 
objective function: 

(e+1) (e) n n
1= - α ( ( ; ; ))hg L

mh ΘΘ Θ d Θ v▽ , (4) 

where g(∙) denotes a function and α is a positive learning rate. The gradient of Lh is calculated 
using the chain rule to find the derivative of the weights and biases of Lh.  
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  In the predicting process, the unknown velocity models can be obtained from the new measured 
FMC data using the trained network. All computations described next are performed on a desktop 
workstation (GeForce GPU, Ubuntu operating system). 
Numerical models and results 
Data preparation. In this section, the data preparation, including ultrasonic L-wave velocity 
models of adhesively bonded composites, and modelling procedures for both training and testing 
datasets, is presented. 

To train an efficient network for quantitatively reconstructing defects in multi-layered bonded 
composites, a relatively large number of ultrasonic velocity models are first randomly generated. 
The adhesively bonded models by bonding two metal layers with an epoxy resin adhesive layer 
are considered in this work. The configuration of the multi-layered composite is shown in Fig. 3. 
The dimensions of the top titanium layer, the bottom aluminum layer and the adhesive layer are 
40 mm × 10 mm, 40 mm × 1 mm and 40 mm × 9 mm, respectively. Different notches are randomly 
generated in the top layer. Different sizes and locations of disbonds in the adhesive layer are also 
introduced. The simulated training dataset contains 3000 ultrasonic L-wave velocity models, and 
two typical velocity models are shown in Fig. 4. Ultrasonic L-wave velocities of aluminum, 
titanium, epoxy resin adhesive and air are 6235m/s, 6144m/s, 2100m/s, and 340m/s, respectively. 

In this work, the implicit time-domain staggered-grid finite difference scheme using second-
order in time and eighth-order in space is used to solve the acoustic wave equation. We use a grid 
spacing of 0.1 mm in both the x and z directions of the velocity model. This guarantees the 
calculation accuracy which requires at least four grid points per shortest wavelength. To avoid 
reflections coming from the left, right and bottom edges, the space domain is surrounded by 
perfectly matched layers. The input Ricker signal with a central frequency of 5 MHz is monitored 
by a linear phased array with 64 equally spaced elements (pitch of 0.6 mm) placed on the top 
surface of the model (see Fig. 3). Note that only the ultrasonic L-wave is excited and recorded, 
and shear-waves and mode conversions between L-waves and shear-waves are not considered here. 

 
Figure 3. Configuration of multi-layered bonded composites. 

 
Figure 4. Representative ultrasonic L-wave velocity models. The unit in this figure is mm. 
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In the testing dataset, the ultrasonic L-wave velocity models have similar distributed structures 
as the examples in the training dataset because the FCN-based inversion method proposed in this 
work is a supervised learning method. Note that the test examples are not included in the training 
dataset and are therefore unknown in the predicting process. In this work, 10 examples are used to 
evaluate the proposed method. 
Inversion results. In this section, the inversion is performed on the 1 mm-thick bonded composites. 
In the training process, the learning rate of the Adam is set as 10-3, the number of epochs is chosen 
as 120, and the batch size is 10 [16,17]. After training, new ultrasonic FMC examples from the 
testing dataset are used to test the performance of the FCN-based ultrasonic inversion method. 

Two representative true L-wave velocity models from the testing dataset are shown in Figs. 5(a) 
and 5(c), and Figs. 5(b) and 5(d) show the corresponding L-wave velocity reconstructions using 
the FCN-based ultrasonic inversion method. It is clear that high-quality quantitative images of the 
high velocity contrast are achieved with good reconstructions of the locations and the shapes of 
the defects. The sizes of notches and the disbond with a circular shape are slightly larger than the 
true velocity models. The possible reason could be that the spatial correspondence between 
features in the model domain and data domain is not considered in this work. 

 
Figure 5. Reconstructions of L-wave velocity models based on the simulated data. Notches are 

contained in the top layer of titanium and the disbonds are hidden in the adhesive layer, as 
shown in the true L-wave velocity models of (a) and (c). (b) and (d) show the FCN-based 

ultrasonic inversion reconstruction. The unit in this figure is mm. 
Conclusions 
In this work, a supervised FCN-based ultrasonic inversion method is proposed for the quantitative 
reconstruction of multi-layered bonded composites. It utilises a network to directly transform 
ultrasonic FMC data into L-wave velocity reconstructions. The network obtained from the training 
process is then applied to reconstruct the L-wave velocity model of multilayer bonded composites 
from the test dataset. The performance of the proposed FCN-based inversion method is tested with 
the simulated data. The numerical results are in good agreement with the true velocity models. 
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Abstract. This paper provides a historical overview of the development of a diagnostic tool and 
its integration with the operational characteristics of a floating cover for structural health 
assessment and performance monitoring in terms of biogas harvesting of the floating covers at the 
Western Treatment Plant, Melbourne, Australia. Large membrane-like covers used in several 
environmentally sensitive application contexts, including (i) floating covers for clean water 
reservoirs, to prevent evaporation and pollution, (ii) landfill liners to stop leakage of hazardous 
chemicals or harmful matter, (iii) mining applications such as heap leaching, salt evaporation 
ponds and tailings impoundment are high value assets. Floating covers for anaerobic reactors in 
wastewater treatment plants are also constructed with these membrane structures. The covers on 
the anaerobic lagoons at the Western Treatment Plant, west of Melbourne, Australia is a large 
structure whose construction and installation costs mounts to tens of millions of dollars.  They are 
used to collect biogas emitted during the anaerobic digestion of the raw sewage beneath the cover 
making it an important asset from an environment standpoint. The research team were provided 
with an opportunity to develop a diagnostic tool to assist with the safe and efficient operation of 
this critical asset. 
Introduction 
Large membrane-like covers are used in several environmentally sensitive application contexts, 
including (i) floating covers for clean water reservoirs, to prevent evaporation and pollution, (ii) 
landfill liners to stop leakage of hazardous chemicals or harmful matter, (iii) mining applications 
such as heap leaching, salt evaporation ponds and tailings impoundment [1], in addition to being 
used as floating covers for anaerobic reactors in wastewater treatment plants. These covers are 
high value assets whose construction and installation costs mounts to tens of millions of dollars. 
This floating cover will also benefit the environment as it is used to collect biogas emitted during 
the anaerobic digestion of the raw sewage and convert it into electricity which is used at the plant. 
In this respect, the research team was presented with an opportunity to explore the relevance of 
recent advances in structural health monitoring technologies with the aim of transitioning them 
into innovative engineering and maintenance practices to ensure the safe and efficient operation 
of this large critical infrastructure. 

Floating covers are used at Melbourne Water’s Western Treatment Plant (WTP) in Werribee, 
Victoria, (see Figure 1). The floating covers are made from a high-density polyethylene (HDPE) 



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 322-330  https://doi.org/10.21741/9781644902455-42 

 

 
323 

material that is extremely durable. It is estimated from accelerated testing that HDPE 
geomembranes should have a service life of over 300 years at 20°C, and over 45 years at 40°C [2-
4]. Consequently, well-designed HDPE geomembranes should have long trouble-free lifetimes. 
However, the mechanical performance of HDPE in real life can be difficult to ascertain [5]. Upon 
the untreated wastewater entering these anaerobic lagoons solidified matter (i.e., scum) can 
develop and accumulate under the covers into heaps also known as scumbergs that press against 
and lift the covers. This deformation has a length scale of around one metre in the vertical direction 
(uplift) and several metres laterally. The scumbergs can be displaced laterally due to hydraulic 
loading from incoming sewage, which gives rise to excessive cover displacement and mechanical 
stress, and in the regions in the vicinity of the welded joints (see also [5]).  

  
The covers typically span an area of 470 m x 200 m, as illustrated in Figure 1. All sewage inflow 

is unscreened and passes first through an anaerobic reactor. As the raw sewage undergoes 
anaerobic digestion, biogases are produced, which are trapped below the floating cover and 
harvested for electricity generation. The formation of these scumbergs is also known to distort the 
biogas channels built into the cover and can affect the efficiency of the collection of this valuable 
renewable energy source. Therefore, it is imperative that this critical asset be managed and 
maintained to operate safely and efficiently. This cover will bring about significant environmental, 
social, and economic savings because, without it, the odour and biogas will be released into the 
atmosphere. The ability to collect the biogas makes this floating cover an important renewal energy 
generating asset. In addition, effective integrity management and maintenance of the floating cover 
is useful in planning for future cover replacement program, and the potential of delaying its 
replacement. These will bring about millions of dollars of savings to the asset operator. An efficient 
integrity assessment ability will assist and improve current maintenance practice that involves 
simple visual walk-around inspection, which is subjective and time-consuming, but, more 
importantly, does not provide advance warning of possible failures, or clear indications of distress 
in the covers.   

This paper provides a historical account pertaining to a series of collaborative projects 
conducted to develop a non-contact technique to assist with the structural integrity assessment and 
the performance management of these covers. It will describe an approach developed for 
monitoring these floating covers using an Unmanned Aerial Vehicle (UAV) equipped with optical 
cameras and GPS tracker, to measure the displacement field of the floating cover, and, from that 
information, determine the state of its structural integrity or “physical health” (e.g., stress and 
deformation). Photogrammetry has been shown to be a low cost, safe, and effective tool for terrain 

Figure 1: Anaerobic lagoons at the Western Treatment Plant 
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mapping [6]. This paper will provide a historical account of the work performed by the multi-
disciplinary team that explored the feasibility of a non-contact assessment technique to assess the 
integrity of the floating cover, and to monitor the development of scum and formation of 
scumbergs beneath the floating cover. It will also discuss the potential of integrating the diagnostic 
tool with the operational characteristics of the floating cover to derive a performance monitoring 
tool for this critical asset.  
Non-contact assessment of cover deformation  
A research program was developed to investigate into the use of unmanned aerial vehicles (UAV) 
to overcome the physical size (400 m x 200 m) of the asset and the hazardous environment. This 
non-contact means of assessment have the potential to reduce, if not remove, the requirement of a 
person walking on the cover to conduct an inspection of the asset. From a safe work practice 
standpoint, this is also highly desirable. The investigations led to the development of a UAV-
enabled photogrammetry assessment technique that has been verified to be capable of determining 
the up-lift of the floating cover due to the scumberg accumulation [7-11]. The work presented in 
[11] highlighted the transitioning of the exploratory tool to engineering practice. Figure 2a – 2g 
shows the time-progression of the floating cover vertical displacement created from the optical 
images acquired by the UAV over the floating cover at the Western Treatment Plant. The digital 
representation of the floating cover is useful in determining the accumulation of scum-berg beneath 
the cover.  

It is postulated that the scumberg when formed can adhere to the membrane. The continual 
inflow of raw sewage will displace these scumberg resulting in the lateral movement of the 
membrane, causing it to wrinkle. These wrinkling patterns are determined by the inflow 
conditions. The digital model of the floating cover can be analysed to reveal the extent and the 
progression of the cover wrinkles.  These results provide useful information to inform the operator 
of the asset on the effects of the inflow conditions on the deformation of this critical asset [11].  

