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Preface 
 
The Organizing Committee of the XXV National Congress of the Italian Association of 

Theoretical and Applied Mechanics, in collaboration with the Engineering Department of 
the University of Palermo, organized the XXV National Congress of the Italian Association 
of Theoretical and Applied Mechanics, in Palermo, at the Department of Engineering, on  
4-8 September 2022. 

For fifty years, the AIMETA congress has been an opportunity for researchers working 
in the fields of General Mechanics, Fluids, Solids, Structures, Machines and Biomechanics 
to share advanced knowledge. The objectives of the congress are: to promote the exchange 
of ideas and experiences among the participants; foster stimuli towards new research topics; 
disseminate the latest scientific results. The topics dealt with concern theoretical, 
computational, experimental, technical-applicative aspects, and extend to multi-physics 
problems and between different sectors of scientific and technological knowledge. 

AIMETA 2022, organized in Palermo, has been very successful and was developed in 
five days of meetings, symposia and work sessions, with participants among the most 
authoritative members of the Italian and International scientific community in the fields of 
theoretical and applied mechanics. 

In particular, the Conference was composed of four invited talks, by outstanding 
scientists on the topics covered, presented in plenary sessions; of three hundred 
presentations of scientific papers, distributed over ten parallel sessions. In addition to 
general topics of relevant scientific interest in the field of basic and applied research, 
fourteen mini-symposia were organized on specific topics. 

We wish to thank those many colleagues, young and less young, that took part in the 
organization of the congress; the scientific committee that faced the heavy task of examining the 
submitted abstracts and papers; and all those who contributed to the logistics and success of the 
event. 

Mario Di Paola 
Livan Fratini 

Fabrizio Micari 
Antonina Pirrotta 
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Abstract. We present a new numerical solver for free-fluid flowing over and inside a porous 
medium. It is based over a macroscopic approach and one fictitious medium is assumed inside the 
domain, according to the One Domain Approach. Preliminary results are shown and compared 
with the ones provided by the well-known DuMux solver which applies a two Domain Approach. 
Introduction 
Transport phenomena of combined free fluid (ff) and porous medium (pm) flow occur in several 
industrial, environmental and biological applications (e.g., surface and groundwater flow, 
contaminant transport from lakes by groundwater, fuel cells, oil filters, blood flow in vessels and 
tissue, transfer of therapeutic agents).  

The related mass, momentum and energy transport mechanisms at the ff–pm interface have 
been intensively investigated during the last decades applying two main approaches, the 
formulations at the micro- and macro-levels, respectively.  

At the microscopical level, the porous medium is assumed as a connected domain of pore spaces 
filled with the fluid. The flow is governed by Navier–Stokes (or Stokes) equations, and no–slip 
boundary conditions are imposed on the interfaces between fluid and solid particles of the porous 
medium. The main drawback of this approach is its application for real problems, due to the huge 
amount of CPU time and computer memory storage, as well as the lack of an exact knowledge of 
the real porous geometry.   

At the macroscopical level, the sets of the governing equations are obtained by averaging or 
upscaling the equations at the microscopic level over a Representative Elementary Volume (REV) 
[1]. The REV size is much larger than the characteristic size of the pore, but much smaller than 
the representative size of the domain. Two general different approaches have been derived at the 
macroscale, namely the Two-Domain Approach (TDA) and the One-Domain Approach (ODA) 
[1].  

In TDA, the domain is split into two regions, and, in the most general case, the Navier–Stokes 
equations describe the fluid flow in the ff domain, while the Darcy’s law is applied in the pm 
region. This is the most difficult approach from a mathematical point of view, since the two sets 
of governing equations are completely different systems of Partially Differential Equations (PDEs) 
and need interface conditions (IFCs). A sharp interface is assumed, where appropriate boundary 
conditions are imposed (typically, the conservation of mass, the balance of normal forces and the 
Beavers–Joseph condition (BJC) for the tangential velocity components [2]). 

On the contrary, in ODA, the porous layer is regarded as a pseudo-fluid and the composite 
region free fluid-porous medium is treated as a continuum. One set of PDEs is assumed, typically 
the Brinkman or the (Navier)-Stokes-Brinkman equations (e.g., [1, 3]). The transition from the 
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fluid to the porous medium is achieved through a continuous spatial variation of physical 
properties, such as permeability and porosity inside a transition layer (TL) which separates the 
homogeneous ff region from the bulk porous medium. The major drawback of the ODA is related 
to the knowledge of the size of the TL between the two homogeneous regions and how the physical 
parameters of the porous medium change inside it.  

In the recent literature, some ODA have been proposed for the Brinkman equations [4] or a 
momentum equation having a Darcy form, including inertial and slip effects [5].  

In the present paper, we present a novel numerical solver for ODA for incompressible and 
single-phase fluid over a saturated anisotropic porous medium. The governing equations, derived 
by averaging the pore scale microscopic Navier-Stokes equations, are the Incompressible Navier-
Stokes-Brinkman equations (INSBEs), discretized over general unstructured meshes.  

Preliminary model results are shown.   
The Governing Equations and spatial discretization 
The governing equations are a set of Partial Differential Equations (PDEs), the INSBEs, 

                                                                        𝛻𝛻 ⋅ 𝒖𝒖 = 0                                                          (1), 

                                                  𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 ⋅ 𝛻𝛻𝒖𝒖 + 𝛻𝛻𝛻𝛻 − 𝜐𝜐𝜐𝜐2𝒖𝒖 + 𝜐𝜐𝜐𝜐
𝑲𝑲
𝒖𝒖 = 0                                  (2), 

where t is the time, u is the fluid velocity vector (with u and v its x and y components), υ is the 
kinematic viscosity of the fluid, Ψ is the kinematic pressure of the fluid (Ψ = p/ρ with p and ρ the 
fluid pressure and fluid constant density, respectively), K the permeability matrix of the porous 
medium, symmetric and positive-definite, and ε is the porosity of the porous medium. The last 
term on the l.h.s. of Eq. (2) takes into account the drag effects due to interaction of the fluid with 
the solid particles of the porous medium. The set of the governing equations has been derived from 
the Navier-Stokes equations at the pore-scale, applying average techniques [3, 6] 

The computational domain Ω is discretized by means of unstructured triangulations of NT non-
overlapping triangles and N nodes. Inside each triangle e we assume the velocity vector be 
piecewise constant and 𝒖𝒖𝑒𝑒(𝒙𝒙) ∈ 𝐗𝐗𝑒𝑒, where Xe is the lowest-order Raviart-Thomas (RT-0) space. 
Ψ is assumed to be piecewise linear inside each triangle. The computational mesh satisfies the 
Delaunay Property. 

In the present algorithm, INSBEs are solved by sequentially applying a fractional time step 
procedure, by solving consecutively a prediction and two correction steps. The prediction step is 
solved by applying the MAST (Marching in Space and Time) procedure, recently proposed for the 
solution of shallow waters, groundwater and incompressible Navier Stokes problems ([7] and cited 
works). MAST presents some important advantages: 1) explicit handling of the non-linear 
momentum terms due to a sequential solution of a small Ordinary Differential Equations (ODEs) 
system for each computational cell, 2) a computational effort proportional to the number of 
triangular elements and 3) numerical stability with respect to Courant-Friedrichs-Lewy (CFL) 
numbers also greater than one. The correction steps are solved by a Mixed Hybrid Finite Elements 
discretization that assumes a Generalized Delaunay mesh condition. They involve the solution of 
large linear systems, whose matrices are sparse, symmetric, positive definite and diagonally 
dominant, allowing a well performing condition number and a very fast solution of the associated 
systems. Strong reduction of the computational effort, in comparison with other numerical 
schemes (e.g., Lagrangian schemes), is due to the matrix coefficients, which are constant in time 
and are calculated only once, before the beginning of the numerical iteration loop. Flux continuity 
at each triangle side is guaranteed, as well as the local and global mass balance (more details in 
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the cited works). There is no need to compute pressure at each time iteration, but only at target 
simulation times. 
Model Results 
1. Comparison with analytical solution and study of convergence order 
We assume a 1D domain (see figure 1), with an isotropic porous medium and an analytical velocity 
profile given by Eqs. (3), continuous from the ff to the pm region.  

𝑢𝑢 = 4𝑈𝑈𝑀𝑀 ��
𝑦𝑦−𝐻𝐻

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻
− 1� � 𝑦𝑦−𝐻𝐻

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻
+ 𝛿𝛿��  in ff, 𝑢𝑢 = 4𝑈𝑈𝑀𝑀 �

𝜐𝜐�2𝜐𝜐2−1�𝑒𝑒
� 𝑦𝑦−𝐻𝐻
𝜀𝜀(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻)−1�

1+𝜐𝜐
− 𝛿𝛿�  in pm  (3), 

with 𝑈𝑈𝑀𝑀 = ∇𝑚𝑚𝛹𝛹
8𝜈𝜈

(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐻𝐻)2 , ∇𝑚𝑚𝛻𝛻= 1d-08 m/s2, ∇𝑦𝑦𝛻𝛻= 0, , δ = δ(ε), and k0 the 

value of the permeability in the bulk porous medium. Vertical velocity component is zero. A source 
term vector is computed according to the expression of the velocity and the pressure gradient, in 
order to set to zero the momentum equation (2). We assume a hyperbolic variation of the 
permeability and porosity inside the TL, as in Eq. (4),  

𝑘𝑘(𝐱𝐱) = 1
2
�(1 − 𝑘𝑘0)𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡) + (1 − 𝑘𝑘0)�   𝜀𝜀(𝐱𝐱) = 1

2
�(1 − 𝜀𝜀0)𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡) + (1 − 𝜀𝜀0)� (4), 

where the distance dist from the midline of the TL is shown in Fig. 1 and k0 = 1d-06 m2. Two 
studies have been performed, assuming two values of the Reynolds number (Re), computed 
according to the maximum velocity in the ff region and the depth (ymax – H). The first study 
concerns the effect of the mesh refinement, without any special regard to the size and discretization 
of the TL. We set the size of the TL equal to ymax/1000. Results are summarized in tables 1,a-1,b 
of Fig. 2, in terms of L2 norm of absolute and relative errors of the numerical solution compared 
to the analytical one in Eqs. (3). As expected, the convergence order is almost 1, due to the spatial 
approximation order of the velocity inside each triangle. The second study concerns the effect of 
the size of the TL, and the L2 norms of the errors of the velocity have been reported in tables 2,a-
2,b of Fig. 2. According to the definition of the velocity profile (in Eqs. (3)), function of the bulk 
value of the permeability k0, we expect that the numerical solution converges to the exact one 
reducing the size of the TL. This is confirmed from the results in tables 2. 

 

 
Figure 1. Test 1. Definition sketch 
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Figure 2. Test 1. Errors and study of the convergence order 

2. Test 2. Free fluids over a porous obstacle. Isotropic and anisotropic cases 
The geometry for this test is reported in Fig. 3. The working fluid is air. We set a pressure drop Ψ1 
– Ψ2 = 1d-06 m2/s2.. The permeability matrix K in the (bulk) porous medium is defined as  

𝐊𝐊 = 𝐑𝐑𝐑𝐑𝐑𝐑−𝟏𝟏            𝐑𝐑 = �𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 −𝒄𝒄𝒔𝒔𝒔𝒔𝒄𝒄
𝒄𝒄𝒔𝒔𝒔𝒔𝒄𝒄 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 �         𝐑𝐑 = �𝑘𝑘 𝛽𝛽⁄ 𝟎𝟎

𝟎𝟎 𝑘𝑘
�                      (5), 

with angle α defined in figure 3. The porosity in the porous medium is 0.4. We compare the results 
of the ODA solver with the DuMux TDA solver [8]. DuMux applies a monolithic approach, where 
the Navier-Stokes equations for the ff region and the Darcy equations for the pm are solved, along 
with the interface conditions (IFCs), are solved in one large system. The IFCs impose the equality 
of fluxes and momentum fluxes in the ff and pm regions along the normal direction to the interface, 
as well as the BJC for the velocity along the tangential direction to the interface.  

For the ODA simulation, the mesh sizes range from 1d-05 m inside the TL to 2.5 d-02 m in the 
ff and pm bulk regions (see in figure 3 the zoom close to the TL region). For the DuMux simulation, 
a structured mesh is used to discretize the domain, with constant size 1d-04 m. We assumed a 
hyperbolic variation of porosity and permeability parameters, as in the previous test. We performed 
simulations assuming both isotropic and anisotropic porous obstacle.  

For the isotropic case, we set α = 0 and k = 1d-08 m2 in Eq. (5) and, for the ODA simulations, 
we assume two sizes of the TL, 1d-04 m and 5d-04 m. Due to the obstacle, a “channelized” flow 
is established above the porous medium, as shown in Fig. 4,a where we plot the flow field 
computed by the ODA solver. Similar overall results are given by the TDA solver (not shown for 
brevity). In Fig. 4,b-4,c, we compare, in the region close to the TL region, the velocity components 
along the vertical lines in the middle and at the upstream (left) side of the porous obstacle. Observe 
the differences, in the ODA solutions, due to the size of the TL, and the jump of the velocity 
component parallel to the interface in the DuMux results, due to the IFCs. Along the upstream side 
of the obstacle, the two solvers compute vertical velocity component v with opposite sign.  

In the case of anisotropic obstacle, we set in Eq. (5) α = - π/4, k = 1d-06 m2 and coefficient β = 
100. The size of the TL for the ODA model is 5d-04 m. In Fig. 5,a we plot the velocity vectors 
computed by the ODA solver. Similar overall results are given by the TDA solver. In Fig. 5,b we 
show the differences of the velocity components along the vertical right boundary of the obstacle 
in the TL region. Observe the different sign of the u component. Interesting is the comparison of 
the pressure fields (in Fig. 5.c), The ODA solver computes local maxima and minima along the 
upstream and downstream sides of the obstacle, respectively, while DuMux computes almost 
constant pressure values upstream and downstream the porous medium.    