The development of scum and formation of scumbergs is also noted to distort the biogas 
channels built into the cover. Therefore, it can affect the efficiency of the collection of this valuable 
renewable energy source. An ability to estimate the depth and extent of the scumberg formation 
and how it affects the biogas collection is useful in establishing the performance of this asset. 
These field measurements are currently being performed by the human operator walking and 
working on the floating cover to determine the depth of the scum at pre-determined locations. This 
information is integrated with the digital representation of the floating cover. As described in the 
work reported in [12], the research team has proposed a machine-learning capability to predict the 
total volume of the scum under the covers. Work is in progress on linking these datasets to the 
biogas collection. A brief outline of this work is discussed in a later section of this paper. 

 

 
Figure 2a: First scan (Date, D) 

 
Figure 2b: Date of scan (𝐷𝐷1 = 𝐷𝐷 + 2 𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟𝑠𝑠 
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Figure 2d: Date of scan (𝐷𝐷3 = 𝐷𝐷2 +

3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 

 
Figure 2c: Date of scan (𝐷𝐷2 = 𝐷𝐷1 + 1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

 
Figure 2e: Date of scan (𝐷𝐷4 = 𝐷𝐷3 +

3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 

 
Figure 2f: Date of scan (𝐷𝐷5 = 𝐷𝐷4 +

3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 

 
Figure 2g: Date of scan (𝐷𝐷6 = 𝐷𝐷5 + 3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 

 
The UAV-enabled photogrammetry provides a series of optical images of the floating cover. 

These optical images are processed to yield the ortho-photo of the floating cover. An opportunistic 
approach was tested to ascertain the ability of using these outputs to determine the global in-plane 
displacement of the floating cover. Wong et al. in [13] presented a finite element-based formulation 
that uses the information from the optical images to track the motion of known artefacts on the 
floating cover. By analysing the principal components of the in-plane motion, the results yielded 
regions of membrane stretch and regions of membrane wrinkles (see Figure 3). Given that the state 
of strain of the floating cover is unknown during installation, the ability to estimate this global in-
plane motion is helpful in assessing the impact of the development and motion of the scum. The 
results shown in Figure 3 are the maximum principal component of the relative in-plane 
displacement predicted with respect to a pre-defined start time. The formation of wrinkles is 
depicted by the “blue” regions. The regions of global membrane stretch are represented by the 
“red” regions. In this respect, the regions of expected tensile loading and the extent of wrinkling 
can be determined. The progression and the geometry of the wrinkled region and the extent of 
membrane stretch are evident in these results, thereby providing a global perspective into the 
response of the cover. This will be integrated in our current work to develop a global-local 
algorithm to provide local strain information on the critical regions of the floating cover.  
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Figure 3: Time progression of wrinkle plots with respect to a reference time.  

 

Non-contact assessment of scum formation beneath the floating cover 
A research opportunity also arose to develop a capability to predict the state of scum formation 
beneath the opaque floating cover. Given the flat and open terrain at the Western Treatment Plant, 
the research team developed a non-contact quasi-active thermographic technique to predict the 
state of scum formation beneath the cover. A series of laboratory scale experiments were 
conducted on a roof-top test area [14-16]. The scum beneath the floating cover is known to 
transition from a liquid state to a soft and fluffy state and eventually to a solid and hard state. The 
work presented in [15] shows the workings of a thermographic methodology that utilises the 
transient thermal response of the membrane/matter composite during the sunrise and sunset to 
determine the presence of solid material on the underside of the membrane. Figure 4 shows a three-
day experiment conducted with a membrane specimen applied over a region of soil to simulate 
scum-berg. The test rig was exposed to ambient sunlight at a roof-top area. The solar radiation and 
the thermal response of the membrane over the three days are shown in Figure 5. Additional soil 
was added each morning to simulate scum-berg growth. The algorithm developed in [15] was used 
to predict the extent of the soil development under the cover. Figure 6 shows the actual soil extent 
and the predicted region when analysing the thermal response over the membrane.  A series of 
finite element analyses were presented in [16] to show how this technique can be extended to 
determine the state of scum formation beneath the cover. 
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Figure 4: Test fixture showing installation of simulated scum-berg and membrane over simulated 

scum-berg  

 
Figure 5: Thermal response and the solar intensity plots during the 3-day experiment 

 

 
 

Figure 6: Physical simulated scum-berg and the predicted scum-berg extent derived from the 
membrane surface thermal response 

 

Towards asset performance monitoring – from diagnostics to prognostics 
The floating cover on the wastewater treatment lagoon at Melbourne Water’s Western Treatment 
Plant (WTP), in Werribee, is a critical asset whose primary functions are to allow for the anaerobic 
breakdown of organic matter in the raw sewage and to collect the biogas that is released during 
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this process. The work outlined above is focused on the development of asset-based diagnostic 
capabilities to understand how the floating cover respond to the prevailing physical conditions [10, 
17, 18]. An opportunity exists to couple these diagnostic capabilities with service-based 
performance requirements. The aim is to derive a new coupled capability for the structural health 
and performance monitoring of this engineering structure. This new monitoring strategy will 
incorporate a machine learning capability to predict the biogas collection rates based on past 
operational decisions and conditions. The study presented in [19 20] presents a series of work 
pertaining to the development of machine-learning capability including a Bayesian Long Short-
Term Memory neural network model. The aim is to investigate the effectiveness for the 
probabilistic prediction of biogas collection rates at Western Treatment Plant. The probabilistic 
approach is based on a Gaussian distribution output layer and Monte-Carlo dropout method to 
estimate the aleatoric and epistemic uncertainties, respectively. The data pre-processing and 
optimisation of the neural network model are reported. The findings also indicate using a dropout 
probability beyond 40% adversely prevents learning of complex patterns in the data and overly 
regularises the network model prediction. The study serves as a fundamental basis in implementing 
machine learning to transit high-value assets into smarter structures with diagnostic and prognostic 
capabilities by providing an example where service requirements are also considered. 
Practical implications of the research outcomes 
The floating cover is a high value asset whose construction and installation costs mounts to tens 
of millions of dollars. One of its critical functions is to protect the environment as it is used to 
collect biogas produced and released during the anaerobic digestion of the raw sewage. Therefore, 
this cover will provide significant savings on environmental, social, and economic aspects by 
controlling the odour and biogas without releasing into the atmosphere. Moreover, this floating 
cover becomes an important renewal energy generating asset due to its ability to collect the biogas. 
In this respect, an effective integrity management and maintenance of the floating cover will 
deliver the above-mentioned benefits, these intelligent strategies are also crucial for planning 
future cover replacement program. In addition, a knowledge of the behaviour of this floating cover 
during its service lifetime will also be useful in life-extension decision making with the potential 
of delaying its replacement. These acquired knowledge will also serve as guidelines to future cover 
design. These will bring about millions of dollars of savings to the asset operator. This efficient 
integrity assessment will assist and improve current maintenance practice, which involves simple 
visual walk-around inspection by providing data-based advance warning of possible failures, or 
clear indications of distress in the covers (i.e., deterministic methods). Therefore, the research team 
was indeed presented with an opportunity to explore the relevance of recent advances in structural 
health monitoring technologies with the aim of transitioning them into innovative engineering and 
maintenance practices to ensure the safe and efficient operation of this large critical infrastructure. 

The overview of work conducted in this collaboration has yielded principles and methodologies 
that have been translated into engineering practice. The data acquired from the UAV 
photogrammetry capabilities have led to the development of tools that are complementary to and 
enhance the management of the floating cover. The information pertaining to the elevation of the 
floating cover and its in-plane translation provide important information on the cover response to 
the prevailing operational conditions. Ongoing research work is progressing that focuses on 
integrating these diagnostic tools into an intelligent capability for prognostic decision making. 
Conclusion 
The historical overview of the development of diagnostic tool and its integration with the 
operational characteristics of a floating cover to monitor its performance in terms of biogas 
harvesting is presented. The diagnostic tool and its integration with the operational characteristics 
will lead to a capability to enhance the management and maintenance practices for the floating 
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cover assets at the Western Treatment Plant. Work is progressing to further develop the machine 
learning capabilities for an intelligent prognostic decision making tool for the cover performance 
management at the Western Treatment Plant. 
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Abstract. Non-woven, metal-coated, carbon veil has the potential to replace copper in 
radiofrequency transmission lines and micro-strip antenna elements. It is of importance to 
characterise the mechanical properties of these veils to implement them into antenna design. These 
veil materials are incorporated into a dielectric substrate made from glass-fibre reinforced plastic 
(GFRP). This antenna system can be integrated into a load bearing composite structure enhancing 
its multi-functionality and will therefore be exposed to the operational loads of the primary 
structure. An example of such primary structure is the wing of an unmanned aerial vehicle (UAV). 
This paper will report on a set of investigation detailing the effects of fatigue loading on the 
durability and the performance of this load bearing conformal antenna system. The fatigued 
antenna will be subjected to a series of cantilever loading to show the performance of the conformal 
antenna when the fatigue-exposed antenna is subjected to quasi-static loading that is expected 
during normal operation of the structure. 
Introduction 
Communication and sensing systems in aircraft are generally implemented as individual sub-
systems with pre-determined locations on the aerospace platform. Therefore, customization and 
innovation of antenna systems based on the electromagnetic and structural requirements is less 
possible [1]. Through the design of Conformal load-bearing antenna structures (CLAS), 
communication and sensing capabilities can be integrated into the skin of airframes. The direct 
inclusion of radiofrequency (RF) devices into composite skins through manufacturing enables 
positioning along the exterior of the airframe, thereby freeing up internal space and enhancing its 
structural efficiency. [2-4]. Moreover, a smooth exterior surface of the aircraft, without antenna 
structures protruding into the airflow, significantly reduces aerodynamic drag during the flight [5-
7]. While conventional antenna structures which are exposed to the environment are subject to 
damage, embedded CLAS have significantly more resilience to such damage [3]. 

Non-woven fibre mats (or surface veils) have the potential to replace copper in a variety of 
roles, in particular, microstrip antennas (pictured in Fig. 1) [8, 9]. Surface veils consist of randomly 
orientated, short-chopped, carbon fibres and can be metal coated (nickel, copper, etc, see Fig. 2), 
to achieve the desired electromagnetic properties [1]. However, due to the low stiffness of these 
veil materials, novel test techniques are required to determine their mechanical properties and thus 
structural effect. Limited understanding of the properties of surface veils results in difficulties in 
analysing and modelling them [10]. The CLAS considered in this paper will comprise of a copper-
coated nickel veil that is embedded into a glass-fibre reinforced plastic (GFRP) dielectric substrate. 
The veil is used as a conductor to replace the solid metal foil since the performance of veil and 
composite substrate demonstrate little degradation under the mechanical load [1]. 
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Figure 1. CLAS concept. Prepreg composite material with embedded electromagnetic traces can 

be cured in aerospace composite structures. 