Table 2,a Re 1.5

Table 2,b  Re 150

Effect of the size of the transition layer

TL size [m] L2 ass err L2 rel err convergenconvergen
0.02 2.80E-05 8.863378

0.005 1.30E-05 4.154056 1.11E+00 1.09E+00
0.00125 6.11E-06 2.022567 1.09E+00 1.04E+00

0.0003125 2.90E-06 0.9868 1.08E+00 1.04E+00

TL size [m] L2 ass err L2 rel err convergenconvergen
0.02 2.99E-05 9.054097

0.005 1.40E-05 4.259854 1.09E+00 1.09E+00
0.00125 6.70E-06 2.129765 1.07E+00 1.00E+00

0.0003125 3.20E-06 1.030066 1.07E+00 1.05E+00

   

   

    

mesh linear size [m] L2 ass err L2 rel err convergence convergence
0.016 3.42E-05 1.57E+01
0.008 1.71E-05 7.457924 1.00E+00 1.07E+00
0.004 8.26E-06 3.5568935 1.05E+00 1.07E+00
0.002 3.99E-06 1.70490455 1.05E+00 1.06E+00

mesh linear size [m] L2 ass err L2 rel err convergence convergence
0.016 3.61E-05 1.59E+01
0.008 1.73E-05 7.90083 1.06E+00 1.01E+00
0.004 8.63E-06 3.789456 1.01E+00 1.06E+00
0.002 4.20E-06 1.833356788 1.04E+00 1.05E+00
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Figure 3. Test 2. Definition sketch. Boundary conditions, zoom of the mesh 

 
Figure 4. Test 2. Isotropic porous obstacle. a) velocity field, ODA solver. b) u component 

vertical midline of the obstacle. c) u and v components upstream side of the obstacle 

 
Figure 5. Test 2. Anisotropic porous obstacle. a) velocity field of ODA solver. b) u and v 
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Conclusions  
We have presented a new ODA numerical solver for the simulation of the interaction of free fluid 
over and inside a porous medium. This is a new research activity and we are aware that a lot of 
work have to be still done. According to the preliminary results shown in this paper, in-deep 
investigation deserves the role of the transition layer at the interface between the fluid and porous 
regions, along with its size and position. In the literature, there is a lack of studies regarding the 
comparison of the solutions provided by ODA and TDA models. Overall agreement has been 
obtained of the computed velocity fields far from the interfaces. Important differences of flow 
velocity and pressure fields have been obtained by the two approaches close to the transition layer. 
Prediction of transport phenomena of heat and species at interfaces could be strongly affected by 
the solutions of the velocity and pressure.   
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Abstract. Big structures, such as super long suspension bridges, require materials that overcome 
the specific strength of steel, since there is a material-dependent limit size beyond which they shall 
collapse under their own weight. Carbon NanoTube Fibers (CNTFs) hold great promise for 
advanced applications, for their exceptional strength and stiffness per unit specific weight. We 
propose a theoretical model to describe the mechanical response of cables made of CNTFs. The 
mechanical response is studied via a variational approach and closed-form expressions are 
obtained for the stiffness parameters of the cable and the stress in the constituent CNTFs. This 
study shows that the stiffness and strength of the cable present opposite variations with respect to 
parameters associated with the geometric arrangement of the CNTFs, suggesting the existence of 
an optimal compromise yet to be experimentally verified. 
Introduction 
Challenging engineering applications require materials with specific strength much higher than 
metals [1,2]. Carbon NanoTubes (CNTs) may be used in new applications, yet to be fully 
appreciated, as they possess exceptional physical properties [3-4] not only to replace metals in 
current engineering applications, but also to design structures not even conceivable with the 
materials currently available [1,2]. The problem is how to employ very small CNTs (1nm diameter, 
10μm length) in large structural elements. When assembled into a matrix, their strength is impaired 
by non-optimal orientations, defects and the intrinsic weakness of the matrix. CNT Fibers 
(CNTFs), obtained via solution spinning [3], are made of highly-aligned densely-packed CNTs 
and can currently be manufactured with diameter of about 100μm and, in principle, no limit in 
length. Since there is no matrix embedding the CNTs, the structural capacity of such CNTFs could 
theoretically approach that of the CNTs. Indeed, technological improvements have permitted an 
increase in specific strength of about 23% per year over the last 20 years [3], and a similar positive 
trend is expected for the years to come. Recent studies [5] have shown that stiffness and strength 
of CNTFs [4] depend on the lateral bond and on the longitudinal offset between the constituent 
CNTs. New production techniques are expected to allow denser packaging of longer CNTs with 
optimal offset and, consequently, higher performing CNTFs [6]. 

Here, we present a theoretical model, propaedeutic for an experimental campaign, to define the 
mechanical properties of cables made of CNTFs. The cable mechanical properties are derived via 
a variational approach, in which the CNTFs are rod-like elements with macroscopic properties 
derived by the micromechanics of the constituent CNTs. Some of the main results of this study are 
summarized in the Conclusion section, together with indications on future developments. 
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Mechanical model 
Consider a cable made of M layers of CNTFs wound around a straight central fiber. Figure 1(a) 
shows the cases with M = 1,2,3. The tensile and torsional properties of the cable clearly depend 
upon the geometric arrangement of the CNTFs. 

 

 
Figure 1: (a) cable with 1,2,3 layers of wound fibers; (b) problem of a fiber wound on a cylinder. 
 

The basic problem, represented in Figure 1(b), is that of a fiber, modelled as a circular cross-
sectioned rod of radius Rf, wound around a straight cylinder of radius R0 (R = R0+Rf), whose ends 
are displaced in a given position. The fiber deformation is described via classical indicators of 
strain [7-9], i.e., the axial extension 𝜀𝜀𝑓𝑓, bending curvature 𝑘𝑘𝐵𝐵𝑓𝑓, and torsion curvature 𝑘𝑘𝑇𝑇𝑓𝑓, while 
the equilibrium state is found with a variational approach. The strain energy of the fiber is the line 
integral over the fiber length Lf of the strain energy density Wf., which depends upon the 
fiber axial stiffness ℰf, bending stiffness ℬf, and torsional stiffness 𝒯𝒯f (derivable from a micro-
mechanical model of the CNTFs [5], or from experimental tests [4]), and is written in the form 

2𝑊𝑊𝑓𝑓 = ℰ𝑓𝑓𝜀𝜀𝑓𝑓2 + ℬ𝑓𝑓𝑘𝑘𝐵𝐵𝑓𝑓2 + 𝒯𝒯𝑓𝑓𝑘𝑘𝑇𝑇𝑓𝑓2 .  (1) 

For a stretched and twisted cable, we assume that the problem symmetry is respected: all the 
fibers deform together, cross-sections remain plane, and frictional forces are negligible. With 
respect to the fixed reference frame X,Y,Z in Figure 1(b), the actual position of a point of the fiber 
center-line at the arc-length s ∈ (0,Lf) is expressed in terms of the cylindrical coordinates φ(s) and 
u(s), while θ(s) describes the rotation of the fiber cross-section about the fiber center-line, with 
tangent a1. When φ(s), u(s), θ(s) are prescribed at the fiber ends, s=0 and s=Lf, a stationary point 
for the fiber strain energy corresponds to a configuration in which the fiber center-line is a helix, 
the cross-sectional twist θ′ is constant (prime denotes s-derivative), and 

𝑘𝑘𝐵𝐵𝑓𝑓 = 𝜑𝜑′𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,   𝑘𝑘𝑇𝑇𝑓𝑓 = 𝜃𝜃′ + 𝜑𝜑′𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐,  (2) 

where tan γ = u′/(Rφ′) defines the constant pitch angle γ in terms of the other variables. 
It is important to observe that the torsion curvature 𝑘𝑘𝑇𝑇𝑓𝑓 is composed of two contributions: the 

cross-sectional twist θ′ and the tortuosity-induced twist φ′sin γ. The fiber is torsion-free when the 
cross-sectional twist balances the tortuosity-induced twist. This condition plays an important role 
in the manufacturing of a cable made of helically wound CNTFs, which consists in inducing a 
cross-sectional “pre-twist” in a straight fiber that is subsequently transformed in “tortuosity” for 
its helical configuration, as in the manufacturing of a hemp rope [6]. 
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A 7-wire strand (1-layer cable) is represented in Figure 2. For its manufacturing, straight fibers 
are pulled and pre-twisted and, subsequently, are brought closer and wound together in such a way 
that section pre-twist turns into center-line tortuosity. Adding a second layer of fibers one obtains 
the 2-layer cable of Figure 1(a); repeating the construction, a M-layer cable can be manufactured. 

 

 
Figure 2: A 7-wire strand (1 layer of helically wound fibers) and geometric parameters. 

 
The first layer of helical fibers in a 7-wire strand is the prototypical model for the i-th layer in 

a M-layer cable, for which each layer is wound around a cylinder (i.e., the straight central fiber for 
the strand). Assume that the strand has been manufactured: each fiber is arranged according to an 
helix of length Lf, helical radius R, slope γ, L = Lf sinγ, and coordinate φ that spans the angle α from 
the first end to the second end of the fiber, such that αR =Lf cosγ. A system of forces, equipollent 
to an axial force and a twisting moment, are applied at the strand ends. All fibers deform together 
and their varied state is a new helix with new parameters Lf+ΔLf, L+ΔL, R+ΔR, α+Δα, γ+Δγ. 

The macroscopic strain of an arrangement of this kind, when pulled and twisted, is described 
via the axial strain ε =ΔL/L and twist rate β =Δα/L. For small variations, ΔLf, ΔL, ΔR, Δα, Δγ, it is 
possible to demonstrate that the extension, 𝜀𝜀𝑓𝑓, and curvatures, 𝑘𝑘𝐵𝐵𝑓𝑓 and 𝑘𝑘𝑇𝑇𝑓𝑓, of all fibers can be 
expressed as linear combinations of the strain indicators ε and β, via coefficients that depend on 
the slope γ and radius R of the unstrained state. Therefore, considering that the strain energy density 
W of the arrangement is the sum of those of the constituent CNTFs, W turns out to be a quadratic 
function of the strain indicators ε and β. This holds for a 7-wire strand as well as for a cable made 
of M concentric layers of helically wound CNTFs.  

Denoting as W(2) the quadratic part of the cable strain energy density, one can write 

2𝑊𝑊(2) = ℰ𝜀𝜀2 + 𝒯𝒯𝛽𝛽2 + 2𝑋𝑋𝜀𝜀𝛽𝛽 ,  (3) 

where ℰ represents the axial stiffness of the cable, 𝒯𝒯 is the torsional stiffness, and X accounts for 
the extension-torsion coupling associated with the helical configuration. These parameters depend 
on the slope, diameter, and Poisson’s ratio of the helical CNTFs, but their expressions are generally 
complicated. Compact analytical formulas can be obtained in paradigmatic cases, e.g., when all 
fibers have the same slope γ, diameter Df, and Poisson’s ratio 𝜈𝜈𝑓𝑓, and the contribution of the fiber 
bending stiffness ℬf  and torsional stiffnesses 𝒯𝒯f are negligible with respect to that of the fiber axial 
stiffness ℰf, as is expected for CNTFs [4,5].  

Under the aforementioned hypotheses, the dependence of the cable axial stiffness ℰ on the axial 
stiffness ℰf and slope γ of the helical fibers can be expressed [6] as 

ℰ = 𝜌𝜌 𝑁𝑁𝑓𝑓ℰ𝑓𝑓𝑐𝑐𝑠𝑠𝑠𝑠3𝑐𝑐,  (4) 

where Nf represents the total number of fibers in the cable and ρ is a coefficient (close to 1) that 
depends on 𝜈𝜈𝑓𝑓. Similar expressions hold for the other stiffness parameters of the cable [6]. 

Observe that the cable axial stiffness ℰ increases with the angle γ, and is maximized for γ = 90° 
(straight fibers). However, helical fibers are expected to provide a cable with a superior internal 
cohesion because of the radial contact forces that take place among the cable layers. 
Results 
Recent experiments [4] have measured the mechanical properties of CNTFs with Df  = 22μm, made 
of CNTs of diameter d = 1.5nm and lengths 2.2-6.3μm. The axial stiffness ℰf of these fibers is in 
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the range 27.5-54.4 Nm/m, and is dominant over the bending stiffness, being ℬf /(ℰf Df
2) within the 

interval 0.01-0.05. Relying on these measures, we have performed a parametric analysis with our 
theoretical model, to evaluate the mechanical properties of a cable made of M layers of helical 
CNTFs as a function of representative properties, i.e., fiber stiffnesses, Poisson’s ratio, slope γ. 

To illustrate, Figure 3 reports results obtained for the cable axial stiffness ℰ normalized via the 
reference parameter ℰref  = Nf ℰf. It is found that the CNTF bending and torsional stiffnesses ℬf and 
𝒯𝒯f have a negligible effect; Poisson’s ratio has a mild influence for larger γ (say, above 65-70°), 
while the helical slope γ, the number of fibers Nf, and the fiber axial stiffness ℰf play the major 
role. Similar results hold for the other stiffness parameters of the cable. 

 

 
Figure 3: Cable axial stiffness as a function of the fiber stiffness, Poisson’s ratio, and slope γ. 

 
When the cable is pulled by a force F and the rotation of its end sections is prevented, the 

constituent helical fibers undergo a tensile force ℰf εf, which is independent of the position of the 
layer they belong to in the cable and is shown (normalized by F/Nf) in Figure 4. The conclusions 
about the dependence of the cable axial stiffness on the fiber parameters also hold true for the 
stress parameter (ℰf εf)/(F/Nf), which represents the ratio between the tensile force in the helical 
fibers of the cable and the value of such force if all the fibers were straight. 

 

 
Figure 4: Tensile force in cable fibers as a function of fiber stiffness, Poisson’s ratio, and slope γ. 

 
For a cable made of M layers of helical CNTFs, another important stress indicator is represented 

by the radial contact forces among the cable layers. Indeed, a pressure orthogonal to the CNTFs 
can increase the lateral bond among the constituent CNTs and, consequently, the mechanical 
properties of the CNTFs. Furthermore, radial contact forces compress the CNTFs together, so that 
if a fiber breaks, the frictional forces associated with the compression allows to re-establish the 
load bearing capacity of the broken fiber at a certain distance from the failure point. Therefore, in 
a cable made of many fibers, a limited number of fiber failures occurring at different sections in 
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the cable does not compromise the overall bearing capacity of the cable. In conclusion, the cable 
resilience is enhanced by the radial contact forces produced by a helical arrangement of fibers. 

For the considered cable, the radial force that is exerted on each fiber of the i-th layer at the 
radial position Ri (distance between the i-th layer and the cable axis) can be evaluated as the sum 
of all actions that are exerted on this layer by the other layers i+1,…, M. Ignoring the effects of 
the fiber bending/torsional stiffness and considering only the dominant contribution of the fiber 
axial stiffness, it is possible to show [6] that if the cable is pulled and the rotation of its end sections 
is prevented, the radial contact forces can be evaluated via the simplified formula 

𝐹𝐹𝑅𝑅𝐷𝐷𝑓𝑓
ℰ𝑓𝑓𝜀𝜀𝑓𝑓

= 𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐 �𝑅𝑅𝑀𝑀
𝑅𝑅𝑖𝑖
− 1�,  (5) 

where RM represents the radius of the cable and FR is the radial force at the i-th layer. 
The dimensionless parameter (FR Df)/(F/Nf) associated with the radial forces among the cable 

layers represents a measure of the resilience of the cable and of the increase of its tensile strength 
obtainable by helically arranged fibers. This parameter is reported in Figure 5 as a function of the 
slope γ. In the same Figure, for comparison, we juxtapose the graph of Figure 3, which is associated 
with the stiffness of the cable. The case shown corresponds to a cable composed of M = 100 layers 
of CNTFs and considers the state of stress at the layer Ri = 30Df. 

 

 
Figure 5: Cable stiffness and strength as a function of fiber stiffness, Poisson’s ratio, and slope γ. 

 
Remarkably, the cable axial stiffness increases with the slope γ, as opposed to the parameter 

related to the cable strength. Therefore, a value of γ = 90°, which optimizes the stiffness, may not 
optimize the strength. This suggests the existence of an optimal compromise between strength and 
stiffness of the cable, which needs to be further investigated and verified experimentally. 
Conclusions 
Thanks to their exceptional mechanical properties, CNTFs appear particularly suitable for being 
the basic constituents of cables for advanced structural applications. An ad-hoc theoretical model 
has been proposed to describe the mechanical properties of cables made of wound CNTFs. 

The approach is variational and considers the minimization of the strain energy that additively 
accounts for the contribution of the individual CNTFs in the cable. Using symmetry, the problem 
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is reduced to the paradigmatic case of an isolated fiber wound onto a cylinder, whose equilibrium 
states are found to be helixes with constant pitch. Analytical expressions have been found for the 
stiffness parameters of a cable composed by several concentric layers of helical CNTFs, as well as 
for the internal stresses in such CNTFs. A parametric analysis has been performed to evaluate the 
dependence of the cable mechanical response on the stiffness, Poisson’s ratio, and helical pitch of 
the constituent CNTFs. The analysis has demonstrated the important influence of the fiber axial 
stiffness and helical pitch, the limited effect of the fiber Poisson's ratio for large helical pitch, and 
the negligible contribution of the fiber bending stiffness and torsional stiffness when dealing with 
the calculation of the stiffness and strength parameters of the cable. 

The theoretical model has disclosed important aspects to be corroborated by experiments. If the 
characterization of the axial stiffness and bending stiffness of the CNTFs has been the subject of 
intense experimental tests, little has been done on Poisson's ratio and torsional stiffness. Another 
important issue concerns the radial contact forces between helically wound CNTFs, which result 
from the stretching or twisting of the cable. Such forces can increase the bond between the CNTs 
that form the CNTFs, enhancing their effective strength, and produce a friction constraint which 
improves the cable resilience in the event of rupture of one CNTF. This study has shown that the 
radial contact forces increase by reducing the helical pitch of the cable CNTFs, but the cable axial 
stiffness shows an opposite trend. This suggests the existence of an optimal compromise between 
the strength and stiffness of the cable. An extended experimental campaign has been planned to 
corroborate the theoretical findings. 
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Abstract. We propose a continuum model of fibrous material that may undergo an internal 
reorganization, which turns out in a plastic change of the orientation of the fibers when the 
remodeling torque achieves a threshold. We have recently found that the reorientation may induce 
a complex scenario in the response of such materials. In a traction test, we show that the most 
general transversely isotropic material may evolve in three different ways; in particular, the fibers 
asymptotically tend (regularly or with jumps): (A) to a given angle; (B) to align perpendicularly to 
the load direction; (C) to align with the load direction if their initial orientation is less than a given 
value otherwise perpendicularly. We focus on the latter material response (C) which has all the 
ingredients to manifest a phase transition phenomenon. Finally, we provide a numerical 
investigation to demonstrate phase segregation. 
Introduction 
Due to their ubiquity, fibrous materials have gained a predominant role in the scientific community 
in the last few decades. Fibrous structures are everywhere; the human body is a glaring example: 
the connective tissue, the most abundant tissue in mammals, is composed mainly of extracellular 
matrix and collagen fibers (∼6% of the total body weight). It is also well established that biological 
tissues may experience an internal reorganization, including segregation [1], due to external 
stimuli at chemo-mechanical levels. This phenomenon corresponds to a change in the fiber 
orientation that may be associated with a loss of the elastic energy content, resulting in irreversible 
deformations [2]. The effects of reorientation, particularly those occurring during the post-yield 
deformation, remain largely unexplored in biological and manufactured composites despite their 
fundamental role in the mechanical response [3]. We focus on the most general 2D transversely 
isotropic material to model the plastic reorientation in fibrous materials. Then, we consider a 
linearized framework concerning the strain measure; nevertheless, we admit finite rotation for the 
fibers. Within a thermodynamically consistent framework [4], we present a variational model 
taking into account the anisotropic response of the material, which depends on an internal variable, 
e.g., the fiber orientation. The latter, similarly to plasticity [5], has the peculiarity to evolve till a 
threshold beyond which the reorientation is permanent. We recall the main analytical results of the 
incremental homogenous traction problem we recently found in [6]. In this work, we show three 
different asymptotic behavior for the orientation of the fibers, which tend to align, smoothly or 
not: (A) with a given angle; (B) perpendicularly with the load direction and (C) perpendicularly 
with the load direction or with the load direction itself in accordance with the initial orientation. 
The energy of the material in class (C) presents a double-well landscape which may induce a phase 
transition and give room for exploring the phase segregation.  

We organize the work as follows: i) we present the assumptions to formulate a 
thermodynamically consistent phase-field model taking into account the anelastic response of the 
material; ii) we recall the main analytical results found in [6] for the traction test; iii) we provide 
some numerical results for a non-homogeneous initial fiber orientation distribution showing the 
evolution of the traction test leading to the segregation phenomenon. 
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Assumptions for the free energy and the reversibility domain 
For the sake of simplicity, we confine our analysis to a two-dimensional body ℬ. The vector 
position of the point 𝑥𝑥 ∈ ℬ is defined as 𝐱𝐱 = 𝑥𝑥 − 𝑜𝑜  =  𝑥𝑥𝑎𝑎 𝐞𝐞𝑎𝑎 with respect to the origin 𝑜𝑜 of the 
Cartesian frame {𝑜𝑜,  𝐞𝐞1,  𝐞𝐞2}. We chose to associate an orientated fiber to each material point in ℬ, 
whose direction is represented by the unit vector 𝐧𝐧(𝜗𝜗) = cos𝜗𝜗 𝐞𝐞1 + sin𝜗𝜗 𝐞𝐞2 as a function of the 
internal state variable 𝜗𝜗 . Recalling [4,7,8], the state variable influences the free energy and the 
dissipation rests upon the evolution of 𝜗𝜗. The state for the body ℬ at each time 𝑡𝑡 is known if the 
list of functions of the spatial coordinate 𝑥𝑥, 𝚲𝚲  =  {𝐄𝐄,  𝜗𝜗} is known, where 𝐄𝐄  =  sym∇𝐮𝐮 is the 
linearized strain measure expressed in terms of the displacement field 𝐮𝐮. The free energy density 
is taken as a quadratic form of the strain field  

𝜓𝜓 = 𝜓𝜓�(𝐄𝐄,𝜗𝜗) = 1
2
ℂ�𝐧𝐧(𝜗𝜗)�𝐄𝐄 ∙ 𝐄𝐄, (1) 

where ℂ�𝐧𝐧(𝜗𝜗)� represents the elasticity tensor of a linearly elastic transversely isotropic material 
with respect to the direction 𝐧𝐧(𝜗𝜗). For the most general two-dimensional case, we specify the free 
energy density as follows: 

𝜓𝜓�(𝐄𝐄,𝜗𝜗) = 𝜇𝜇‖𝐄𝐄‖2 + 𝜆𝜆
2

(tr𝐄𝐄)2 + 𝑐𝑐1(tr𝐄𝐄)𝐄𝐄𝐧𝐧(𝜗𝜗) ∙ 𝐧𝐧(𝜗𝜗) + 𝑐𝑐2�𝐄𝐄𝐧𝐧(𝜗𝜗) ∙ 𝐧𝐧(𝜗𝜗)�
2
, (2) 

where 𝜆𝜆 and 𝜇𝜇 are the Lamé coefficients and 𝑐𝑐1 and 𝑐𝑐2 are the material constants characterizing 
the transversely isotropy. By fixing the Lamé coefficients, which must respect the conditions 𝜇𝜇 >
0 and 2𝜇𝜇 + 𝜆𝜆 > 0, the pair of constants (𝑐𝑐1, 𝑐𝑐2) must lie in a set 𝒫𝒫, ensuring the positiveness of 
the energy Eq. (2)  

𝒫𝒫 = �𝑐𝑐1, 𝑐𝑐2 ∈ ℝ: 𝑐𝑐2 > 𝑐𝑐12−4𝜇𝜇𝑐𝑐1−4𝜇𝜇(𝜇𝜇+𝜆𝜆)
2(2𝜇𝜇+𝜆𝜆)

� , (3) 

which represents a parabola, see Fig. 1. In order to clarify the role of the constant 𝑐𝑐1 and 𝑐𝑐2 on the 
anisotropic material response, it is useful to recall the definitions of Young modulus and Poisson 
ratio, defined for a uniaxial traction test 𝐓𝐓� = 𝜎𝜎𝐭𝐭⨂𝐭𝐭 in the direction 𝐭𝐭 =  cosα 𝐞𝐞1 + sin𝛼𝛼 𝐞𝐞2. The 
strain corresponding to 𝐓𝐓� is defined as 𝐄𝐄� = ℂ−1�𝐧𝐧(𝜗𝜗)�𝐓𝐓�. Therefore, the Young modulus and the 
Poisson ratio are functions of the angle resulting from the difference between the testing direction 
and the fiber orientation (𝛼𝛼 − 𝜗𝜗) and follow the definitions: 

𝐸𝐸(𝛼𝛼,𝜗𝜗) = 𝐸𝐸�(𝛼𝛼,𝜗𝜗) ≔ 𝐓𝐓�𝐭𝐭∙𝐭𝐭
𝐄𝐄�𝐭𝐭∙𝐭𝐭

;                      ν(𝛼𝛼,𝜗𝜗) = �̂�𝜈(𝛼𝛼,𝜗𝜗) ≔  𝐄𝐄
�𝐭𝐭⊥∙𝐭𝐭⊥

𝐄𝐄�𝐭𝐭∙𝐭𝐭
. (4) 

Polar plots are, therefore, a meaningful tool to understand how Young modulus and Poisson ratio 
change in function of the angle (𝛼𝛼 − 𝜗𝜗), see the insert in Fig. 1. We define the stiffening set 𝒮𝒮 by 
imposing the ratio between the Young modulus in the parallel and perpendicular with respect to 
the fiber direction 𝐸𝐸|| = 𝐸𝐸�(𝛼𝛼 = 𝜗𝜗,𝜗𝜗) and 𝐸𝐸⊥ = 𝐸𝐸�(𝛼𝛼 = 𝜗𝜗 − 𝜋𝜋/2,𝜗𝜗) to be greater than 1: 

𝐸𝐸∥/𝐸𝐸⊥ = 1 + 2(𝑐𝑐1+𝑐𝑐2)
2𝜇𝜇+𝜆𝜆

> 1     ⟹    𝒮𝒮 = {𝑐𝑐1, 𝑐𝑐2 ∈ 𝒫𝒫: 𝑐𝑐1 + 𝑐𝑐2 > 0}                         (5) 
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In the framework of Generalized Standard Materials [4], the dissipative behavior is described 
through the dissipation potential, which is a convex and positive function of the internal state 
variables rates. Since 𝐧𝐧 ∙ 𝐧𝐧 = 1, we have �̇�𝐧 ∙ 𝐧𝐧 = 0 or, equivalently, �̇�𝐧 = 𝛽𝛽𝐧𝐧⊥ with 𝐧𝐧⊥ ≔
∂𝜗𝜗𝐧𝐧(𝜗𝜗)  = −sin𝜗𝜗 𝐞𝐞1 + cos𝜗𝜗 𝐞𝐞2, from Eq. (2), the energy release rate turns out to be 

−𝜕𝜕𝜗𝜗𝜓𝜓�(𝐄𝐄,𝜗𝜗)�̇�𝜗 = −𝜕𝜕𝐧𝐧𝜓𝜓��𝐄𝐄,𝐧𝐧(𝜗𝜗)� ∙ �̇�𝐧(𝜗𝜗)                                                                      
= −2�𝑐𝑐1tr𝐄𝐄 + 2𝑐𝑐2𝐄𝐄𝐧𝐧(𝜗𝜗) ∙ 𝐧𝐧(𝜗𝜗)�𝐄𝐄𝐧𝐧(𝜗𝜗) ∙ 𝛽𝛽𝐧𝐧⊥(𝜗𝜗)
= −𝛽𝛽𝛽𝛽(𝐄𝐄,𝜗𝜗)                                                                  