 
Figure 2. Close-up view of copper-coated carbon veil. 

Under in-service conditions, CLAS will experience various loading types such as wind, 
vibration and impact which induce structural deformation. It is necessary to understand the 
mechanical and electromagnetic behaviour under the effects of the loading experienced by the 
aerospace structure, to ensure the performance of the RF system is sufficient/improved during the 
flight [11-14]. 

You and Hwang proposed integrating a microstrip antenna into a composite sandwich structure, 
finding that glass/epoxy can be utilised as a face sheet material without adversely affecting the 
antenna efficiency by capitalising on an open condition [11]. Also noting that experimental results 
met set requirements for an improved gain and wide bandwidth. Further work involving the 
integration of an antenna array into a cylindrical structure found the transverse radiation pattern to 
be strongly dependant on the curvature of the cylinder. Impact loading results demonstrated that 
contact force decreased as the curvature increased further highlighting the importance of the radius 
of curvature as a structural parameter [12]. The parametric investigation proposed by Yoon et al 
[13] demonstrated that the transverse shear moduli of the honeycomb core significantly affect the 
buckling load of the smart skin when shear deformation was considerable. Healey et al [6] reported 
on a series of computational study that detailed the effects of structural loading on the resonant 
frequency and the Q-factor of load bearing conformal antenna. They showed that structural loading 
can cause the antenna to stray out-of-band for Wi-Fi as defined in IEEE802.11. 

In addition to the deformation induced by loading, the influence of fatigue loading and fatigue-
induced damage to the model is also of great importance.  During the flight, the CLAS will be 
exposed to a combination of fatigue and quasi-static loading conditions due to various loading. 
Therefore, it is necessary to investigate the effect on the mechanical and electromagnetic 
characteristics of a CLAS under fatigue and how the fatigue-exposed CLAS will performe under 
quasi-static loading. 

In this study, the copper-coated carbon veil will be machined into a microstrip patch and 
embedded into the GFRP. The loading bearing antenna structure will be exposed to a series of 
constant amplitude fatigue loading. The RF response and the quality factor of the CLAS will be 
used to assess the performance of the antenna as a function of fatigue exposure. Since CLAS is 
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expected to operate under in-flight conditions, the fatigued specimen will be removed from the 
fatigue test rig at specified intervals and subjected to static cantilever loading. The RF response 
and the quality factor of the antenna of the as-fatigued condition subjected to this loading will be 
measured to determine its functionality when used under simulated flight condition. The aims of 
this paper are to report on the effects of constant amplitude fatigue and quasi-static loading on this 
copper-veil/GFRP loading bearing composite antenna. The resonant behaviour of the CLAS and 
its potential to stray out-of-band will be reported in terms of the S11 parameter of the antenna and 
its quality-factor (Q-factor). 
Methodology 
Test specimens 
The CLAS test coupon is constructed with di-electric made from 6 layers of GMS EP-280 S-Glass, 
of which dimensions of 300 mm x 60 mm x 2.2 mm, with patch antenna sitting on the top. The 
patch antenna is made from copper coated carbon of thickness 0.125 mm. The geometry of the 
antenna (see Fig. 3) is:  𝑎𝑎 = 40 mm long, 𝑏𝑏 =28.7 mm wide, with a feedline 29 mm long and 
3.5mm wide. Inlet gaps 𝑍𝑍𝑦𝑦 =8 mm long and 𝑍𝑍𝑥𝑥 = 2 mm wide were utilized to impedance match 
with the patch being designed to resonant at approximately 2.4 GHz with bandwidth of 22 MHz 
to facilitate the wireless communication protocol as defined in [15].  

Two sets of specimens were prepared. In one set, a Teflon tape of dimension (40mm x 5mm) is 
included at the antenna and substrate interface along the “a” direction as a defect initiator. The 
other set of specimens is prepared without any seeded damage. 

 

 
Figure 3. Schematic of a patch antenna. 

Experiment setup 
The RF measurement of specimens were performed with coupon resting on a wooden laboratory 
bench by employing NanoVNA V2 Plus 4. This RF result prior to fatigue tests was marked as 
‘Pristine’. The test coupon is installed on an electro-mechanical shaker as shown in Fig. 4a. The 
specimen is transversely excited at the 2nd natural frequency (i.e., 90 Hz), and can accumulate one 
million constant amplitude fully reversed fatigue cycles in a matter of hours. The test specimen is 
held such that the edge of the antenna is located at the anti-node of the test specimen. The amplitude 
of response was controlled to subject the edge of the antenna to bending tensile strain of 4,000 𝜇𝜇𝜇𝜇. 
The fatigue tests were interrupted periodically to measure the resonance response of the fatigued 
specimens at rest and when subjected to a cantilever static load. The specimens were placed into a 
cantilever test apparatus to perform the static tests (see Fig. 4b). During the static tests, the 
specimen was rotated to subject the antenna firstly to bending tension and to bending compression. 
This is to investigate the performance of the fatigue-exposed CLAS under the simulated quasi-
static deformation of the wing during flight. 
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(a) (b) 
Figure 4: Specimens under (a) Static cantilever test and (b) Fatigue test. 

Result 
Specimens with no seeded defect 
Fig. 5 show the RF response of the CLAS when exposed to the constant amplitude fatigue loading. 
These results were recorded with the specimen resting on a wooden laboratory bench. The results 
show that the antenna will stray out-of-band with increasing fatigue cycles. It is interesting to note 
that the antenna remained within band for about 350,000 constant amplitude cycles at 4,000 με. 
This shows that the CLAS can withstand this severe loading that is consistent with the maximum 
strain levels expected of an aircraft structure. Using the resonant frequency equation for a patch 
antenna as a reference (Eqn. 1 [6]), it is likely that the increase in the resonant frequency can be 
attributed to the increased reduction relative permittivity arising from the fatigue of the GFRP. 

  

(a) (b) 
Figure 5: Effects of fatigue (with specimen tested whilst resting on bench) 

𝑓𝑓𝑟𝑟 = 𝑐𝑐
2�𝜀𝜀𝑟𝑟𝑟𝑟(𝑏𝑏+2∆𝐿𝐿𝑂𝑂𝑂𝑂) (1) 

Where 𝑐𝑐, is the speed of light in vacuum and 𝜇𝜇𝑟𝑟𝑟𝑟 is the effective permittivity of the substrate. 
Fig. 6 shows the RF response of the CLAS when subjected to static cantilever loading with the 

patch antenna subjected to bending tension. Whilst the antenna remained within band after 350,000 
fatigue cycles, the effect of the static loading is featured prominently after higher fatigue cycles. 
The results suggest that the antenna is usable after 350,000 fatigue cycles when the antenna is 
exposed to a peak strain of 4,000 με.  
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(a) 

 

(b) 

Figure 6. Effects of fatigue for specimen: (a) #1 and (b) #2. (With specimen tested loaded in a 
cantilever test rig; antenna in tension). 

 
The RF response when the patch antenna is subjected to bending compression in shown in Fig. 

7. The These results show that the effects of bending will accentuate the degraded region at the 
edge of the patch antenna. Although the CLAS remained within band after 350,000 fatigue cycles, 
exposure to a static compressive load will accentuate the fatigue damage accumulated and cause 
the CLAS to stray out-of-band. 

 

(a) 
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(b) 

Figure 7. Effects of fatigue for specimen: (a) #1 and (b) #2. (With specimen tested loaded in a 
cantilever test rig; antenna in compression). 

 
Specimens with seeded defect 
Fig. 8 shows the RF response of the CLAS with the seeded defect when exposed to the constant 
amplitude fatigue loading. These results were recorded with the specimen resting on a wooden 
laboratory bench. Specimen #1D showed an initial reduction in the resonant frequency. This is 
consistent with the effects of damage inflicted on the veil material and is accentuated by the 
presence of the disbond. Further exposure to fatigue led to an increase in the resonant frequency 
that eventually strayed out-of-band. In Specimen #2D, an initial reduction in the resonant 
frequency was recorded and the experiment was terminated after 400,000 cycles because the 
antenna was totally unusable. 

 

 

(a) (b) 

Figure 8: Effects of fatigue (with specimen tested whilst resting on bench). 
Fig. 9a shows the RF response of the fatigue exposed CLAS (Specimen #1D) when subjected 

to static cantilever loading with the patch antenna subjected to bending tension. It is interesting to 
note that the CLAS remained within band during these tests. Indeed, the relative increase in the 
resonant frequency with increasing cantilever loading can be attributed to the combined effects 
arising from the increased in permittivity and Poisson ratio effects that cause a reduction in “b”. 
The antenna in Specimen #1D was noted to be unusable when exposed to more than 1 million 
fatigue cycles. The results for Specimen #2D behaved similarly to that for Specimen #1D. As 
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discussed previously, the fatigue tests for Specimen #2D was terminated after 400,000 cycles 
because of the unstable RF response. 

 

(a) 

 

(b) 

Figure 9. Effects of fatigue for specimen with seeded defect: (a) #1D and (b) #2D. (With 
specimen tested loaded in a cantilever test rig; antenna in tension). 

The RF response when the patch antenna is subjected to bending compression shown in Fig. 
10. The bending compression applied to the patch antenna (both Specimen #1D and #2D) virtually 
made the CLAS unusable. This highlights the effects of fatigue on CLAS and its response to quasi-
static loading is underscored by these set of results. 

 

(a) 
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(b) 

Figure 10. Effects of fatigue for specimen with seeded defect: (a) #1D and (b) #2D. (With 
specimen tested loaded in a cantilever test rig; antenna in compression). 

Conclusions 
The effects of constant amplitude fatigue loading on the performance of CLAS is presented. The 
work presents a series of accelerated fatigue tests of the CLAS using an electro-mechanical 
vibration test rig. Although there is no specimen failure recorded, the effects of fatigue loading on 
the CLAS are evident. The major findings from the work presented is the importance of good 
quality control for the fabrication of CLAS, and that it is tolerant to exposure to 350,000 cycles of 
fully reversed constant amplitude up to a peak strain of 4,000 με. Moreover, the specimen with 
seeded defect #1D demonstrated similar resilience to the fatigue effect as the specimen without 
the defect. However, the resonance frequency of specimen #2D was unstable only after 400,000 
cycles. The huge difference in the performance between specimen #1D and #2D indicated that the 
thin layer of Teflon as the defect initiator introduced an inconsistent performance of CLAS. 
Regarding the results of the cantilever test, for specimens without defects, the shift in the resonance 
frequency was significantly increased along with fatigue cycles. The occurrence of the unstable 
S11 behavior of defect specimen was also identified during the cantilever test, especially when 
under compression loading. The unpredictable performance of the specimens with seeded defects 
further evidenced the importance of quality control for prolonging the service life of the CLAS.  
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Abstract. Static strength of mechanically fastened, bonded, and hybrid double lap joints are 
investigated in this study. Aerospace grade 7075-T6 aluminium alloy was chosen for the adherend 
as it is a widely used primary aircraft structure material. Mechanical fasteners were arranged in 
square array patterns to resemble typical rivet arrangements in airframes. The aim was to compare 
the joint performance of three distinct joining/repairing mechanisms: purely riveted, purely 
bonded, and a hybrid of both rivets and adhesive bonding. Finite element analysis (FEA) 
verification of the riveted configuration static strength indicated accurate prediction of both joint 
strength and failure mode. Detailed results will be reported in the paper. This paper presents the 
first stage of a systematic research program assessing the damage tolerance behaviour of crack 
growth, and design assessment of adhesive bonded/hybrid metallic joints under static and fatigue 
loadings, to achieve the optimum joint design for applications.     
Introduction 
The exponential growth in air traffic calls for a reduction in airframe weight and increase in service 
life to address the concerns regarding fuel consumption and CO2 emissions for environmental 
protection. Another major challenge is aircraft aging [1,2]. A study [3] on fuselage repairs of 71 
Boeing 747 aircraft with an average lifespan of 29,500 flight hours, found that fatigue crack repairs 
constituted 58% of the total damage count (396 repairs), coming in second was corrosion damage 
(202 repairs, 29.4%), followed by impact damage (90 repairs, 13%). The increasing risk of fatigue 
related structural failure necessitates development and certification of advanced joining methods 
and tools.  