                      (6) 

where 𝛽𝛽(𝐄𝐄,𝜗𝜗) is the force thermodynamically associated to the change of fiber orientation 𝜗𝜗, 
hereafter named remodeling torque. In order to respect the fundamental inequality [4], the energy 
release rate in Eq. (6) calculated at 𝐄𝐄 must be greater than the energy release rate calculated at any 
other admissible 𝐄𝐄�: 

−𝛽𝛽�𝛽𝛽(𝐄𝐄,𝜗𝜗) − 𝛽𝛽�𝐄𝐄�,𝜗𝜗�� > 0                         (7) 

for any 𝐄𝐄 and 𝐄𝐄� in the reversibility domain, ℛ(𝜂𝜂). This latter is the set of the symmetric strain 
tensors that make the remodeling torque stay below the critical material threshold 𝜂𝜂 > 0: 

ℛ(𝜂𝜂) = �𝐄𝐄 ∈ 𝕊𝕊ym: sup
𝜗𝜗∈[−π/2,   π/2]

|𝛽𝛽(𝐄𝐄,𝜗𝜗)| ≤ 𝜂𝜂 �. (8) 

Equivalently, this set can also be interpreted as the strains for which the fiber orientation ϑ cannot 
evolve, and the material response is purely elastic. Finally, by following [4,5], the dissipation rate 
is given through the Legendre transform: 

𝑑𝑑(𝜗𝜗)��̇�𝜗� = sup
𝐄𝐄∈ℛ(𝜂𝜂)

�−𝜕𝜕𝜗𝜗𝜓𝜓�(𝐄𝐄,𝜗𝜗)�̇�𝜗� = 𝜂𝜂𝛽𝛽��̇�𝜗� = �̅�𝜂��̇�𝜗�.      (9) 

Figure 1: The gray area confined by the black dashed line represents the set where the pair 
{𝑐𝑐1, 𝑐𝑐2}/𝐸𝐸0 ensures the positiveness of the energy, see Eq. (3), where 𝐸𝐸0 is the Young modulus of 
the isotropic case. While the yellow area represents the stiffening set, a subset of 𝒫𝒫, obeying Eq. 
(5). The insert figure is the polar plot of the Young modulus 𝐸𝐸�(𝛼𝛼,𝜗𝜗 = 0) where 𝛼𝛼 ∈ [0,2𝜋𝜋]. Each 

polar plot corresponds to the colored dot picked from the stiffening set 𝒮𝒮. 
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Now, by considering a quasi-static process over a time interval observation 𝑡𝑡, the total dissipation 
is defined as 

𝛿𝛿 = 𝛿𝛿(𝑡𝑡) =  ∫ 𝑑𝑑(𝜗𝜗(𝜏𝜏))��̇�𝜗(𝜏𝜏)�𝑑𝑑𝜏𝜏𝑡𝑡
0 = �̅�𝜂 ∫ ��̇�𝜗(𝜏𝜏)�𝑑𝑑𝜏𝜏𝑡𝑡

0 = : �̅�𝜂Θ�(t), (10) 

where the dependency with respect to the time 𝑡𝑡 has been highlighted; Θ�(𝑡𝑡) represents the 
accumulated fiber rotation over the time interval 𝑡𝑡. The total energy is, then, defined by integrating 
the free energy density Eq. (1) plus the remodeling dissipation Eq. (10) over the body 

ℰ(𝐄𝐄(𝑡𝑡),𝜗𝜗(𝑡𝑡)) = ∫ �𝜓𝜓�(𝐄𝐄(𝑡𝑡),𝜗𝜗(𝑡𝑡)) + 𝛿𝛿(𝑡𝑡)�𝑑𝑑𝑑𝑑 
𝛀𝛀 . (11) 

Traction problem 
We examine the traction problem sketched in Fig. 2(a). A rectangular sample, of length 𝐿𝐿 and 
height 𝐻𝐻, is left free on the upper and lower sides and free to slide on the left side; the horizontal 
displacement of the points on the right side is equal to 𝐮𝐮� = 𝜀𝜀𝐿𝐿𝐞𝐞1, whilst their vertical displacement 
is left free.  

The present section consists of two parts: the first is dedicated to briefly recalling the analytical 
results obtained in our recent work [6], while the second focuses on the main objective of this 
paper: the numerical observation of the segregation phenomenon. 

Figure 2: (a) Schematics of the traction test, 𝜗𝜗0 represents the initial fiber orientation, 𝑢𝑢� is the 
imposed displacement acting on the left side of the sample. (b) In the stiffening set 𝒮𝒮 three 

different materials are highlighted. (c) 𝜗𝜗 evolution paths (gray continuos lines with arrows) for 
each case for the three different domains of (b): (A) left, (B) center, and (C) right. Dashed lines 
represent unstable branches that make the initial fiber orientation jump to the stable branches 

when the elastic limit is reached. 
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Analytical solution for the homogeneous case In [6] it is presented a complete analytical 
characterization of the homogeneous case in terms of strain and fiber rotation, as the imposed 
horizontal displacement 𝑢𝑢� = 𝜀𝜀𝐿𝐿 monotonically increases starting from 0. Hence, it is possible to 
find an asymptotic value of the fiber orientation 𝜗𝜗∞(𝜆𝜆, 𝜇𝜇, 𝑐𝑐1, 𝑐𝑐2) for 𝜀𝜀 → ∞. The stiffening 
materials are identified in three classes, see Fig. 2(b): 
• class (A) presents a minimum of the elastic energy 𝜓𝜓 in correspondence of 0 ≤ 𝜗𝜗∞ ≤ 𝜋𝜋/21 

and two maxima 𝜗𝜗 = {0,𝜋𝜋/2}. The evolution of the homogeneous traction problem with an 
initial uniform fiber orientation 𝜗𝜗0 ∈ [0,𝜋𝜋/2]  is depicted in Fig. 2(c) left. The fiber orientation 
evolves with jumps if 𝜗𝜗0 has been taken on an unstable branch (0 ≤ 𝜗𝜗0 < 𝜗𝜗𝑠𝑠1𝐴𝐴  or 𝜗𝜗𝑠𝑠2𝐴𝐴 ≤ 𝜗𝜗0 <
𝜋𝜋/2), or continuously if 𝜗𝜗0 is initially on a stable branch (𝜗𝜗𝑠𝑠1𝐴𝐴 ≤ 𝜗𝜗0 < 𝜗𝜗∞ or 𝜗𝜗∞ < 𝜗𝜗0 ≤ 𝜗𝜗𝑠𝑠2𝐴𝐴 ). 

• class (B) presents the only minimum of 𝜓𝜓 at 𝜗𝜗 = 𝜋𝜋/2; 𝜗𝜗 = 0 is, instead, the maximum. 
Moreover, 𝜗𝜗∞ does not exist in ℝ, see Fig. 2(c) center.  

• class (C) presents two minima of 𝜓𝜓 at 𝜗𝜗 = {0,𝜋𝜋/2}, while 𝜗𝜗∞ exists and corresponds to the 
maximum, see Fig. 2(c) right. In this scenario, it is then possible to observe the segregation in 
two phases of the fiber orientation, which is the objective of the numerical simulations 
presented in the next section. 

Phase segregation The Lamé constants are chosen 𝜆𝜆 = 𝜇𝜇 = 3/8 in order to have a unitary 
Young modulus 𝐸𝐸0 = 1 and Poisson ratio 𝜈𝜈0 = 1/3. The anisotropic parameters 𝑐𝑐1 = 1.5 and 𝑐𝑐2 =
0 are chosen in region (C); see the orange dot in Fig. 2(b). We present three study cases where we 
consider the evolutions of different non-uniform distributions of initial orientation.  
• In Fig.s 3(a-d) are displayed the results obtained by tacking into account an initial linear 

distribution of orientation 𝜗𝜗0(𝐱𝐱) that goes from 9° on the left side to 22° on the right one, Fig. 
3(a). This specific non-homogeneous distribution is collocated below the 𝜗𝜗∞. The imposed 
displacement grows until the incipient touching of the yield surface Fig. 3(b). The orientation 
of the fiber starts to decrease with or without jumps; Fig. 3(c) shows one of those intermediate 
steps. Eventually, the fibers reach a uniform distribution decreasing toward 8°, Fig. 3(d). At 
this point, the analytical solution, see Fig. 2(c) left, describes the evolution of the orientation 
until 0°, that is the closest minimum of the elastic energy.  

• Fig.s 3(e-h) describe a sample with a distribution of fiber orientated from 52° to 72°. The 
evolution is similar to the previous one, but in this case the initial distribution 𝜗𝜗0(𝐱𝐱) > 𝜗𝜗∞. 
Therefore, the fibers tend to reach the minimum collocated at 90° once the elastic limit is 
overcome, Fig. 3(g). Again, once the field 𝜗𝜗 reaches homogeneity, see Fig. 3(h), the analytical 
solution provides the evolution. 

• Finally, Fig.s 3 from (i) to (l) show the orientation evolution for a sample in which the initial 
distribution is 𝜗𝜗0(𝐱𝐱) = (𝜋𝜋/2)(𝑥𝑥1/𝐿𝐿). In this case, 𝜗𝜗∞ is a value comprised in the initial 
distribution, expecting the rotation of the fibers going toward the two minima at 0° and 90°. 
Snapshot (k) shows the beginning of this process, while snapshot (i) shows the left part of the 
sample completely segregate with respect to the right one. The left part has the fibers initially 
orientated above 𝜗𝜗∞ = 30°. 

Conclusions 
We have presented a variational model describing the reorientation in a transversely isotropic 
material. Similarly to plasticity, the model considers the irreversibility of an internal variable, e.g., 
the fiber orientation, when the remodeling torque reaches a threshold. Then, we focused on the 
traction problem by recalling the essential analytical findings for the homogeneous case. 

 
1 It suffices to consider 𝜗𝜗 ∈ [0,𝜋𝜋/2] as 𝜗𝜗 ≡  𝜗𝜗 + 𝜋𝜋 and, for the symmetry of the problem, 𝜗𝜗 ≡ −𝜗𝜗. 
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It has been possible to divide the material responses into three categories based on their energetic 
characteristics. Materials in class (C), characterized by double-well energy, are suitable for 
observing phase transitions and, eventually, segregation. In this context, we have presented a 
numerical case study where an initial inhomogeneous distribution of fiber orientation leads to the 
segregation of the internal variable. 
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Figure 3: Sequences for a stiffening non-homogeneous material in class (C) characterized by 
𝝑𝝑∞ = 𝟑𝟑𝟑𝟑° with different initial linear distribution of 𝝑𝝑. Sequence from (a) to (d) has 𝝑𝝑𝟑𝟑(𝒙𝒙) <
𝝑𝝑∞∀𝒙𝒙 ∈ 𝓑𝓑 . Sequence from (e) to (h) has 𝝑𝝑𝟑𝟑(𝒙𝒙) > 𝝑𝝑∞∀𝒙𝒙 ∈ 𝓑𝓑. Finally (i)-(l) has 𝝑𝝑𝟑𝟑(𝒙𝒙) =

(𝝅𝝅/𝟐𝟐)(𝒙𝒙𝟏𝟏/𝑳𝑳). 
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Abstract: Neutron irradiation plays an important role in nuclear-induced degradation for concrete 
shielding materials, specifically in determining the radiation induced volume expansion (RIVE) 
phenomenon driving its failure. When analyzing at the structural level the effects of nuclear 
radiation on concrete, a non-uniformed distribution of neutron radiation must be considered. This 
can be done via particle transport calculations preventive to the thermo-mechanic study, or by 
solving numerically the coupled set of governing equations of the problem. In this work the second 
approach is pursued in the theoretical framework of the Finite Element Method (FEM). The 
proposed formulation not only considers an accurate neutron transport model based on the two-
group theory, but also it includes the effects induced by thermal neutrons to the temperature field. 
The formulation lends itself to include RIVE and the other relevant radiation induced effects on 
the mechanical field. The governing equations are presented and discussed, and some results 
obtained by using the general 3D numerical formulation proposed herein are compared to results 
from literature obtained via analytical methods addressing simplified 1D problems.  
Introduction 
The biological shielding walls undergo a coupling effect of irradiation and temperature rise during 
the operation of nuclear power plants (NPPs). Both, neutron and gamma radiation produce internal 
heating from absorption of radiation energy. Additionally, at high fluence levels, they affect the 
microstructure and induce changes in certain mechanical properties of concrete (e.g., compressive 
strength, tensile strength, modulus of elasticity) [1]. Since neutron radiation can deteriorate the 
mechanical properties of concrete materials, it is critical to obtain accurate neutron radiation levels 
in concrete structures during their service life. Often, this problem is addressed via analytical 
simplified 1D studies [2].  

For more complex geometries, however, the Finite Element Method (FEM) is generally 
accepted as an effective approach for solving coupled transient problems, also when porous 
multiphase materials are involved [3-5]. Based on FEM, some diffusion-deformation and 
diffusion-reaction-deformation coupling models are proposed in literature [6, 7]. As far as the 
authors know, a FEM thermo-mechanical-neutron diffusion coupled model for irradiated concrete 
has not yet been presented. 

The thermo-mechanical-neutron diffusion coupled model proposed herein combines an elastic 
mechanical constitutive model with the two-group neutron-transport theory, and thermal diffusion. 
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This model can be used to quantify a realistic radiation flux, and temperature field on the domain 
of interest, by considering both, the fast neutron and thermal neutron fractions. In fact, both 
temperature and the neutron flux account for relevant state variables to predict damage and 
durability of biological shields in the NPPs and nuclear facilities, in general. 
Mathematical Model 
The governing equations of the multi-physics problem affecting irradiated concrete are outlined in 
this section. A general three-dimensional body is considered, that occupies a domain 𝐵𝐵 ∈ ℝ3 and 
is bounded by the surface 𝑆𝑆. Vector 𝑿𝑿 is used for representing the position of an arbitrary material 
point of the body in a Cartesian coordinate system, that is 𝑿𝑿 =  [𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇.      

Mechanical Model. The constitutive model for concrete is defined based on the small strain 
theory. Thermal effects and radiation-induced effects, are assimilated to an additional mechanical 
contribution in the definition of the total strain, according to an additive decomposition of the same 
strain (in the following, ∇ stands for the Nabla operator and indicates the gradient operator, while 
∇T indicates the divergence). Let 𝑆𝑆t and 𝑆𝑆u be complementary sub-surfaces of the boundary 𝑆𝑆 of 
the body 𝐵𝐵, then the mechanical boundary conditions complete the set of equations governing the 
mechanical field. According to them, the surface loads 𝐭𝐭 ̅ are specified on 𝑆𝑆t, characterized by 
normal outward vector 𝐧𝐧 to the surface, and the displacement 𝐮𝐮� is specified on 𝑆𝑆u (𝑡𝑡 denotes time). 
Hence,  

⎩
⎪⎪
⎨

⎪⎪
⎧𝐋𝐋

T𝝈𝝈 + 𝒃𝒃 = 𝟎𝟎
𝝈𝝈 = 𝐃𝐃𝜺𝜺𝑒𝑒 = 𝐃𝐃(𝜺𝜺 − 𝜺𝜺𝑇𝑇 − 𝜺𝜺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = 𝐃𝐃 𝐋𝐋(𝒖𝒖 − 𝒖𝒖𝑇𝑇 − 𝒖𝒖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝜺𝜺𝑇𝑇 = 𝐈𝐈𝛼𝛼(𝑇𝑇 − 𝑇𝑇0)

𝜺𝜺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐈𝐈𝜅𝜅𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝛿𝛿Φ−1

𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚+𝜅𝜅𝑒𝑒𝛿𝛿Φ

𝝈𝝈 𝐧𝐧 = 𝐭𝐭(̅𝑿𝑿, 𝑡𝑡)   on 𝑆𝑆t
𝐮𝐮 = 𝐮𝐮�(𝑿𝑿, 𝑡𝑡)    on 𝑆𝑆u

  (1) 

where 𝝈𝝈 is the Cauchy stress; 𝒃𝒃 is the body force per unit volume; 𝒖𝒖 is the total displacement; 
𝐋𝐋 is the differential operator such that 𝜺𝜺 = 𝐋𝐋 𝐮𝐮; 𝒖𝒖𝑇𝑇 is the displacement component due to 
temperature, and 𝒖𝒖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the component due to radiation; 𝜺𝜺 is the total strain vector; 𝜺𝜺𝑒𝑒 is the 
purely mechanical strain vector; 𝜺𝜺𝑇𝑇 is the strain induced by temperature, and 𝜺𝜺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the one induced 
by radiation, i.e. RIVE; 𝐃𝐃 is the elastic constitutive matrix; 𝛼𝛼 is the thermal expansion coefficient 
(assumed isotropic). This model accounts for an estimate of RIVE in function of the neutron 
fluence Φ [n/cm2] in line with the sigmoidal growth model proposed in [8], where 𝐈𝐈 =
[1 1 1 0 0 0]𝑇𝑇 is the identity vector, and 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚, 𝜅𝜅, and 𝛿𝛿  are material parameters calibrated over 
irradiated concrete specimen of different aggregate nature.   

Multi-group Neutron Diffusion Problem. Neutrons are either scattered in, attenuated or stopped 
by the absorbing medium during their transport processes. In this work the two-speed neutron 
diffusion model proposed in [9-11] is considered.  This model is more realistic with respect to the 
one-speed diffusion model in relation to the fact that neutrons have a wide range of energy 
spectrum, in reality, ranging from 10MeV down to 0.01MeV. The two-group model assumes that 
the secondary neutrons from scattering reaction occurring within a specific kinetic group (fast 
group) represent a neutron source in the diffusion process of the group of lower kinetic energy 
(thermal group). The governing equation for the two-group theory for the so-called fast and 
thermal neutrons are  

Fast group:         1
𝑣𝑣1

∂𝜙𝜙1(𝐗𝐗,𝑡𝑡)
∂𝑡𝑡

− ∇T(𝑫𝑫𝟏𝟏(𝐗𝐗, 𝑡𝑡)∇𝜙𝜙1(𝐗𝐗, 𝑡𝑡)) + Σ𝑅𝑅1𝜙𝜙1(𝐗𝐗, 𝑡𝑡) = 0 (2) 

Thermal group:  1
𝑣𝑣2

∂𝜙𝜙2(𝑿𝑿,𝑡𝑡)
∂𝑡𝑡

− ∇T(𝑫𝑫𝟐𝟐(𝐗𝐗, 𝑡𝑡)∇𝜙𝜙2(𝐗𝐗, 𝑡𝑡)) + Σ𝑚𝑚2𝜙𝜙2(𝑿𝑿, 𝑡𝑡) = Σ𝑠𝑠12𝜙𝜙1(𝑿𝑿, 𝑡𝑡)  (3) 
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    where subscripts 𝑖𝑖 = 1, 2 stand for the fast and the thermal group, respectively. In Eq. (2) and 
Eq. (3) 𝜙𝜙𝑖𝑖 is the scalar neutron flux [n/(cm2⋅s)]; 𝑣𝑣𝑖𝑖 is the neutron speed; 𝑫𝑫𝒊𝒊 is the neutron diffusion 
coefficient matrix; Σa is the macroscopic absorption cross section; ΣR is the macroscopic removal 
cross section; ΣS12 is the macroscopic fast to thermal group-transfer cross section. 
    Let 𝑆𝑆𝜙𝜙1, 𝑆𝑆𝜙𝜙2 be complementary sub-surfaces of the boundary 𝑆𝑆 of the body 𝐵𝐵, then the problem 
is completed by proper Dirichlet conditions of the kind  

𝜙𝜙1 = 𝜙𝜙1���� (𝑿𝑿, 𝑡𝑡)        on 𝑆𝑆𝜙𝜙1 (4) 

𝜙𝜙2 = 𝜙𝜙2���� (𝑿𝑿, 𝑡𝑡)        on 𝑆𝑆𝜙𝜙2. (5)     

    Heat Conduction Problem. The temperature at which the shielding concrete is working during 
normal operations, along with the gamma radiation heating, can cause non-uniform thermal strains 
in concrete, at the scale of its constituents, so driving deterioration [12]. On the other hand, the 
neutron radiation also generates heat during the transport and attenuation processes, which could 
alter the thermal field in the wall. The classical heat conduction equation is  

𝜌𝜌𝜌𝜌𝑝𝑝
∂𝑇𝑇(𝑿𝑿,𝑡𝑡)
∂𝑡𝑡

= ∇T�𝐤𝐤∇𝑇𝑇(𝑿𝑿, 𝑡𝑡)� + 𝑄𝑄(𝑿𝑿, 𝑡𝑡)  (6) 

where 𝜌𝜌𝑝𝑝 is the specific heat capacity; 𝜌𝜌 is the mass density; 𝑇𝑇 is temperature; 𝐤𝐤 is the thermal 
conductivity matrix; 𝑄𝑄 is the volumetric heat source.  

Let S1, S2, S3 be complementary sub-surfaces of the boundary 𝑆𝑆 of the body 𝐵𝐵. Then, proper 
boundary conditions to the problem include a specified temperature on S1, a specified heat flux on 
S2, and specified convection boundary conditions on S3 

𝑇𝑇 = 𝑇𝑇�(𝑿𝑿, 𝑡𝑡)                                                            on 𝑆𝑆1 (7) 

−�𝐤𝐤∇𝑇𝑇(𝑿𝑿, 𝑡𝑡)� 𝐧𝐧 = 𝑞𝑞� (𝑿𝑿, 𝑡𝑡)                                on 𝑆𝑆2 (8) 

−�𝐤𝐤∇𝑇𝑇(𝑿𝑿, 𝑡𝑡)� 𝐧𝐧 = ℎ(𝑇𝑇(𝑿𝑿, 𝑡𝑡) − 𝑇𝑇𝑒𝑒)                 on 𝑆𝑆3  (9) 

where 𝑇𝑇� is the prescribed temperature; 𝑞𝑞 �  is the prescribed heat flux; ℎ is the heat transfer 
coefficient; 𝑇𝑇𝑒𝑒 is the environment temperature; and 𝑇𝑇 is the unknown temperature at the boundary. 

    Based on the two-group neutron diffusion model, heat generated either by absorption or 
scattering of neutrons is in good approximation due to the thermal neutron fraction. This is true as 
long as one accepts that heat due to scattering is negligible, if compared to heat generated by the 
capture of thermal neutrons. The neutron radiation induced heating rate by absorption can be 
estimated as [2]  

𝑄𝑄(𝑿𝑿, 𝑡𝑡) = 1.6 × 10−13 Σ𝑐𝑐ℰ𝑏𝑏𝜙𝜙2(𝑿𝑿, 𝑡𝑡) (10) 

where Σ𝑐𝑐 is the macroscopic neutron capture cross section, and ℰ𝑏𝑏 is the binding energy for the 
capture process. 

Weak formulation 
The global coupled system of governing equations yields 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝐋𝐋

T𝝈𝝈+ 𝒃𝒃 = 𝟎𝟎
𝜌𝜌𝜌𝜌𝑝𝑝

∂𝑇𝑇(𝑿𝑿,𝑡𝑡)
∂𝑡𝑡 = ∇T�𝐤𝐤∇𝑇𝑇(𝑿𝑿, 𝑡𝑡)� + 1.6 × 10−13Σ𝜌𝜌ℰ𝑏𝑏𝜙𝜙2(𝑿𝑿, 𝑡𝑡)

1
𝑣𝑣1

∂𝜙𝜙1(𝑿𝑿,𝑡𝑡)
∂𝑡𝑡 − ∇T�𝑫𝑫𝟏𝟏(𝐗𝐗, 𝑡𝑡)∇𝜙𝜙1(𝐗𝐗, 𝑡𝑡)�+ Σ𝑅𝑅1𝜙𝜙1(𝑿𝑿, 𝑡𝑡) = 0

1
𝑣𝑣2

∂𝜙𝜙2(𝑿𝑿,𝑡𝑡)
∂𝑡𝑡 − ∇T �𝑫𝑫𝟐𝟐(𝐗𝐗, 𝑡𝑡)∇𝜙𝜙2(𝐗𝐗, 𝑡𝑡)� + Σ𝑎𝑎2𝜙𝜙2(𝑿𝑿, 𝑡𝑡) = Σ𝑠𝑠12𝜙𝜙1(𝑿𝑿, 𝑡𝑡).

 (11) 

A numerical solution to the boundary value problem is sought in agreement with the weighted 
residual method, that minimizes the residual of the differential problem over the domain 𝐵𝐵 and the 
boundary 𝑆𝑆. In line with the FEM approach the body 𝐵𝐵 can be discretized into finite elements 
𝐵𝐵𝑒𝑒|𝐵𝐵 = ∪ 𝐵𝐵𝑒𝑒, and the approximate solution for the state variables 𝒖𝒖, 𝑇𝑇, 𝜙𝜙1, and 𝜙𝜙2 within each 
element are sought as linear combination of the shape functions 𝐍𝐍 defined at the nodes of the 
element, and the solution at the same nodes. 
     By applying the Galerkin variational approach. The coupled problem illustrated herein reduces, 
therefore, to the following system  

 

⎣
⎢
⎢
⎡
0 0 0 0
0 𝐌𝐌𝑇𝑇 0 0
0 0 𝐌𝐌𝜙𝜙1 0
0 0 0 𝐌𝐌𝜙𝜙2⎦

⎥
⎥
⎤

⎣
⎢
⎢
⎡
�̇�𝒖
�̇�𝑻
𝝓𝝓1̇
𝝓𝝓2̇ ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡
𝐊𝐊𝒖𝒖𝒖𝒖 0 0 0

0 𝐊𝐊𝑇𝑇 0 𝐊𝐊𝑇𝑇𝜙𝜙2
0 0 𝐊𝐊𝜙𝜙1 0
0 0 𝐊𝐊𝜙𝜙1𝜙𝜙2 𝐊𝐊𝜙𝜙2 ⎦

⎥
⎥
⎤
�

𝒖𝒖
𝑻𝑻
𝝓𝝓1
𝝓𝝓2

� =

⎣
⎢
⎢
⎡
𝒇𝒇𝒖𝒖
𝒇𝒇𝑇𝑇
𝒇𝒇𝜙𝜙1
𝒇𝒇𝜙𝜙2⎦

⎥
⎥
⎤
   (12)   

 
where 𝒖𝒖, 𝑻𝑻, 𝝓𝝓1, and 𝝓𝝓2 are the vectors of the nodal values of the state variables. 
The coupled system can be solved by using a finite difference scheme in time, and the Newton–
Raphson scheme.  
Numerical Results 
A slice of biological shield is considered in the numerical analysis of dimensions 100×100×80 cm. 
The temperature at the inner surface is set at 65°C, with an outer temperature of 20°C. Thermal 
convection boundary condition is imposed on the outer surface, by considering a heat transfer 
coefficient with air, while thermal symmetrical boundary conditions are imposed on the upper, 
down and lateral surfaces. On the inner surface a uniform constant value of 3.2×1010 n/(cm2 s) for 
the fast neutron flux, and 4×1010 n/(cm2 s) for the thermal neutron flux is assumed. The flux is 
directed outwards and involves the 80 cm thickness of the wall. The time of analysis is 1 year; the 
time step used in the analysis is 1×10-6 s. The concrete properties used in the analyses are listed in 
Table 1.  

 

 
Figure 1: Studied portion of biological shielding wall with boundary conditions.  



AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 23-28  https://doi.org/10.21741/9781644902431-4 

 

 
27 

Table 1: Parameters used in the numerical example (thermal, and neutron diffusion parameters 
are taken from reference [2]). 