Adhesive bonding has inherent mechanical advantages over mechanical fastening methods, 
such as pins, screws, bolts, and rivets, owing to: weight savings, sealing, elimination of galvanic 
corrosion, and relatively uniform stress distributions that avoid high stress concentrations 
otherwise present at fastener holes [5]. Repairs using adhesive bonding save millions of dollars 
and significantly enhance aircraft availability [6,7]. However, the challenge for adhesive bonding 
arises from certification requirements on some critical primary aircraft structures (e.g. a damaged 
single load-path primary structure with low residual strength) [7,8]. The main obstacles are: i) 
inability of current quality control procedures (for bonding operations undertaken in non-ideal 
situations) to demonstrate initial and ongoing bond integrity with sufficiently high probability of 
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reliability; and ii) current Non-destructive inspection (NDI) techniques are not yet available, or 
sufficiently reliable, to detect weak bonds in a practical situation. A promising approach that can 
address these concerns is the combination of both the mechanical and bonding techniques (i.e. 
hybrid joints). 

A number of papers [9–14] investigating hybrid composite joints concluded that initial failure 
predominantly occurs due to disbonding. Therefore, mechanical fasteners can play an active role 
transferring load after bondline failure [9]. Hart-Smith’s non-linear analysis of bonded and bolted 
joints [15] found that hybrid configurations could not significantly outperform adhesive bonding in 
intact, well-designed structures - though they might be able to stop the spread of defects or damage. 
Kelly [16] investigated the load distribution in single bolted hybrid joints (using FEA) concluding that 
the transfer is rather complicated owing to the differences in stiffness and alternate load paths. It 
was also found that bolt transfer load is directly proportional to both the adherend and adhesive 
thicknesses, and inversely proportional to overlap length, pitch distance, and adhesive modulus.   

Methodology  
Al 7075-T6 is characterised by high strength, toughness, good ductility, resistance to fatigue and 
extensively used in aircraft structures [17,18]. Table 1 summarises the relevant mechanical 
properties of the adherends. 

Table 1: Mechanical properties of Al 7075-T6 at room temperature. [19,20] 
𝐸𝐸 (𝐺𝐺𝐺𝐺𝐺𝐺) 𝜎𝜎𝑦𝑦𝑦𝑦  (𝑀𝑀𝐺𝐺𝐺𝐺) 𝜎𝜎𝑢𝑢𝑦𝑦 (𝑀𝑀𝐺𝐺𝐺𝐺) 𝜎𝜎𝑦𝑦𝑦𝑦  (𝑀𝑀𝐺𝐺𝐺𝐺) %𝛿𝛿 𝜈𝜈 

71.0 503 572 494.35 11 0.33 

Cherry Maxibolt CR7621U-05-05 rivets are made of A286 Cres alloy, providing high strength, 
and excellent temperature and corrosion resistance; mechanical properties summarised in Table 2. 
During installation, the tail section of the rivet deforms into a flat circular “washer” to function as 
a large clamping region on the underside of the specimen. 

Table 2: Mechanical properties of Cheri Maxibolt CR7621U rivet at room 
temperature. [21] 

𝐸𝐸 (𝐺𝐺𝐺𝐺𝐺𝐺) 𝜎𝜎𝑦𝑦𝑦𝑦  (𝑀𝑀𝐺𝐺𝐺𝐺) 𝜎𝜎𝑢𝑢𝑦𝑦 (𝑀𝑀𝐺𝐺𝐺𝐺) %𝛿𝛿 𝜈𝜈 
201.0 655 965 12 0.3 

FM73 film adhesive manufactured by Cytec Engineered Materials [22] is an aerospace grade 
adhesive which provides excellent peel strength, good moisture and corrosion resistance in high 
humidity environments. The manufacturer's recommended cure condition is 45psi at 120°𝐶𝐶 for 1 
hour. 

The riveted joints were designed in accordance with the Federal Aviation Administration (FAA) 
regulations [23]. For protruding head rivets, the FAA standards establish a minimum allowable edge 
distance of 2 rivet diameters, and rivet pitch of 4 rivet diameters. Specimen rivet spacings were set 
1 16′′⁄  (1.6 mm) larger than the recommended minimum to preserve minimum spacing limits due to 
variations in rivet diameters. For a bonded joint the outer adherend commonly has a 1:10 linear taper 
at the end with half the edge thickness of the outer adherend to reduce the adhesive peak stress [24–
26], which would result in a tapered region of 8 mm in length at both ends. However, this was omitted 
in the current specimen configurations, not only for simplification but also for the consideration that 
a possible disbond defect could render the taper ineffective, whilst this research is focused on 
damage tolerance assessment.  

Fig. 1 shows a schematic of the fastened/hybrid configuration of the double lap joint. The bonded 
specimen has the same adherend dimensions with the omission of fasteners. 
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Figure 1: Double lap joint configuration containing 
six fasteners in a square array (dimensions in mm). 

 

Fastener holes in aircraft assemblies are critical regions from where fatigue damage can initiate 
in metallic parts. Manufacturers, like Airbus, observed that hole machining processes such as 
drilling, reaming, and cold expansion could significantly increase the fatigue strength [27]. Cold 
expansion during riveting [28–31] greatly improves fatigue life of aluminium alloy joints by 
introducing compressive residual stress at the hole. Subsequently, the service life of holed parts 
increases significantly since it is difficult for cracks to propagate through a compressive field 
[6,32]. To capture this effect, riveted and hybrid configurations were drilled and reamed using a 
4.20 mm reamer, producing a 0.02 mm clearance to allow for cold working under the forces of 
expanding rivets. 

A standard surface treatment [33–35] used by Defence Science and Technology Group (DST 
Group) was applied. It includes solvent degreasing using Methyl-Ethyl-Ketone (MEK) and residue 
removal using distilled water prior to surface roughening by aluminium oxide grit blasting. The 
final step is an organosilane coupling agent applied to improve the hydrolytic resistance of 
adhesive bonds formed between metal and epoxy adhesive. The Boeing Wedge Test (BWT) 
ASTM D3762 [36], widely-used for quality control and validating bonding processes in aircraft 
joints, was employed to verify bond quality. 

Aluminium adherends were machined and assembled into their fastened, bonded, and hybrid 
configurations. Specimens requiring film adhesive and rivets were co-cured in an autoclave. 
Autoclaves apply positive pressure to the adhesive, such that gaps between rivets and fastener 
holes became filled with adhesive. 

The non-linear implicit solver of Abaqus 2021 [37] was used to model the loading behaviour 
of the fastened joint and validated against the experimental data. The adherends were modelled 
using the isotropic material properties defined in Table 1. The rivets were modelled using elastic-
plastic material data specified in Table 2. In order for the FE model to capture the global and local 
behaviour of the joints efficiently and the stress state in their critical locations, finer geometrical 
details and meshing in the critical regions, the material behaviour, rivet pre-tensioning, type of 
fastener fit, friction, load distribution, as well as contact interactions between the surfaces were 
included in the numerical model [38–41]. The washer, rivet/bolt, and nut were modelled as one 
part as in [38] to simplify the model and reduce the required computing resources by decreasing 
the number of elements and contact bodies.  

The FE mesh was constructed using 3D continuum hexahedral linear elements, as quadratic 
elements suffer from inaccuracy in contact modelling [37]. However, under bending, the edges of 
linear elements cannot describe the curvature accurately, which can cause artificial shear stresses 
via shear locking [37]. Shear locking can cause the model to be overly stiff as observed by Ireman 
[38]. To solve this, the incompatible mode elements (C3D8I) in Abaqus were used to add degrees 
of freedom to improve the bending behaviour of fully integrated linear elements. Linear elements 
with reduced order of integration (C3D8R) could also be used to combat over-stiffness [42] but 
they suffer from hourglassing which can lead to severe mesh distortion in joint models [43]. To 
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reduce the computational time, C3D8I elements were used in regions where high stress gradients 
were expected to occur, and the less expensive C3D8R elements elsewhere. 

Several grids were constructed and tested. The final meshes were generated conforming to the 
meshing strategy used in [39,40] as they were found to significantly reduce the calculation time 
with negligible effects on the results when compared to finer meshes. To achieve this, the 
overlapping joint regions were heavily partitioned to allow for dense structured meshing in the 
areas of high stress gradients and coarser meshes elsewhere as shown in Fig. 2a. Tie constraints 
were applied to join the joint gauge region and the rest of the laminates together. The resultant grid 
is shown in Fig. 2b. The seed element size was increased from 0.2 to 0.6 in the high gradient 
regions. The average element aspect ratio was maintained to be less than 5 in all cases. 

  
(a) (b) 

Figure 2: The double lap joint assemblies showing the (a) partitioning strategy, and (b) mesh. 

To represent the tensile experimental setup, a clamped boundary condition (𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑧𝑧 =
0), and a displacement vector in solely the axial direction were applied on the left and right ends, 
respectively. A symmetry condition was also applied to the plane midway through the joint width 
to reduce the model size and computational time.  

Contact conditions were set by defining contact pairs between interacting surfaces. By 
definition, slave surfaces are not allowed to penetrate their corresponding master surface. As a rule 
of thumb, master roles should be assigned to surfaces of stiffer bodies which were given coarser 
meshes. The surface-to-surface discretisation technique was used, as it prevented surface 
penetration in an average sense and generally provides more accurate results than node-to-surface 
discretisation [37]. The node-to-surface method can also lead to a flawed radial strain field [40]. 
In order to avoid the creation of discontinuous surface normals due to the abrupt changes in the 
joint geometries, the surfaces were broken down into several contact pairs as in [39]. The finite 
sliding formulation is then selected to allow for arbitrary travel of contacting surfaces. The 
tangential behaviour of the surface pairs was modelled using the penalty friction formulation, and 
the friction coefficients between the adherends, and the adherends and fastener were based on [44]. 
The hard contact method, which attempts to strictly enforce a pressure-overclosure relationship 
[37], was specified to enforce normal contact. 

The main issue to obtain convergence was the phenomenon known as contact chattering, where 
the status of some of the slave nodes changes repeatedly between open and closed when an initial 
overlap or penetration of the discretised contact surfaces occur [37]. This leads to severe 
discontinuity iterations (SDIs) which can result in failure to convergence. To aid the solver in 
reaching a solution to account for the residual stresses induced by the cold expansion of the fastener 
hole during the riveting process that results in an interference fit as previously discussed, the 
overlap was resolved in a manner where there are stresses and strains when moving the nodes to a 
non-overlapping position. In this case, the solver was instructed to treat the overclosure as an 
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interference fit in a separate step by gradually removing the slave node overclosure then 
automatically shrink fit the deformed slave nodes to adjust the overclosure [37]. Further 
improvements in contact convergence were obtained by using the unsymmetric solver, 
recommended due to the high curvature of the master surfaces [37] and contact stabilisation. The 
amount of contact stabilisation was chosen such that the energy dissipated by viscous damping 
was negligible. 

The static experimental testing in this study focused primarily on tensile response of the double 
lap joints to determine the load-displacement characteristics of each configuration type. For this 
discussion, specimens are considered to have three regions. The first is the joined region and it is 
the central area of interest where the joint is assembled. The second is the remote region, the visible 
part of the adherends between the joined region and where the specimen is clamped. Finally, the 
end of the test specimen clamped by the machine is known as the end region. Two strain gauges 
were used at the joined and remote regions, respectively, as shown in Fig.3.    

The recorded total displacement by the testing machine comprises the deformation of the load 
train in addition to that of the test specimen. To determine the true displacement of the specimen 
from the machine transducer, the load train needs to be isolated [45]. A calibrated extensometer 
was used on a rectangular coupon specimen with the thickness of the central adherend and same 
dimensions and material as the double lap joint to determine the load train’s compliance. Then, 
the calibration factor between the cross-head displacement and the true displacement between 
sample’s ends can be calculated accordingly as illustrated in Fig. 4. 

  
Figure 3: The strain gauges location on the 
samples. (The same location is used on all 

configurations) 

Figure 4: Determining the calibration factor 
for the specimens’ true displacement. 

Results and Discussion  
Trial analyses were carried out to investigate the effects of different interference fit values between 
the rivet and hole on the induced residual stress. An interference value of 35𝜇𝜇𝜇𝜇 was then assumed, 
as the maximum induced stress was in the limit range of the yielding stress of the adherends as 
shown in Fig. 5.  

Figure 5: Induced residual stresses due to 
cold expansion of the rivet hole by an 
interference value of 35𝜇𝜇𝜇𝜇 during the 

riveting process. 
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The calibrated experimental load-displacement comparison of the three configuration types is 
shown in Fig. 6. The riveted configuration had the lowest loading capability and stiffness out of 
the three types due to the aforementioned reasons. The bonded and hybrid joints had the same 
stiffness, however the bonded configuration was able to withstand slightly higher load before 
failure. The hybrid configuration failed at the holes while the riveted joint through bearing failure 
due to stress concentrations around the hole. However, in case of the bonded joint, the specimen 
failed outside of the joined region by tension failure of the adherend section, leaving the bondline 
intact. Fracture images of the three configurations are shown in Fig. 7. The FEA prediction of 
riveted joint behaviour is shown in Fig. 6. The model showed good agreement with the 
experimental data and accurately predicted the failure mode.       

The load-strain comparison for each joint type at their joined and remote regions is shown in 
Fig. 8a. The joined region strain for the bonded and hybrid joints were much stiffer than the riveted 
type, and therefore the outer adherends experienced higher strain till failure. Strain gauges installed 
at the remote region of bonded and hybrid joints were overloaded at ~16400𝜇𝜇𝜇𝜇, corroborating 
adherend failure. The strain behaviour of the hybrid configuration at the joined region before 
failure in Fig. 8b, shares similar behaviour to the bonded response, followed by a modest load 
increase that tapers down toward failure. This indicated that the bonded region of the joint (behind 
the rivet row) withstanding load up to ~96𝑘𝑘𝑘𝑘 at a strain of ~4400𝜇𝜇𝜇𝜇 before it failed, and passed 
the load to the rivets row, where the disbond occurred. Eventually, the outer adherend reached a 
maximum strain of ~4575𝜇𝜇𝜇𝜇 before the middle adherend started yielding and finally failed at the 
rivet holes.   

 
Figure 6: Calibrated experimental load-

displacement comparison for the three joint 
types and FEA for the riveted configuration. 

 
  



Structural Health Monitoring - 9APWSHM  Materials Research Forum LLC 
Materials Research Proceedings 27 (2023) 340-349  https://doi.org/10.21741/9781644902455-44 

 

 
346 

   

 

(a) 

    
(b) 

    
(c) 

Figure 7: Failure behaviour for the (a) riveted, (b) bonded, and (c) hybrid configurations. 
 

  
(a) (b) 

Figure 8: (a) Load vs strain comparison for the three joint types on the Joined & Remote 
Regions. (b) The joined region strain behaviour for the hybrid configuration. 

Conclusion and future work 
The static loading behaviour of riveted, bonded, and hybrid double lap joint configurations has 
been compared experimentally. The mechanically fastened configuration had the lowest stiffness 
and loading capacity. Bonded and hybrid joints on the other hand showed similar joint stiffness. 
The bonded configuration was able to hold slightly higher load than the hybrid counterpart due to 
the lack of fastener holes which decrease the effective bonding area and introduce stress 
concentrations in their vicinity. However, the addition of rivets to a bonded configuration has the 
benefit of safeguarding the joint in case of disbonding or the presence of defects within the 
bondline. This could help in certifying these joining/patching techniques for use on primary 
aircraft structures. FEA was able to accurately predict the loading behaviour and failure mode of 
the riveted configuration and matched the experimental data well. Comparison of strain behaviour 
for all three joint configurations at the joined and remote regions provides understanding of the 
failure mechanisms, noting details such as load transfer from bondline failure to adjacent rivets in 
hybrid joints. For future work, more static tests are planned to ensure the results are statistically 
sound, followed by a comparison of fatigue behaviour between the three joint types with the 
inclusion of adhesive defects to simulate quality issues or environmental effects that could happen 
in practice and their effect on performance. FEM modelling will be extended to include bonded 
and hybrid joints.     
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Abstract. Tension pneumothorax(tPTX) refers to air accumulation in the pleural cavity, which is 
a life-threatening condition. In clinical practice, the intervention is performed when tPTX is 
suspected. Needle thoracostomy (NT) is the primary treatment recommended by both civil and 
military guidelines. This is an invasive procedure and is often performed in challenging emergency 
settings such as the pre-hospital environment. However, it is reported that the effective rate is low. 
Due to the complexity of the pleural disease, there are several barriers of a successful pleural 
decompression,  such as misdiagnosis, unsuccess treatment and complications of the treatment. 
One of the problems regarding current instruments used in NT procedure is that the tissue structure 
could be damaged by the overshoot of the needle-like penetrator. To address this problem, a novel 
all-in-one device is designed for emergency management of tension pneumothorax. The novel 
penetrator, which is a sub-assembly of the novel all-in-one device, is aimed at safely penetrating 
the chest wall and creating a fluid pathway between pleural cavity and ambient air. This research 
presents the characterization of one safety parameter of the tissue-structure-protection mechanism 
of the penetrator. In the present study, the mechanism is triggered by a custom-made clipper and 
the impact force is then measured by an impact hammer. The result shows that the maximum G 
force generated by the spring-loaded tissue-structure-protection mechanism will not exceed the 
lung damage threshold found in an animal trial. 
Introduction 
Tension pneumothorax (tPTX) refers to air accumulation in the pleural cavity, as shown 
in figure 1. This life-threatening condition is normally caused by lung injury or trauma 
[1]. tPTX is fatal. Thus, pleural decompression is a lifesaving intervention that is 
performed immediately when the presence of tPTX is suspected.  
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Fig.1 Pleural cavity under tension pneumothorax condition 
Currently, decompressing the pleural cavity by venting the air or blood is seen as the definitive 
emergency intervention for treating the tPTX. The emergency management and treatment methods 
of tPTX are needle thoracostomy (NT), tube thoracostomy (TT) and finger thoracostomy (FT). 
Among all these pleural decompression procedures, NT is recommended as the primary survey 
means by both civilian and military guidelines [2,3]. In NT procedure, the fluid pathway is created 
by physicians or highly trained prehospital paramedics using a needle like structure to penetrate 
the chest wall.  

However, the high failure rate of NT has been confirmed in both civilian and military domain 
[4]. One of reasons is that the insertion of needle might cause internal tissue damage and even 
failure of pleural decompression [5]. The cause is as the penetrator penetrates the parietal pleura, 
there is a likelihood of overshooting (shown in figure 2(D)&(E)). Another cause might be due to 
the consensus of the optimal penetrator length does not exist, the mismatch between penetrator 
length and patient chest wall thickness could cause tissue structure that beyond the parietal pleura 
damaged. 

 
Figure 2. Possible position of needle thoracocentesis. (D) and (E) illustrates the scenario that 

needle overshoot and damage the lung [5]. 
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To address this problem, a novel penetrator is designed as shown in figure 3.  

  
Fig.3 The penetrator assembly [6] 

 
Since the optimal length of the penetrator does not exist, the solution provided in this design is 

using the longest recommended length and adding a tissue-structure-protection mechanism.  
The tissue-structure-protection mechanism is aimed at disabling the penetration mechanism 

when the cutting blade penetrates the parietal pleura and goes into the pleural cavity. There are 
three stages of this mechanism. The first stage is the inactive stage, in which the blunt nose is 
stayed inside the chamber of the penetrator and the push lock is locked at the proximal locking 
position as shown in figure 4(a). The second stage is the semi-active stage, in which the external 
force applied on the penetrator will unlock the push lock from the proximal locking position. 
However, this will not lead to the push lock securing at the distal locking position, because the 
resistance force generated by the tissue will prevent the blunt nose from going downward. Thus, 
at this stage, the force generated by the spring applied on the blunt nose will be balanced by contact 
force generated by the tissue. The last stage is the active stage. When the penetrator reaches a 
cavity, the resistance force generated by the tissue will disappear. Then the spring force will push 
the blunt nose down as shown in figure 4(b), which activates the tissue-structure-protection 
mechanism to prevent further damage caused by the cutting edge of the penetrator. 
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Fig.4 Schematic drawings of penetration-disable mechanism [6] 
 
Lastly, in order to prevent further damage to tissue beyond the parietal pleura, the penetration-

disable mechanism was designed. However, according to the above design requirement, the tissue-
structure-protection mechanism shall be activated as quickly as possible when the penetrator 
penetrates the parietal pleura. Thus, the tissue-structure-protection mechanism is designed to be 
driven by a pre-loaded spring force. To achieve the essential feature, which is the activation speed, 
the spring needs to be as strong as possible. However, a secondary consideration is whether the 
impact force generated by the spring can cause damage to the tissue. The aim of the present study 
is to find out the impact force generated by the internal spring of tissue-structure-protection 
mechanism. 
Method 
The impact force generated by the pre-loaded spring of the tissue-structure-protection mechanism 
is tested in present study. The novel penetrator (version 2020) is locked at a clipper which is fixed 
at the vibration isolation table (Optical Table (DVIO-I-1812M-300t(900H)), Vibration Isolation 
Systems; DAEIL Systems Pty Ltd, KyungKi-Do, Korea). The tip of the blunt nose is installed at 
3 to 10 mm from the force sensing system.  
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Fig. 5 Experiment setup 
The procedure was performed at Acoustic Lab, Monash University by non-medical personnel. 