𝑅𝑅 
[MPa] 

𝜈𝜈 
𝛼𝛼  

[°C-1] 
𝑘𝑘 

[W/(cm·°K)] 
𝜌𝜌 

[kg/cm3] 
𝜌𝜌𝜌𝜌 

[J/(kg·°K)] 
ℎ 

[W/(cm2·°K)] 
30000 0.2 1·10-5 8.7×10-3 2.3×10-3 650 0.0025 

 

𝐷𝐷1 [cm] 𝐷𝐷2 [cm] 
Σ𝑅𝑅1 [cm-

1] 
Σ𝑠𝑠12 

[cm-1] 
Σ𝑎𝑎2 [cm-

1] 
𝑣𝑣1 [cm/s] 

𝑣𝑣2 
[cm/s] 

Σ𝜌𝜌  
[cm-1] 

ℰ𝑏𝑏 
[MeV] 

1.14 0.484 0.085 0.08 0.0094 4.37×108 2.2×105 0.0094 5.5 
  

  

Figure 2: (a) Fast neutron flux field in the model; (b) fast neutron flux along the  
thickness of the wall. 

 

 

Figure 3: (a) Thermal neutron flux field in the model; (b) Thermal neutron flux along the 
thickness of the wall; 

In Fig. 3 (b) a peculiar behavior of the thermal neutron flux at steady-state close to the hot surface 
is envisaged, showing a slight increase in this region, and a subsequent decrease in space, which 
indicates the attenuation of fast neutrons in the wall. On the other hand, the fast neutron flux (Fig. 
2) shows a monotonic behavior, as expected. 
Summary 
Neutron radiation can deteriorate the mechanical properties of concrete materials at long term, 
therefore it is critical to obtain accurate neutron radiation levels in concrete structures during their 
service life.  
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A thermo-mechanical-neutron diffusion coupled formulation is proposed in this paper, which 
combines the mechanical constitutive model with the two-group neutron-transport theory, and the 
thermal diffusion theory. Some preliminary results are shown, that demonstrate the capability of 
the model to catch the main coupling mechanisms associated to the three problems, and, 
specifically the influence of the two kinetic groups of neutron fluxes to each other in the 
attenuation/absorption process within the shielding wall, as well as the local temperature increase 
due to neutron absorption.  
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Abstract. The present work investigates the fracturing behavior of an anisotropic layered 
geomaterial, known as Opalinus Clay (OPA). The formation of this rock is mainly related to a 
sedimentation process, where bedding planes correspond to planes of isotropy. OPA is here studied 
because of its good properties, primarily, the low permeability and high adsorption capability, 
which make it a perfect candidate for the storage of radioactive waste. The characterization of this 
rock takes place experimentally in the Mont Terri Rock Laboratory, in the northern Switzerland, 
with an increased attention to theoretical and computational predictions. In this context, this work 
aims at simulating the nonlinear crack behavior of OPA by using the eXtended Finite Element 
Method (XFEM) and damage mechanics. The study is applied on a Semi-Circular specimen under 
a Bending load (SCB), whose fracturing response is investigated in terms of peak load and 
direction of the cracking propagation for different notch dimensions and geometries.  
Introduction 
An underground capability in which radioactive waste can be permanently stored, is called deep 
geological repository. Based on studies conducted in the Mont Terri Rock laboratory, OPA has 
been identified as a capable material of hosting high-level radioactive Waste. In order to define 
the feasibility of such repository, the rock must be characterized in its fracturing behavior, which 
is highly affected by its mechanical anisotropy [1-3]. In the last years, Barbi et al. [4] applied on 
OPA the design parameters defined experimentally by Bock [5], i.e. deformability, strength, 
permeability and hydro-mechanically-coupled parameters, and studied the orientation-dependence 
of fracture mechanics parameters for SCB tests. Following the studies [4,6] , and based on the 
pioneering work by Bock [5], we here evaluate comparatively, the SCB behavior as provided by 
an advanced computational XFEM and damage concepts. This falls within a wider numerical 
investigation, as provided in Ref. [7], focusing on the force-CMOD response, together with the 
specimen toughness and kinematic behavior.  

Due to the efficient kinematic approximation at the interfacial level, and the proper introduction 
of discontinuous enrichment functions, the XFEM is capable to avoid very fine mesh refinements 
ahead of the crack tip, to follow a crack propagation [8-12]. The main XFEM basics are, thus, 
applied to model the crack propagation in transversely-isotropic geomaterials, accounting for a 
standard SCB test, which is explored in its fracturing response for different notch shapes and sizes, 
in terms of global response, maximum strength, toughness and cracking propagation. After a brief 
description of the XFEM theoretical basics, we discuss about the numerical investigation and 
results, focusing on the overall sensitivity of the response. 
Theoretical Formulation 
The main basics of XFEM are briefly recalled in this section, before its application on the 
fracturing process of anisotropic solids as OPA. Based on a classical Galerkin method, in addition 
to the usual global shape functions applied to describe generic nodes, some enrichment functions 
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are added for cracked elements to account for discontinuities in the displacement field, as 
singularities at the crack-tip. Starting from the general shape functions for the entire domain of 
nodes, the enriched approximation for the displacement function is defined as [8-12] 

4

1
( ) ( ) ( )h l

i i j j k k l
i I j J k K l

u x u N b N H x N c F x
∈ ∈ ∈ =

 
 
  

= + +∑ ∑ ∑ ∑                (1) 

in which x  stands for the global coordinate, iN  are the shape functions referred to an arbitrary 
node i , iu  are the corresponding degrees of freedom, ( )H x  is the Heaviside function which 
accounts for the displacement jump, jN  refers to the shape function at the discontinuity node j , 
and jb  represents the additional degrees of freedom associated with ( )H x . Moreover, ( )lF x  are 
the enrichment functions at the crack-tip, kN  are the shape functions associated to the crack-tip 
functions at node k , while l

kc  are the other degrees of freedom for the elastic asymptotic crack-
tip enrichment functions. 

In an enriched element, the degradation process starts taking place, when some fixed crack 
initiation criteria are satisfied, which can be referred either to the stress and strain field. In this 
perspective, we select a maximum nominal stress criterion, i.e. 

max , , 1n s t
o o o
n s t

p p p
p p p

 〈 〉
= 

 
                   (2) 

where  is the Macauley bracket, and p  is the nominal traction stress vector, defined by means 
of its normal component np , and shear components sp , tp , whereas o

np , o
sp , o

tp   are the associated 
peak values. Based on relation (2), the damage process starts once the maximum nominal stress 
ratio reaches the unit value. Such stress components follow the material degradation defined by 
the damage variable D , i.e. 

(1 ) 0     
otherwise

n n
n

n

D P Pp P




− ≥=                   (3) 

(1 )s sDp P= −                      (4) 

(1 )t tDp P= −                      (5) 

where , ,n s tP P P  stand for the normal and shear stress components as predicted by an elastic 
traction-separation behavior for an undamaged strain field. On the contrary, for a compressive 
state 0nP < , the material behaves elastically, without any presence of damage. The scalar damage 
parameter assumes a null value before the damage initiation, and it increases monotonically up to 
the unit value, during the damage evolution until the complete damage.  More specifically, the 
damage parameter is assumed to follow an exponential evolution of the type 
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where the damage evolution is represented by the dimensionless parameter α , while the effective 
displacement at the damage initiation, the maximum value of the effective displacement reached 
during the loading steps and the effective displacement at complete failure are, labeled, 
respectively, as 0 max,m mδ δ  and f

mδ . 

Numerical Investigation 
We start now the numerical analysis for the OPA-based SCB, implemented in the code as a 
transversely isotropic material with bedding planes aligned by 45° with respect to the borehole 
axis, as suggested in Refs. [5-7]. Elastic properties derived from in-situ and laboratory tests are 
herein assigned to OPA, according to a quasi-brittle and transversely isotropic constitutive law of 
the type 
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where 4 GPazE = , 0.33xyν = , 0.24xzν = , 1.2 GPaxzG = , with xy yz xzG G G≠ =  and xz yzν ν=  [7]. 
The specimen has diameter 80 mmD =  and thickness 6 mmS = , and it is subjected to a 
downward displacement of 0.1 mm in the mid-side of the top face (Fig. 1). The specimen is 
discretized with tetrahedral elements of quadratic geometric order (C3D10), as also applied in the 
extended work by Dimitri et al. [7]. The damage evolution (defined in the same notation as in the 
Abaqus code) is controlled by a constitutive law with a softening branch of the following type 
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11
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δ

α

−

−

−
= −

−
                                  (8) 

where 0
np  is the parallel-to-bedding tensile strength of the material, here kept equal to 2 MPa ; mδ  

is the displacement discontinuity, while f
mδ  is its associated critical value,  assumed as 0.1mm;f

mδ =  
and α  is kept equal to 5.  
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Figure 1. An SCB test modeled starting from experimental results. 

Based on these assumptions, a sensitivity study is performed to investigate the influence of the 
notch shape and dimension on the response of the SCB specimen. To this end, four different notch 
shapes are taken into account as shown in Fig. 2.  

 
                           (a)         (b)         (c)  (d) 

 
Figure 2. Notch shapes investigated: (a) rectangular notch, (b) V-notch, (c) U-notch, (d) key-

hole like notch. 
The notch depth 6 mma =  is kept constant, while the notch width b  is varied from 1 mm  up to 

4mm  by steps of 1mm . The V-notch tip has a connecting radius of 0.5 mm for each value of ,b so 
that, for 1 mmb =  it reverts to the U-notch with the same dimensions. The global force-CMOD 
response of the specimens (Fig. 3) shows a slight dependence of the curves to the notch shape at 
least in the maximum strength and descending branches, with possible variations in the overall 
ductility, together with small variations in the crack path, around the vertical direction. For each 
selected notch shape with 2 mmb = , in Fig. 4 we display some principal stress contour plots at the 
same time step.  
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XFEM 
Notch depth mm6a =  

  
(a) (b) 

 
(c) 

 
(d) 

Figure 3. Force-CMOD response of specimens with b  varying from 0 mm to 4 mm and with: (a) 
rectangular notch, (b) U-notch, (c) V-notch, (d) key-hole-like notch. 

 

 

 

 
(a) rectangular notch (b) U-notch 

 
(c) V-notch 

 
(d) key-hole-like notch 

Figure 4. Principal stress distributions for the specimen with 6mma =  and 2mmb = . 

It is worth observing that the crack propagates in the same vertical direction in all specimens. 
Furthermore, the principal stress distributions in the entire solid are almost the same for an equal 
crack length. In addition, the position of the crack initiation corresponds to the notch vertex for the 
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rectangular shape (Fig. 4a), while it is always located in the center of the circular notch tip for the 
other shapes (Fig. 4b-c-d). 
Conclusion 
In the present work, the XFEM-based approach is implemented together with damage mechanics 
to study the fracturing response of an OPA-based rock, with a transversely isotropic behavior. In 
line with an experimental investigation from literature [6], a notched Semi-Circular Bending test 
is explored to assess the influence of the notch shape and size on the overall fracturing response. 
Based on results, a negligible variation is observed in the ascending branch of the load-CMOD 
curves, with a more pronounced variation in the peak load and brittleness of the specimen. Such 
variations come with few deviations of the crack from the vertical direction. A further extension 
of the work will include the arbitrariness of the bedding properties or the influence of the notch 
inclination with respect to the bedding planes. 
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Abstract. A comprehensive 3D visco-elasto-plasto-damage constitutive model of concrete is 
proposed to analyze its behaviour under long-term and cyclic loadings. This model combines the 
visco-elasticy and plasticity theories together with damage mechanics. The work aims at providing 
an efficient model capable of predicting the material behaviour, taking into account time-
dependent effects at the mesoscale. The visco-elastic part is modeled within the framework of the 
linear visco-elasticity theory. The creep function is evaluated with the aid of the B3 model by 
Bažant and Baweja, and implemented via the exponential algorithm. The modified Menétrey-
Willam pressure-dependent yield surface, and a non-associated flow rule are used for the plastic 
formulation of the model. The damage part of the model considers two exponential damage 
parameters: one in tension, and one in compression, that account for a realistic description of the 
transition from tensile to compressive failure. After discussing the numerical implementation, the 
proposed model is calibrated, and numerical results at the mesoscale level are compared to 
experimental results. 
Introduction 
The calculation of creep deformations under long-term loading is crucial to ensure the functionality 
and the durability of concrete structures. Moreover, for a comprehensive description of the 
mechanical behaviour of concrete, nonlinear characteristics, such as stiffness degradation and 
reduction of strength, must be considered altogether with creep deformations. In the past and recent 
years, many researchers have combined various plasticity and damage models with creep models 
in order to reproduce accurately the phenomenological behavior of concrete. In 1998, Majorana et 
al. [1] consider a Maxwell chain model to combine creep with a scalar isotropic damage model. 
Ren et al. [2] have proposed a creep-damage-plasticity model based on strain additivity, in which 
an energy-based damage-plasticity model and a modified ACI model are combined together. Yu 
et al. [3] have studied the nonlinear creep failure of concrete by combining a Mazars’ damage 
model [4] with the B3 creep model proposed by Bažant and Baweja. However, the coupling 
mechanism between these various models has not yet been fully revealed, and there is a need to 
use the most recent models in literature which allow for a more realistic description of concrete 
nonlinear behaviour. 

In this paper, a comprehensive 3D visco-plasto-damage model is proposed. The plasto-damage 
model based on Menétrey-Willam pressure-dependent yield surface [5,6], and a non-associated 
flow rule is coupled with the B3 creep model of Bažant and Baweja [7]. The damage part of the 
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model considers two exponential damage parameters, one in tension, and one in compression, that 
help accounting for crack closure and stiffness increase during the transition from tensile to 
compressive loading [8]. After calibration of the unified model, numerical simulations are 
performed and compared with experimental data. It is proved that the new model is capable of 
reproducing with satisfactory precision the nonlinear characteristics of concrete under long-term 
loading. 
 

The visco-plasto-damage model 
The Plasto-Damage Model. The plasto-damage model implemented in this paper considers the 
Menétrey-Willam plastic surface [6] modified with a scalar damage variable ω that accounts for 
the change in shape of the plastic surface due to damage. The plastic surface is expressed through 
the unified coordinates (ξ,ρ,θ) in the Haigh–Westergaard (HW) stress space as  

f = 1.5
ρ2

(1 - ω2)fc
2 +

qh(κ)m
(1-ω)fc

�
ρ
√6

r(θ,e)+
ξ
√3
� - qh(κ)qs(κ) ≤ 0,                                                     (1) 

where κ is the internal variable for plastic evolution, taken as the volumetric component of the 
plastic strain such that κ̇(𝜀𝜀p)  =  tr(𝜀𝜀p). The shape of the deviatoric section is controlled by the 
elliptic function r(θ,e), where θ is the Lode angle, and e is the eccentricity parameter; m is the 
cohesion parameter, and fc the concrete strength in compression; qh and qs represent the hardening 
and softening laws, respectively, as defined in [9]. 