In order to maintain a single variable, the penetrator is fixed by a holder as shown in figure 5, 
which leaves the only variable to be the distance between the distal end of the penetrator and the 
impact hammer. In this study, the impact hammer was fitted with a flat aluminum head receiver.  

The force sensing system is comprised of an impact hammer (Type 8206; Brüel & Kjær Pty 
Ltd, Nærum, Denmark) as shown in figure 6(A), an analogy to digital signal transducer (DT9836; 
Data Translation Pty Ltd, Marlboro, Georgetown, Massachusetts, United States) and a PC which 
is equipped with a data collection software (QuickDAQ; Measurement Computing Pty Ltd, Norton, 
Massachusetts, Natick, Massachusetts, United States). The data acquisition frequency of the 
software is set at 10000 hz. Three Matlab scripts (Matlab; MathWorks Pty Ltd, Natick, 
Massachusetts, United States) were developed to process and analyse the data. The sensing unit 
inside the impact hammer is a CCLD accelerometer, which is a piezoelectric sensor that measures 
the force through linear electromechanical interaction. 
  

 
Fig.6 Instrument used in the experiment: (A) Impact hammer. (B)Custom-made plier 

 

https://www.google.com.au/search?q=N%C3%A6rum&stick=H4sIAAAAAAAAAOPgE-LSz9U3ME02NjeqVAKzTcyLs6sMtbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jZ_A4vKyrN3cHKuIudiYMBAAk6ZG5XAAAA&sa=X&ved=2ahUKEwi84Z7xnev6AhXG8DgGHdW8CwkQmxMoAXoECGQQAw
https://www.google.com.au/search?q=Marlboro&stick=H4sIAAAAAAAAAONgVuLSz9U3MLE0tzTJesRoyi3w8sc9YSmdSWtOXmNU4-IKzsgvd80rySypFJLgYoOy-KR4uJC08Sxi5fBNLMpJyi_KBwAPDj0GUQAAAA&sa=X&ved=2ahUKEwiiw8Piquv6AhUdnmMGHUjOCZYQzIcDKAB6BAgfEAE
https://www.google.com.au/search?q=Natick&stick=H4sIAAAAAAAAAONgVuLQz9U3KIk3LXjEaMwt8PLHPWEprUlrTl5jVOHiCs7IL3fNK8ksqRQS42KDsnikuLjgmngWsbL5JZZkJmcDAIOmXCBLAAAA&sa=X&ved=2ahUKEwihj-jGn-v6AhV9JLcAHbAQDGIQzIcDKAB6BAgnEAE
https://www.google.com.au/search?q=Natick&stick=H4sIAAAAAAAAAONgVuLQz9U3KIk3LXjEaMwt8PLHPWEprUlrTl5jVOHiCs7IL3fNK8ksqRQS42KDsnikuLjgmngWsbL5JZZkJmcDAIOmXCBLAAAA&sa=X&ved=2ahUKEwihj-jGn-v6AhV9JLcAHbAQDGIQzIcDKAB6BAgnEAE
https://www.google.com.au/search?q=Natick&stick=H4sIAAAAAAAAAONgVuLQz9U3KIk3LXjEaMwt8PLHPWEprUlrTl5jVOHiCs7IL3fNK8ksqRQS42KDsnikuLjgmngWsbL5JZZkJmcDAIOmXCBLAAAA&sa=X&ved=2ahUKEwihj-jGn-v6AhV9JLcAHbAQDGIQzIcDKAB6BAgnEAE
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Once the penetrator was fixed in place, the data collection program was then started to ensure 
the whole impact force profile was recorded. This procedure is triggered by a custom-made plier 
as shown in figure 6(B). The blunt nose of the tissue-structure-protection mechanism is then 
pushed downward by the pre-loaded spring and hits the force sensing system. For each distance 
candidate, the above procedure was repeated 10 times. 

The data recorded by the force sensor system is in Voltage format, which needs to be converted 
to force(N). The conversation formula is provided by the impact hammer which was last calibrated 
on 13rd Oct 2010. 
Result 
The conversion formula between voltage and force is determined to be Force = 
Voltage/22.23×1000. This relationship was applied to all data. The force profile of blunt nose 
impact force can be seen in figure 7. The peak force point was first found through a MATLAB 
script. After that, 200 data points on both sides were picked out.  

 
Fig. 7 Force profile at various distance 

 

 
Fig.8 Force level of penetration-disable mechanism 

The force level, as shown in figure 8, increases when initial distance increases. The maximum 
force found in present study is 58.42 N when initial distance is 9.93 mm. 
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Discussion 
Since the weight of the lung in normal adult is approximately 1 kg[7], based on formula Force = 
Mass × Acceleration, the maximum G force received by the lung is estimated to be 58.42G. 
According to an animal trial, lung damage will occur when impact G force reach 90G[8]. Thus, no 
lung damage is expected if the blunt nose hits the lung. 

The experiment setup was using a rigid head as the receiver of the impact hammer. Thus, no 
deformation of the receiver is considered. However, inside the human chest, a significant amount 
of impact energy will be absorbed by tissue structure deformation, which would make the G force 
even lower than 58.42G. 
Conclusion 
The present study shows that within the 10 mm range, larger the distance between parietal pleura 
and tissue beyond, the larger impact it will receive. The impact force generated by the internal 
spring of tissue-structure-protection mechanism is considered as safe to be used and worth testing 
in phase 2 clinical trial with human cadaver. 
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Abstract. Significant strides have been made in non-proprietary distributed FOS technologies 
suitable for structural health monitoring (SHM) applications. FOSs are resistant to electromagnetic 
interference, corrosion, and high-strain cyclic loading while also providing significant reductions 
in weight and the complexity of installation when compared to conventional electrical resistance 
foil strain gauges (FSGs). This paper builds on previous benchmarking of proprietary distributed 
FOSs and demonstrates a FOS-based high-density strain measurement capability on a large aircraft 
structure subjected to representative flight loading. 
Introduction 
The structural assessment and health monitoring of aerospace structures is customarily undertaken 
using experimental measurements of strain obtained from conventional FSGs. Strain predictions 
in fatigue-critical locations are obtained using analytical and computational modelling and are 
experimentally verified using measurements from FSGs installed at these locations. While FSGs 
provide an effective means of measuring strain at single locations, they are not well suited to 
determining the location of peak strain. Additionally, FSGs provide strain measurements averaged 
over the gauge length. This can lead to uncertain strain measurements at high strain gradient 
locations because a small shift in the FSG installation position can lead to a significant change in 
measured strain value. Strain monitoring using FSGs can be inconvenient due to the volume of 
associated wiring, and cable management and connectivity requirements. FSGs also involve a high 
maintenance burden, in part because of their susceptibility to fatigue. The need for gauge re-
calibration, repair or replacement is not uncommon in large installations.  

Distributed FOS technology presents an opportunity to improve the reliability and spatial 
resolution of airframe strain sensing, while also significantly reducing the installation and 
maintenance burden. In combination with FEA, distributed FOSs have the potential to provide an 
improved basis for identifying the magnitude and location of peak strain and high strain gradients 
in fracture critical structures. 

This paper reports on the performance of distributed FOSs for the purpose of structural 
assessment of an aircraft structure. Performance factors including sensor durability and 
measurement accuracy are quantified and compared to FSGs. An adhesive packaging technique 
for FOS installation is also assessed for robustness and strain transfer effectiveness compared to 
FSGs. 
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Experimental Method 
The present work uses a distributed FOS capability based on All Grating Fibre (AGF) technology 
[1] and the Sensuron Summit Optical Frequency Domain Reflectometry (OFDR) interrogation 
system. A 3.25 m long AGF sensor with 2024 sensing points was selected to provide strain 
measurements every 1.6 mm with a notional strain measurement accuracy of ±1με. This type of 
FOS is mechanically robust with a 5% (50,000 𝜇𝜇𝜇𝜇) tensile failure strain [1] and exceptional 
fatigue resistance [2].  

FOSs were installed on a geometrically complex airframe structure undergoing full-scale 
fatigue testing. These sensors were bonded to known fracture critical structural members, as well 
as other areas important to the structural integrity of the fatigue test article. FOSs were installed 
adjacent and parallel to 15 EA-series self-compensating FSGs [3] to enable direct comparison of 
strain readings at multiple locations throughout the structure. 

A high-strain fatigue resistant packaging and adhesive strategy described in [4] was used for 
the installation of the FOSs. The FOSs are adhered using LOCTITE EA9309.3NA two-part epoxy 
which has excellent peel strength and elongation properties, and can withstand harsh 
environments. Airtech tac-strip adhesive mesh tape was used to position and immobilise FOSs, 
control bondline thickness and provide protection from mechanical damage. 

The key steps in the installation method are depicted in Fig. 1. Bridging sleeves were installed 
along the installation path to protect unbonded sections of fibre. The fibre was threaded through 
the bridging sleeves, temporarily secured in position using masking tape and immobilised using 
the adhesive mesh tape. Adhesive was applied on top of the mesh tape and smoothed thoroughly 
across the mesh cells to encapsulate the FOS and remove excess adhesive. The adhesive partially 
cures and is solid to touch within 12 hours and is fully cured in 3-5 days at room temperature. 

A baseline zero-load state was recorded for the installed FSGs and FOSs. All subsequent strain 
measurements are relative to this baseline. That is, changes in strain resulting from load application 
to the structure were measured from this original undisturbed condition. 

 

 
Fig.  1 FOS installation method: (a) FOS inserted through bridging sleeves, (b) mesh tape is 

adhered on top of FOS, and (c) a fine paintbrush is used to encapsulate the FOS and mesh tape 
in epoxy adhesive 
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Results 
As part of the full-scale fatigue testing of this airframe structure, strain surveys were conducted 
before and after a sequence of flight representative variable amplitude loading, to establish an 
initial strain correlation between the FOSs and FSGs and repeatability of the measurements. The 
present work reports on the strain survey results on a flange at a fracture-critical location on the 
structure shown in Fig. 2. The graph shows the FOS strain distribution at peak load and is aligned 
with a photo of the structure showing the position of structural features in relation to the strain 
distribution. For example, the three stiffeners intersecting the flange in the photo are represented 
by black solid lines on the graph and correspond to local increases in strain.  