A non-associated flow rule has been adopted, and is defined in agreement with 

ε̇p = λ̇
∂gp

∂σ
(σ,κ),                                                                                                                         (2) 

where ε̇p is the rate of the plastic strain, and ̇λ̇ is the plastic multiplier; κ is the internal variable 
defined above. The function gp represents the plastic potential, expressed using the coordinates in 
the HW stress space as [8] 

  

gp = - 
A
fc
�

ρ

�q(κ)
�

2

- B �
ρ

�q(κ)
�  + 

ξ

�q(κ)
 = 0,                                                                       (3) 

 
where A and B are experimentally derived coefficients; fc is the concrete strength in compression, 
and q(κ) is the hardening/softening law, defined as q(κ) = qh(κ)qs(κ). 

Damage has been considered via a total damage parameter that includes a stiffness recovery 
function able to catch the increase of stiffness due to closure of cracks when the mechanical loading 
changes from tension to compression. It is defined as a combination of the compressive and tensile 
damage parameters as follows 

  
ω = 1 - [1 - ωc(κc)][1 - s(σtr)ωt(κt)],                                                                                         (4) 

where the scalar damage variables ωc  and ωt are defined using exponential functions as suggested 
by Pijaudier-Cabot and Mazars [4]; κc and κt are internal variables used to describe the damage 
evolution in compression and tension, respectively, and s(𝜎𝜎tr) is the stiffness recovery function. 
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The Creep Model. Herein, the creep model used to describe the long-term behaviour of concrete 
is the linear viscoelastic B3 model proposed by Bažant and Baweja [7]. The compliance function 
of the B3 creep model is expressed as 

J(t, t') = q1  + C0(t, t') + Cd(t, t', t0),                                                                                                     (5) 

 where q1 is the instantaneous strain due to unit stress; t and t′ represent the current age, and 
loading age, respectively. 

In Eq. 5 C0(t,t’) is the basic creep term of the B3 model, expressed as [7] 
  

C0(t,t') = q2Q(t,t') + q3 ln[1 + (t-t')0.1]  + q4 ln �
t
t’� ,                                                                 (6) 

while Cd(t, t′,t0) is the drying creep term of the B3 model expressed as [7] 

Cd(t,t',t0) = q5 �e
- 8H(t) - e- 8H�t0

' ��
0.5

,                                                                                           (7) 

where t0 is the time at which drying starts, and t0′  = max(t′,t0); H(t) and H(t0′ ) are spatial averages 
of pore relative humidity [7]. 

The parameters q1 to q5 can be approximated via empirical formulas [7]. The creep model is 
implemented via the exponential algorithm [10]. 

 
Numerical results 
In the scope of this paper, 3D mescoscale models of ordinary concrete made by calcareous 
aggregates have been reconstructed using 3D computed tomography. In the mesoscale models, the 
aggregates are modelled as elastic; the cement paste has been modelled using the above mentioned 
visco-plasto-damage model. A sketch of the adopted solid model is represented in Fig. 1 (left). 

 

 

 

 
 

 

Figure 1: 3D sample reconstruction (left), and comparison between numerical and experimental 
results of the uniaxial compression test (right). 
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The calibration of the model has been conducted over experimental results obtained from a 
uniaxial compression test with loading and unloading cycles, on a cubic sample of same geometry 
and grading curve of the adopted model. Subsequently, similar experiments considering short- and 
long-term loadings have been considered for validation of the present model. In particular, the two 
parameters A and B of the plastic potential are determined by means of the axial strain in uniaxial 
compression at maximum stress and the axial strain in triaxial compression at maximum stress, as 
illustrated in [9].  The elasto-plasto-damaged parameters for cement matrix constituent are reported 
in Table 1.  

 
Table 1: Elasto-pasto-damage parameters after calibration. 

ELASTO-PLASTICITY DAMAGE 

E Young modulus at 28 
days [MPa] 33,000 kc0 1D initial inelastic strain 

for compression damage 0.015 

ν Poisson's ratio 0.2 Ac Damage parameter in 
compression 1 

fc Compressive strength at 
28 days [MPa] 34.6 Bc Damage parameter in 

compression 100 

ft Traction strength at 28 
days [MPa] 3.5 ωc max Maximum damage in 

compression 0.95 

e Eccentricity 0.55 kt0 1D initial inelastic strain  
for tension damage 0.0015 

t Slope for the softening 
function qs 0.003 At Damage parameter in 

tension 1 

k1D Plastic strain in the 
compressive pick 0.1 Bt Damage parameter in 

tension 1 

 qh0 Initial hardening 
function  qh 0.4 ωt,max Maximum damage in 

tension 0.95 

A Plastic potential 
parameter -2.22 s0 Maximum recovery value 0.2 

B Plastic potential  
parameter -3.46 Gf Fracture energy [103J/m2] 0.025 

   
wc Crack bands width [mm] 1 

 
Fig. 1 (right) reports the comparison between numerical and experimental results for the short-

term loading with loading and unloading cycles. The model proves to reproduce satisfactorily the 
post-peak behaviour and stiffness degradation during the softening regime. 

 
The comparison between numerical and experimental results for the long-term loading is shown 

in Fig. 2. Also in this case the numerical results are in good agreement with the experimental ones. 
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Figure 2: Comparison between numerical and experimental results of the creep test. 
 
Fig. 3 shows the stress distribution in the direction of the load, across the sample. Overall, stress 

localizations in the regions of the cement paste surrounding the aggregates are envisaged. This is 
coherent with the expected triggering of damage at the interface zone between aggregates and 
cement paste, and subsequent failure following these preferential paths. 

 

 

Figure 3: Stress contour map (in MPa) in the cement paste. 
 

Summary 
The comprehensive 3D visco-plasto-damage model presented herein combines a pressure-
dependent plastic model extended to include damage with a linear visco-elastic creep model for 
the study of the coupling mechanism between creep and damage. Specifically, the plasto-damage 
model includes a pressure-dependent yield surface and a stiffness recovery function for a more 
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realistic description of the transition from tensile to compressive failure. The creep model 
considers two contributions: a basic creep, and drying creep. After calibration and validation of 
the model, a numerical simulation has been conducted on a cubic concrete sample at the mesoscale, 
undergoing creep. The comparison between numerical and experimental results confirms that the 
proposed unified model is capable of characterizing accurately the nonlinear material behaviour 
of concrete under short and sustained loading. 
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Abstract. Predicting the mechanical response of biological soft materials requires an 
understanding of the complex phenomena characterizing their microscale. In this work, we use an 
existing versatile framework, based on assumptions on the statistical distribution of biolpolymers 
at the network scale, for extending our previous entropic constitutive model of Worm-Like Chains 
networks to different deformation classes. Furthermore, we include the effect of molecules 
topological constraints by introducing an energy term depending on the second invariant of the 
Green-Cauchy tensor. In this way we are able to qualitatively reproduce, with a limited set of 
physically meaningful constitutive parameters, a range of observed phenomena such as induced 
anisotropy, stress softening, hardening, Mullins effect, evolution of permanent stretches. 
Introduction 
In this work, we extend our previous micromechanical model [1] by accounting for a fully three-
dimensional distribution of polymeric chains, taking care of damage and contour length variation 
depending on loading history. The analysis is inscribed in the framework of statistical mechanics. 
The constitutive Helmholtz free energy is considered to stem from two terms: a microscopic Worm 
Like Chain type and a macroscale topological one describing network constraints. This novel 
model is described by a set of five parameters: one for each component of the WLC and topological 
free energy, one that relates contour length to end-to-end molecules variations, and two describing 
refolding and unfolding during unloading and reloading, respectively [2]. In this way we are able 
to capture both irreversible damage, onset of residual stretches (Mullins effect), hysteresis and 
induced anisotropy. With the single chain characterization in hand, the three dimensional model is 
directly obtained via a numerical integration of the energy on the microsphere [3]. The micro-to-
macro shift in scale relies on the classical affinity hypothesis commonly used in rubberlike 
elasticity. We show the versatility and effectiveness of the present framework in describing the 
aforementioned effects by means of a parametric study. The constitutive parameters have a clear 
physical interpretation, which allows predicting the range of parameters variation. We believe that 
the present model is useful in describing the mechanical response of biopolymers exhibiting 
damage and permanent deformations of interest in material design and biomedical applications.  
Methods 
In this section, first we model the behavior of a single filament, then we use this model for passing 
to the macroscopic scale via the microsphere approach [3] and an additional macroscopic 
additional term. 

Macromolecule model. In the previous works [1, 4] about absorbable suture threads, we 
modified the Helmholtz free energy of [5] in order to account for residual stretches. Here we use 
the same free energy of the macromolecule and the entropic force  
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 (1) 
In the formulas above, λ, λc and λn are the molecule stretch, contour stretch and natural stretch, 
respectively. The parameter κ accounts for temperature and number of free monomers. The natural 
and contour stretch are related as , based on well known statistical mechanics considerations such 
as e.g. in [6, 7], where λco is the initial contour stretch (λco>1). Observe that the natural stretch λn 
corresponds to a zero value of the force, thus the residual stretch λres is identified by the condition 
λ = λn. Simultaneously, the contour stretch λc is a limit stretch. Notice that the force tends to infinity 
as λ → λc.  

 
As in our previous work [4], in order to model folding and unfolding of the macromolecule under 
stretch, we assume the following phenomenological evolution law for the natural stretch  

 (2) 
depending on the two constitutive parameters and . The former βu describes the number of free 
monomers to crystallize during unloading, whereas the latter βr models unfolding under reloading. 
Observe that, according to this evolution law, the maximum force exerted at the reach of λmax on 
the primary path before unloading is exactly attained again at λ = λmax after reloading. In other 
words our model satisfies the so called Return Point Memory property [8]. Notice that the exponent 
term  is nonzero only in reloading as shown in Fig.1. Furthermore, (4) also identifies 
residual stretches. The filament force of Eq.(2) vanishes at λ = λn, thus the residual stretch must 

meet the condition λ = λn = λres which returns the analytical dependency of filament 
residual stretches and maximum historical load in the simple form of power law. 

Macroscopic deformation. For a material point, the rate of work carried out by the first Piola-
Kirchhoff stress Σ must equal the rate of change of free energy, , where the macroscopic 
deformation is described through the deformation gradient F. Entropic free energies terms like the 
one in Eq.(1) are usually able to describe the mechanics of polymers in solution. When the 
polymers are, as in solids, crosslinked in networks, additional energy terms are needed for 
considering self and mutual entanglement effects (see [9, 4]). Here we adopt a hybrid approach 
and, leaving untouched the microscopic energy, we add a topological energy term at the 
macroscopic level borrowing by solid mechanics (e.g. [10]). Denoting terms of microscopic and 
macroscopic origin with m and M, the stress tensor can be decomposed into 

Figure 1: Evolution of the stretches under cyclic loading. The unloading parameter, describing 
partial refolding andthus residual stretches λres of copolymer domains is taken βu = 0.2. 
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 (3) 
Notice that the quasi-static assumption allows treating time as a unitless order parameter. We 
assume that the stretches are applied along the principal directions and, as usual, the solid is 
incompressible, i.e. detF=1. Therefore, by looking at Fig.2, we are able to describe uniaxial 
extension, equibiaxial extension and pure shear via a unique macrostretch variable Λ as follows 
(see [10]):  

 (4) 

In this way, one can find the components of Σm that contribute to the microscopic term work as 

 (5) 
with δ=1 for uniaxial extension and pure shear, δ=2 for equibiaxial extension. As in standard 
nonlinear elasticity [10], notice in Fig.2 that pure shear is obtained by imposed elongation in 
direction 1, zero displacement in direction 2 and free stretch, i.e. here resulting from 
incompressibility, across the thickness in direction 3. Moreover, assuming the classical affinity 
hypothesis, the stretch λ(Λ, d)=∥F(Λ)d∥ of a filament oriented along the unit vector d=[d1, d2, d3] 
and its derivative with respect to the independent stretch variable Λ have to be evaluated. A 
numerical quadrature rule for integrals of the kind Eq.(5) was discovered by [11] and successfully 
applied to polymer mechanics for the first time by [3]. This is the so-called microsphere approach. 
It is based on N quadrature orientations dj such that, for a function v defined at the microscale, the 
macroscale counterpart can be computed as a simple weighted average. In order to consider the 
interaction between the network macromolecules we add a further term to the total energy, which 
enforces topological constraints. It has been repeatedly highlighted in literature that the second 
invariant I2 of the right Cauchy-Green deformation tensor C=FTF, plays a crucial role in describing 
the energy, especially for large deformations of rubber-like and biological materials (e.g. see [12, 
13] and references therein). Similarly as in the classical Mooney-Rivlin model of incompressible 
hyperelasticity, we assume that the energy depends linearly on I2, which accounts for the square 
of the aerial deformation normal to the elongating fibers. Following the same thermodynamic 
reasoning as in Eq.6, we obtain  

 (5) 
so that C2 is unitless.  

Figure 2: Deformation classes. From left to right: uniaxial extension, equibiaxial extension, 
pure shear. 
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Results and conclusions 
In order to show the versatility of the present model, here we perform a parametric analysis which 
elucidates the role of the five parameters in capturing Mullins effect, internal hysteresis and 
permanent set in the three loading cases above considered. In Fig.3, we show the mechanical 
response in absence of the topological term. The material is cyclically tested in uniaxial extension, 
equibiaxial extension and pure shear.  
 

 
In Fig.4 the effect of initial contour stretch is investigated. Looser chains, i.e. with a higher λco, 
show a lower response in terms of stresses for all loading scenarios.  