The position of two FSGs are labelled in Fig. 2 and the corresponding strain values show 
excellent agreement with values obtained from the fibre. It is to be noted that the strain values 
obtained from FSGs alone provide no indication of the strain gradient nor of the peak strain 
locations in the structure, both of which are provided by the FOS. In this case, the peak strain 
obtained from the FOS occurred at the stiffener adjacent to FSG1.  This peak strain is ~26% higher 
than the FSG1 strain value. 

Fig. 3 shows the strain distribution in a flange at a different location. The FSG strain value here 
shows excellent agreement with the corresponding fibre measurement, however the strain gradient 
at this location is more severe than in the previous location. According to the FOS, the strain at the 
FSG location ranges between 1191-1402 µƐ across the 5 mm gauge length so a minor shift in FSG 
position would significantly alter the strain reading. Since the distributed FOS averages strain 
across a shorter 1.6 mm gauge length, it is more suitable for high strain-gradient measurement 
situations such as this.  

Periodic small-amplitude perturbations were observed in some of the strain distribution profiles, 
evident for example in the profile to the left of the FSG1 location in Fig 2. These perturbations 
manifested in consistent locations and maintained the same amplitude across different strain 
surveys. Similar features were observed in strain profiles published in the open literature although 
no hypotheses were provided on possible causes. A coupon test was conducted to investigate the 
cause. This indicated a combination of systematic noise from the interrogator, which appeared to 
increase with applied strain, and the effect of the mesh tape impinging on the FOSs under applied 
load, as the most likely causes. Nevertheless, the perturbations are negligible in magnitude 
compared to the strain peaks caused by structural features such as stiffeners, e.g. the peak strain 
corresponding to the stiffener adjacent to FSG1 in Fig. 2. Therefore, the overall FOS strain 
distribution and magnitudes were considered reliable. 
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Fig. 2 Line graph showing strain profile obtained from FOS in a flange with three stiffener 

intersections (labelled in photo and represented by black solid lines in graph) and two FSGs 
(labelled and represented by markers on line graph) 
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Fig. 3 Strain profile obtained from FOS on a flange showing FSG position in a high strain 

gradient location 
 

Fig. 4a and Fig. 5a show strain comparisons between readings from FSG1 and FSG2 and 
corresponding FOS values (refer to Fig. 2), recorded continuously during a strain survey load 
application sequence. FSG data was recorded at a sampling rate of 10 Hz and FOS data at 16 Hz.  
The FSG and FOS strain values are in close agreement at all applied loads, as shown by the 
overlapping line graphs. Fig. 4b and Fig. 5b show the comparative strain response during a 15-
second interval at peak strain. The difference between the FOS and FSG1 measured strains was 
approximately 45 µƐ at a peak strain of 1650 µƐ, Fig. 4b. As the FOS and FSG sensors are not 
coincident, a small difference in measured strain values is not unexpected. The noise level for this 
FOS system (comprising sensor and interrogator) at an acquisition rate of 16 Hz is approximately 
5 µƐ which is 0.3 % of the strain at this load level. The difference between FOS and FSG2 
measured strains was approximately 10 µƐ at a peak strain of 465 µƐ (Fig. 5b). 
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Fig. 4 FOS and FSG1 (refer to Fig. 2) strain response during (a) the strain survey load sequence 

and (b) FOS and FSG1 strain response during a 15 second interval at peak strain 
 

 
Fig. 5 FOS and FSG2 (refer to Fig. 2) strain response during (a) the strain survey load sequence 

and (b) FOS and FSG2 strain response during a 15 second interval at peak strain (right) 
 
Strain surveys were conducted routinely during the full-scale fatigue test to monitor FSG strain-

drift. Strain values were compared across multiple strain surveys at the two FSG locations shown 
in Fig. 2. Measured strain remained consistent between the first and last strain survey, the latter 
conducted following one lifetime of simulated flying hours. However, FSG strain-drift was 
observed at other locations. FSGs are capable of measuring maximum elongations in the range 3 
% - 5 % [5,6] but are subject to fatigue damage - the fatigue life of EA-series FSGs is 
approximately 106 cycles at ± 1500 µƐ [7]. FOSs do not experience strain drift or fatigue damage 
under normal operating conditions, as specified in [1]. Previous testing by the authors showed that 
draw tower gratings, which are similar to AGF, survived an incremental constant amplitude 
loading sequence (Table 1) accumulating 3 million applied load cycles, with failure eventually 
occurring at a strain of 23,000 µƐ [2]. 

 

(a) 

(b) 

(a) 

(b) 
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Table 1 Incremental loading sequence for FOS fatigue test 

Peak Strain (µƐ) 10,000 15,000 17,000 19,000 21,000 23,000 25,000 
Load Cycles 

(million) 1 0.5 0.5 0.5 0.5 0.5 0.5 
 
It was previously mentioned that FOSs provide significant reductions in weight and complexity 

of installation relative to FSGs. Fig. 6a compares the electrical wiring and cable management 
corresponding to 88 FSGs installed on the aircraft structure, to 4 yellow-jacketed FOS cables 
accommodating 3300 sensors, Fig. 6b. This comparison highlights how distributed FOS enables 
high-density strain measurement across a large area of structure to be achieved with a relatively 
low sensor footprint.   

 

   
Fig. 6 Wiring and cable management for 88 FSGs (Fig. 6a), and yellow-jacketed FOS cables 

accommodating approximately 3300 sensors (Fig. 6b). FOS cables are shown connected to the 
4-channel Sensuron Summit interrogator and laptop showing live strain distribution during 

applied loading 
Conclusions 
This paper evaluated the performance of an FOS-based high-density strain measurement capability 
on an aircraft structure. The structure was subjected to applied loads in a strain survey before and 
after one lifetime of simulated flying hours. The comparative evaluation focused on strain values 
obtained from FOSs installed directly adjacent to 2 of the 15 FSGs that were considered 
representative of all 15 FSGs. 

The measured strain values obtained from corresponding FOSs and FSGs showed excellent 
agreement. The high-density distributed FOS strain measurements provided information about the 
magnitude and location of peak strain and high strain gradients that is unavailable from FSGs.  
Additionally, the comparative strains were consistent in multiple strain surveys thus demonstrating 
a good level of repeatability and reliability of the FOS technology. 

The adhered FOSs are mechanically robust, withstanding for the moment one lifetime of 
simulated flying hours (6000 FH of a combat aircraft) and strains up to 4000 µƐ and are still 
working. The adhesive packaging technique provided sufficient protection to the fibres whilst 
maintaining adequate strain transfer between the host structure and FOS.  
Perturbations were present on all strain profiles, which appear to be a result of low-amplitude 
systematic noise. However, these perturbations were negligible compared to the magnitude of 

6b 6a 
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strain peaks caused by structural elements such as stiffeners. Therefore, the overall FOS strain 
distribution was considered reliable.    

The results presented in this paper demonstrate some key advantages of distributed FOSs for 
airframe strain monitoring applications, including reliable and repeatable high-density strain 
measurements and a relatively small sensor footprint.    
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Abstract. In this paper, we propose a novel method to detect and quantify contact acoustic 
nonlinearity using conventional time of flight diffraction (TOFD) non-destructive testing (NDT) 
equipment, with the aim to improve the sensitivity and robustness of TOFD measurements. This 
new method involves applying an external cyclic quasi-static load while simultaneously taking 
TOFD measurements. The applied load causes modulation of contact surfaces within damaged 
areas of the material, which can be observed as changes in the time-domain TOFD response. 
Additional processing extracts any load-dependent features from the signals, allowing the 
identification and quantification of damage and defects that exhibit contact acoustic nonlinearity. 
Importantly, this new quasistatic contact acoustic nonlinearity (QS-CAN) technique maintains 
time-resolution and localisation capability of conventional TOFD. It is shown that the technique 
can differentiate between different types of damage such as fatigue cracks or voids within samples. 
The new QS-CAN nonlinear ultrasonic methodology is a fundamental extension to all existing 
nonlinear measurement techniques. It allows for the first time to use time signals captured from 
conventional NDT equipment to extract nonlinear material characteristics. 
Introduction 
Time Of Flight Diffraction (TOFD) is a commonly used ultrasonic non-destructive evaluation 
technique. TOFD is routinely used for the inspection of welds in low alloy and carbon steels due 
to its efficient and accurate sizing of defects [1]. However, there are now new generation Corrosion 
Resistant Alloys (CRA) such as austenitic stainless steels in use. These materials have an 
anisotropic grain structure which makes conventional TOFD challenging due to scattering in the 
material [2-5]. 

A similar issue exists in ultrasonic testing of composite materials, the impedance mismatch 
between fiber, matrix and intra laminar layers causes scattering of ultrasonic pulses which occludes 
actual defects. In this field, nonlinear ultrasonic methods have proven to be effective to detect 
material damage. However, these nonlinear methods operate almost exclusively in the frequency-
domain and so sacrifice localization.  

Therefore, despite suggestions that nonlinear methods might be applicable to TOFD there has 
been no way to reconcile time-frequency duality and preserve defect localization, a critical 
property of conventional TOFD measurements. In this paper we propose a novel technique based 
around processing of TOFD waveforms under cyclic loading conditions to extract nonlinear 
features of the sample entirely in the time domain.  
Nonlinear Methods 
Nonlinear approaches to ultrasonic testing have existed for decades [6], fundamentally these 
methods are based around the principle of stress-stain relationships deviating under certain 
conditions. When this occurs, acoustic energy traveling through the material becomes distorted 
and this effect can be measured.  
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Figure 1: Nonlinearity due to deviation in stress-strain relationship in a material 

Early nonlinear methods used a single excitation source, so called harmonic methods [7]. 
However, current methods make use of multiple excitations, known as Vibro-Acoustic Modulation 
(VAM). Vibro-Acoustic techniques are more sensitive to defects. In VAM a high frequency 
ultrasonic wave (probing wave) and a low frequency mechanical excitation (pumping wave) are 
used simultaneously to excite a sample. In the presence of defects, the probing wave undergoes 
modulation which can be detected and used as a damage index. For example, Figure 2 
demonstrates how a beam with a fatigue defect can cause modulation of a probing wave when 
excited with low frequency mechanical vibration. 
 

 
Figure 2 Example of Nonlinearity due to crack modulation in a beam [8] 

 
Quasi-Static Approach 
The purpose of the low-frequency pumping wave is simply to modulate any mechanical defects 
within the sample [9], actual information about the nonlinearity of the material is encoded onto the 
probing wave. In theory, this means that the frequency of the pumping wave can be chosen 
arbitrarily, provided it is much lower than the probing wave [10, 11].  

However, due to practical considerations the pumping frequency is often very near structural 
resonant frequencies to maximize excitation amplitudes [11]. This approach is very sensitive to 
the modal response of the system and other amplitude dependent nonlinear effects occur at these 
resonance points.  
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Therefore, instead of applying this external forcing vibration by a transducer we propose using 

a much slower, but higher amplitude external load. This applied stress is still well within the 
nondestructive range for the material. In this paper the external quasi-static load is applied by a 
tensile testing apparatus, but this doesn’t preclude practical approaches. For example, in pipeline 
or tank inspection, the external load can be applied by varying levels of pressurization. Otherwise, 
opportunistic measurements under different loading scenarios may be feasible for civil structures. 
As will be shown in this paper, a stress fluctuation of less than 1% of the failure stress was 
sufficient.  
Quasi-Static TOFD 
Expanding on the general quasi-static idea, the quasi-static TOFD (QS-TOFD) concept was 
developed. In this proposed method a sample is excited using a conventional TOFD system under 
various quasi-static loads. Then, through signal processing it is determined if any features in the 
TOFD waveform exhibited load dependent behavior. Since any load dependent variation in the 
waveform is indicative of nonlinearity in the material, this can be used to locate and infer the type 
of damage. Importantly, no frequency-domain transformation is used, and hence damage local 
information is preserved.  
Methodology 
The proposed method was investigated using various aluminum beams, which can be seen in 
Figures 3-5. The dimensions of the beams are 40x40x250mm and made from 6061-T6 alloy. The 
large through-thickness was chosen so that the distance between lateral wave and backwall was 
maximized. The induced damage was drilled holes as well as cyclically grown fatigue cracks. An 
Instron Series 5900 Universal Testing System was used to apply load to the specimens. The setup 
is shown in Figure 6. 

Table 1 details the naming convention and the samples used in testing. In both fatigue samples 
the crack was grown to approximately half width (20mm). A 45-degree v-notch was used as the 
crack initiation point, in the F1 sample this notch was 1mm deep and for the F3 sample it was 
3mm. Images of the samples are provided in Figures 3-5. A 3D printed fixture was used to hold 
the transducers and wedges in place over the defect location. A Sonopod acquisition system was 
used to measure the TOFD waveforms. The instrumentation configuration is provided in Table 2. 

 
Table 1 Names and Descriptions of Samples 

Sample ID Description 
P1 Pristine bar 
SHD20 2mm diameter 20mm offset drilled Hole 
F1R 20mm fatigue crack, measured as root crack 
F1S 20mm fatigue crack, measured as surface crack 
F3R 20mm fatigue crack, measured as root crack 
F3S 20mm fatigue crack, measured as surface crack 
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Table 2 Equipment Used and TOFD Configuration  
Acquisition System Sonomatic Sonopod + Laptop 
Transducers 5 MHz 6.25mm Olympus C543-SM 
PCS 55mm 
Angle in Material  48.3 Deg (Using ST1-45L-IHC Wedges) 
Pulse Voltage 200V 
Pulse Time 100 ns 
HPF 2.5 MHz 
LPF 10 MHz 
PRF 20 Hz 
Gate Start 13 us 
Gate Width  17 us 
Gain Varies (25-35dB) 
Number of Samples 1000 

 
Table 3 Mechanical loading parameters 

Max Load 2500 N 
Min Load 25 N 
Max Compressive Stress 1.56 MPa 
Min Compressive Stress 0.0156 MPa 
Loading Rate 100 N/s 
Load Profile continuous linear ramp  
Load/Unload Cycles Approx. 5 

 

 
Figure 3 Sample with fatigue crack grown under cyclic loading 
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Figure 4 Image of samples with external dimensions listed 

 

Figure 5 Close up detail of fatigue defects 

 

Figure 6 Image of sample in test fixture 
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Signal Processing 
The processing requirements for the new method are significantly more involved than 
conventional TOFD. Broadly speaking, it is necessary to add another dimension to the scan data. 
An array of measurements at different loads are required for each point. Then, the average TOFD 
response is computed by taking the mean of the array of these measurements. Each A-scan is 
subtracted from the mean leaving the resultant residual plots which contain the load-dependent 
behavior. The processing chain is shown pictorially in Figure 7. 
 

Figure 7 Data processing steps for proposed method 
Results 
The output of the processing are three types of figures, these are:  
Stacked A-scans:  

• Each individual A-scan was plotted on a single chart, giving a representation of stacked 
time histories which shows any variability in A-scan signals due to the changing quasi-
static loading 

B-scan of Residual:  
• Each A-scan is subtracted from the average A-scan, leaving the difference between the 

current A-scan and the average A-scan at the current slice. 
B-scan of Residual (Surface Plot): 

• As before, but a 3-dimensional surface plot 
 

The residual plots are the metrics of interest, a variation in this property means the TOFD 
waveform is dependent on the applied load. Since load-dependent acoustic response is 
nonlinearity, this is direct measurement of nonlinearity in the time-domain. Importantly it is also 
demonstrated how this measurement can be done by use of conventional UT equipment and does 
not require specialized hardware or high bit-depth ADCs.  
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Figure 8 Pristine Sample 

 
Figure 9 20mm Offset Side Drilled Hole 
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Figure 10 Fatigue Sample 1 as Root Defect 

 

Figure 11 Fatigue Sample 1 as Surface Defect 

Evidence of 
load-dependant 
crack modulation 

Evidence of 
load-dependant 
crack modulation 
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Figure 12 Fatigue Sample 3 as Root Defect 

 
Figure 13 Fatigue Sample 3 as Surface Defect 

Evidence of 
load-dependant 
crack modulation 

Evidence of 
load-dependant 
crack modulation 
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Figure 14 Pristine Sample (Residual B-scan) 

 
Figure 15 20mm Offset Side Drilled Hole (Residual B-scan) 
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Figure 16 Fatigue Sample 1 as Root Defect  (Residual B-scan) 

 
Figure 17 Fatigue Sample 1 as Surface Defect (Residual B-scan) 

 

Evidence of 
load-dependant 
crack 
modulation 

Evidence of 
load-dependant 
crack 
modulation 

Evidence of 
load-dependant 
crack 
modulation 
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Figure 18 Fatigue Sample 3 as Root Defect (Residual B-scan) 

 
Figure 19 Fatigue Sample 3 as Surface Defect (Residual B-scan) 

 

Evidence of 
load-dependant 
crack 
modulation 

Evidence of 
load-dependant 
crack 
modulation 

 

Evidence of 
load-dependant 
crack 
modulation 
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Figure 20 Pristine Sample (Surface Plot) 

 
Figure 21 20mm Offset Side Drilled Hole (Surface Plot) 
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Figure 22 Fatigue Sample 1 as Root Defect (Surface Plot) 

 

Figure 23 Fatigue Sample 1 as Surface Defect (Surface Plot) 
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Figure 24 Fatigue Sample 3 as Root Defect (Surface Plot) 

 

Figure 25 Fatigue Sample 3 as Surface Defect (Surface Plot) 
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Discussion 
Starting with the pristine and the side drilled hole samples in Figures 8 and 9 we can see a typical 
TOFD waveform. The main features (LW, Defect, BW, MCBW) can be seen clearly. Recalling 
that there are 1000 stacked A-scans in these figures, very little sample to sample variation in both 
the Pristine and SDH20 measurements is seen. It is observed that each A-scans lies atop one-
another. This is the expected behavior for these samples as there is no hypothesized mechanical 
phenomena that should have a load dependent effect. For the SDH20 sample the diffracted signal 
occurs exactly where it is expected based on the geometry of the sample.  

Considering now the fatigued samples (Figure 10 to Figure 13) We can see variation in these 
stacked A-scans which indicates that the defect behavior is load-dependent. These effects are most 
evident around the expected defect tip and well as the MCBW in the case of the root defect 
configuration. This supports the hypothesis that these fatigue defects are experiencing load-
dependence.  

This observed load dependence is more easily observed in the B-scan residual plots. (Figure 14 
to Figure 19). Considering the pristine and SDH20 samples, we can see no significant modulation 
around the lateral wave, defect or backwall. However, there is a small about of modulation present 
in the backwall echo of both samples. This is unexpected and it is not clear what this is caused by, 
especially considering the lack of this modulation in the lateral wave.  

Again, the fatigue samples exhibit strong modulation around the defect and backwalls, with the 
root defect configurations having stronger effects in the MCBW. There is no evidence of this load-
dependent effects in the lateral wave. Although, it should be noted that the lateral wave is not 
visible in the surface defect setup (as expected). The magnitude of this modulation is similar 
between fatigue sample 1 and fatigue sample 3.  

Figure 20 to Figure 25 show the same data as the previous sets, but as surface plots. It is easier 
to see the modulation around the tip of the crack and the backwall. It is observed that the 
modulation is linearly proportional to the applied load by looking at the perfectly triangular peaks 
in Figure 22 to Figure 25. However, there is some asymmetry in seen in Figure 23 and Figure 22. 

These results provide strong evidence that the TOFD waveform response of fatigue defects are 
sensitive to applied loads. Hence, this is direct detection and measurement of nonlinearity from 
contact acoustic nonlinearity. It’s shown that under the same loading conditions the pristine and 
SDH samples did not exhibit strong modulation under load whereas fatigue defects did.  

Therefore, this technique is proposed as a method to detect and quantify the difference between 
linearly behaving defects (voids) and defects that exhibit load dependence (fatigue cracks). It is 
also shown that this approach can be implemented with a standard UT system at 8 bits of vertical 
resolution and does not require specialized, high bit-depth measurement systems.  
Comments on Practicality 
It is recognized that the specific methodology shown here under tightly controlled laboratory 
conditions would be difficult to transfer to practical applications. The need to apply the controlled 
loads and take many measurements at different loads would make this impractical in a time-
constrained environment. However, noting that the applied stresses are quite small compared to 
the material strength, this technique could be implemented by leveraging varying loads that are 
present in many applications. 
 
For example: 

1) A pipeline could be measured in both an in-service and out of service condition, the load 
variation in this case would be much more than 1% used here.  

2) A continuous monitoring system could be implemented on a specific area of concern; load 
variations would be recorded alongside UT data and post-processing done to find correlations.  
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3) This technique could be applied to historical data, even if the loading conditions of previous 
measurements were not known any variation would suggest follow-up study. 
Conclusions 
In this paper a novel method to detect contact acoustic nonlinearity in a TOFD measurement was 
presented. The method uses an external cyclic quasi-static load to modulate mechanical defects 
within the sample. A series of TOFD measurements is taken simultaneously with the applied load. 
This data is then processed to determine the average TOFD response and the residual, which 
encodes any load-dependent nonlinear behavior. It was found that the pristine sample, as well as 
the side-drilled hole sample did not exhibit significant residual component. In contrast, both fatigue 
samples exhibited strong nonlinearity as indicated by the residual plots at locations near the defect 
tip. It is hypothesized that this is due to minute changes in the contact surfaces at the crack interface 
under different loads. Therefore, it is suggested that this method may be used to detect contact 
acoustic nonlinearity whilst preserving the time-domain locality.  
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