The contribution of reversible folding is depicted in Fig.5. A higher unloading parameter βu, 
i.e. a higher rate of refolding, causes lower stresses in unloading. A higher reloading parameter βr 
entails higher stresses in reloading. Finally, the contribution of the second invariant related 
macrostress is numerically analysed in Fig.6. Whereas the multiscale microsphere network 
predicts a very similar behavior for uniaxial extension and pure shear, the adding of a macrostress 
depending on the second invariant of the right Cauchy-Green deformation tensor allows the model 
to differentiate the two cases as measured in experiments such as in [14].  

The main contribution of this work is a multiscale constitutive model which is able to predict, 
with only five physically motivated parameters, a wide range of phenomena and deformation 
classes.  
Numerous biological materials are constituted by a network of stiff macromolecules, e.g.. collagen, 
immersed into a soft incompressible extracellular matrix (see [15,16]). This enables outstanding 
mechanical properties which, as in this work, can be explained via a multiscale approach. Future 
work will quantitatively investigate real biological materials by means of our novel two-scale 
energy function.  

 

Figure 3: Mechanical response of the microscopic term. The material is cyclically tested 
inuniaxial extension,equibiaxial extension and pure shear. Material parameters: βu=0.2, βr=0.2, 

λco=1.1, C2 = 0. a) Normalized stress vstime. b) Normalized stress vs macroscopic stretch. 

 

Figure 4: Mechanical response of the microscopic term. The material is cyclically tested 
inuniaxial extension,equibiaxial extension and pure shear. Material parameters: βu=0.2, βr=0.2, 

λco=1.1, C2 = 0. a) Normalized stress vstime. b) Normalized stress vs macroscopic stretch. 
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Abstract. We propose a model for cell-matrix decohesion that highlights the role of elasticity in 
this process. In doing this, we specialize our previous study of focal adhesion, an integrin mediated 
structure that oversees and guides the mutual interactions between cells and the extracellular 
matrix. Specifically, we consider a two-scale asymptotic homogenization technique to study the 
multi-scale nature of decohesion. Thus, we are able to use micro-structural information available 
at length scales smaller than those at which focal adhesions are observed. Based on classical two-
scale asymptotic techniques the proposed approach allows to define effective elastic coefficients 
encoding the intrinsic heterogeneous properties of both focal adhesions and extracellular matrix.  
Introduction 
We focus on integrin-mediated structures of cell attachment, by specializing our study to focal 
adhesions (FAs) [1-8]. Generally speaking, FAs represent the basic sites by means of cells anchor 
to ECM and share mechanical forces and biomechanical signals with it [1-8]. It is possible to 
schematize the structure of a FA in terms of a three-component system, comprising the adhesion 
plaque, integrin receptors and stress fibers [3, 5, 6].  

Experiments show the capability of cells of sensing forces and convert them in biochemical 
signals, and particular attention has been devoted to the role played by the structural properties of 
FAs [3, 5, 6, 9-12]. For example, it has been experimentally validated how the ECM’s rigidity 
determines the length and the stability of FAs [3, 5, 6, 9-12]. Conversely, forces originated from 
cells and transmitted to the ECM via FAs can determine the onset of remodeling, i.e., the 
rearrangement of the ECM’s internal structure and its consequent structural adaptation to cell-
induced stimuli [6, 13, 14]. 

Following all these specific examples, we are interested in studying how the elastic properties 
of the FAs and of the ECM may influence the dynamics of FA-ECM systems, in the case in which 
the insurgence and propagation of decohesion is considered. In doing this, based on [5], we develop 
a multi-scale approach, based on Asymptotic Homogenization [15-18] in order to deduce how the 
inhomogeneous microstructure of the system comprising a FA and the ECM may affect its overall 
behavior.  
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The model 
It is known that FA, ECM and integrins are typically non-homogeneous [19-22]. By considering 
the ECM at first, we remark that it is a complex medium comprising several species of biological 
elements, such as proteins and polysaccharides, which present remarkably different biochemical 
and mechanical properties, as well as topological and geometrical characteristics [19]. Analogous 
considerations are also valid for the adhesion plaque. In fact, all the protein substructures 
characterizing the adhesion plaque are quite heterogeneous, since they significantly vary in size, 
shape, distribution and, in general, in their molecular composition [20]. Several experimental 
procedures have been developed with the purpose of a comprehensive description of the structure 
of a FA [20], although the determination of the morphology and of the dynamics of the adhesion 
plaque represents an important open problem. This aspect results to be clearer if we consider the 
fact that FA experiences remodeling, which is induced by mechanical actions exchanged with the 
ECM [6, 13, 14]. The last aspect to mention is the heterogeneity associated with the integrin 
receptors [21]. In this respect, the integrins’ heterogeneity is the result of the formation of 
interphase regions close to the FA and of the ECM, thereby determining the onset of micro-scale 
effects. which aims at affecting larger scales phenomena [21]. Furthermore, the attachment of the 
adhesion plaque to the ECM occurs via different types of integrins, so that, the overall generated 
forces depend on their composition and non-uniform distribution [21, 22].  

Following the discussion reported so far, we can now clarify why we can speak of a multi-scale 
behavior in the case of FAs and ECM. In fact, the heterogeneity character of both the FA and the 
ECM are associated with length scales which are smaller than those characterizing the  whole 
adhesion complex. In other words, the system under investigation exhibits at least the co-existence 
of two main scales: the first one, hereon referred to as micro-scale, is typical of the heteregeneities 
of the components constituting the adhesion plaque, the ECM and the integrins, whereas the 
macro-scale is representative of the system as a whole [15-18]. Such characteristic lengths are well 
separated. This implies that, by denoting with LM and Lm the macro- and the micro-scales, their 
ratio is much smaller than one, i.e., 𝜀𝜀 = 𝐿𝐿𝑚𝑚

𝐿𝐿𝑀𝑀
≪ 1 [1-8, 15-18]. Such condition, known as scale 

separation, is the starting hypothesis which preludes the application of a multiscale analysis based 
on a two-scale homogenization technique [15-18]. 

In this work, we employ a two-scale homogenization procedure to deduce the overall 
mechanical behavior of a system comprising a FA, the ECM and the integrin receptors and 
accounting for their inhomogeneities. By referring to the mechanical picture outlined in [5] and by 
virtue of the scale separation condition discussed above, we re-interpret it in a two-scale fashion. 
This leads us to formulate constitutive relations that incorporate the information deducible from 
the micro-structure. In details, we compute homogenized or effective elastic coefficients, encoding 
the elastic properties of FAs, ECM and integrins at the scale of the heterogeneities. Moreover, we 
infer a system of local field equations, describing the point-wise equilibrium of the considered 
physical system at the micro- and micro-scale, respectively. With reference to [5], we consider a 
one-dimensional, continuum model, comprising a FA adhesion, the ECM and the integrin 
receptors.  
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Figure 1: Schematization of the system comprising FA, ECM and integrins and of its 

microstructure (a) and mechanical scheme employed in [14] and an example of periodic cell (b). 
The first two components are described as linear elastic fibers, with stiffness ka and km, while 

the integrins are energetically represented by a linear elastic fragile potential, with stiffness ki. 
We remark that, with the term fragile, we mean that, when the force exerted by the integrins 

reaches a threshold value, it drops to zero. This way, as shown in [5], we model the onset and 
propagation of fracture and, in doing this, we illustrate how we adapt and generalize shear lag 
models to account for decohesion [5, 23, 24].  

In this work, we retrace the same steps as in [5], but, instead of considering the elastic properties 
of the system to be homogeneous, we let them be inhomogeneous, thereby meaning that they vary 
because of the inhomogeneities arising from the microstructure. Following standard arguments of 
two-scale asymptotic homogenization, we assume the microstructure to be periodic [15-18]. 
Although such hypothesis seems to be too restrictive, it has shown to be sufficiently reliable in 
predicting the development of complex biological structures, e.g., breast cancer and bone 
remodeling [17, 18]. On the other hand, other biological media, such as spider silks, are known to 
possess a hierarchical periodic structure [25]. Such a hypothesis leads to the existence of an 
elementary cell, denoted by Ω, which can be assumed as representative of all elastic properties of 
the system at the micro-scale. In particular, it can be written as the union of N elements, i.e. 𝛺𝛺 =
∪𝑛𝑛=1,…,𝑁𝑁 𝛺𝛺𝑛𝑛, being 𝛺𝛺𝑛𝑛 the portion of the elementary cell in which the elastic properties ka, km and 
ki assume the value ka,n, km,n, and ki,n, jumping across the boundary of 𝛺𝛺𝑛𝑛 [15-18]. 
Results and discussion 
We design the mechanical problem at hand in a mono-dimensional framework, and we introduce 
the scalar-valued functions ua and um to represent the scalar displacements of the adhesion plaque 
and of the ECM. Moreover, ua and um depend on the variable 𝑥𝑥 ∈ [0, 𝐿𝐿], being 𝐿𝐿 the initial length 
of the system and [0, 𝐿𝐿] its reference placement [5]. By applying two-scale asymptotic 
homogenization we obtain the following homogenized equations [26] 

𝑑𝑑
𝑑𝑑𝑥𝑥

�𝑘𝑘𝑎𝑎
(𝑒𝑒𝑒𝑒𝑒𝑒) 𝑑𝑑𝑢𝑢𝑎𝑎

𝑑𝑑𝑥𝑥
� −  

𝑘𝑘𝑖𝑖
(𝑒𝑒𝑒𝑒𝑒𝑒)

𝑑𝑑𝑖𝑖𝑙𝑙𝑖𝑖
(𝑢𝑢𝑎𝑎 − 𝑢𝑢𝑚𝑚) = 0,            𝑥𝑥 𝑖𝑖𝑖𝑖 ]0, 𝐿𝐿 − 𝐿𝐿𝑑𝑑𝑒𝑒𝑑𝑑[,            (1𝑎𝑎) 

𝑑𝑑
𝑑𝑑𝑥𝑥

�𝑘𝑘𝑚𝑚
(𝑒𝑒𝑒𝑒𝑒𝑒) 𝑑𝑑𝑢𝑢𝑚𝑚

𝑑𝑑𝑥𝑥
� +  

𝑘𝑘𝑖𝑖
(𝑒𝑒𝑒𝑒𝑒𝑒)

𝑑𝑑𝑖𝑖𝑙𝑙𝑖𝑖
(𝑢𝑢𝑎𝑎 − 𝑢𝑢𝑚𝑚) = 0,            𝑥𝑥 𝑖𝑖𝑖𝑖 ]0, 𝐿𝐿 − 𝐿𝐿𝑑𝑑𝑒𝑒𝑑𝑑[,           (1𝑏𝑏) 

                                    
𝑑𝑑
𝑑𝑑𝑥𝑥

�𝑘𝑘𝑎𝑎
(𝑒𝑒𝑒𝑒𝑒𝑒) 𝑑𝑑𝑢𝑢𝑎𝑎

𝑑𝑑𝑥𝑥
� = 0,            𝑥𝑥 𝑖𝑖𝑖𝑖 ]𝐿𝐿 − 𝐿𝐿𝑑𝑑𝑒𝑒𝑑𝑑, 𝐿𝐿[,              (1𝑐𝑐) 

                                   
𝑑𝑑
𝑑𝑑𝑥𝑥

�𝑘𝑘𝑚𝑚
(𝑒𝑒𝑒𝑒𝑒𝑒) 𝑑𝑑𝑢𝑢𝑚𝑚

𝑑𝑑𝑥𝑥
� = 0,            𝑥𝑥 𝑖𝑖𝑖𝑖 ]𝐿𝐿 − 𝐿𝐿𝑑𝑑𝑒𝑒𝑑𝑑, 𝐿𝐿[,              (1𝑑𝑑) 

 
where Ldet is the length of the detached portion of the system, while di and li are reference lengths 

associated with the distribution of integrins and their length, respectively [10], and with the 
effective coefficients 𝑘𝑘𝑎𝑎

(𝑒𝑒𝑒𝑒𝑒𝑒), 𝑘𝑘𝑚𝑚
(𝑒𝑒𝑒𝑒𝑒𝑒) and 𝑘𝑘𝑖𝑖

(𝑒𝑒𝑒𝑒𝑒𝑒) computed as [15-18, 26] 
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𝑘𝑘𝑎𝑎
(𝑒𝑒𝑒𝑒𝑒𝑒) =

𝑘𝑘𝑎𝑎,1𝑘𝑘𝑎𝑎,2

𝑘𝑘𝑎𝑎,2𝛤𝛤 + 𝑘𝑘𝑎𝑎,1(1 − 𝛤𝛤)
,                                                                                                   (2𝑎𝑎) 

𝑘𝑘𝑚𝑚
(𝑒𝑒𝑒𝑒𝑒𝑒) =

𝑘𝑘𝑚𝑚,1𝑘𝑘𝑚𝑚,2

𝑘𝑘𝑚𝑚,2𝛤𝛤 + 𝑘𝑘𝑚𝑚,1(1 − 𝛤𝛤)
,                                                                                               (2𝑏𝑏) 

𝑘𝑘𝑖𝑖
(𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑘𝑘𝑖𝑖,1𝛤𝛤 + 𝑘𝑘𝑖𝑖,2(1 − 𝛤𝛤),                                                                                                  (2𝑐𝑐) 

 
The effective elastic parameters 𝑘𝑘𝑎𝑎

(𝑒𝑒𝑒𝑒𝑒𝑒), 𝑘𝑘𝑚𝑚
(𝑒𝑒𝑒𝑒𝑒𝑒) and 𝑘𝑘𝑖𝑖

(𝑒𝑒𝑒𝑒𝑒𝑒)are, in fact, the solutions of suitable 
cell equations, in the jargon of Asymptotic Homogenization [15-18], obtained by employing 
standard arguments of two-scale periodic analysis. We emphasize that the functional form of such 
cell equations depends on the considered mechanical model, describing the macro-scale 
mechanical interactions exchanged at the scale of the FA-ECM system, and on the way in which 
inhomogeneities are distributed at the microstructure. In our framework, granted for the linearity 
of the problem, the obtained cell equations are linear and decoupled from each other, which help 
us in obtaining their analytical expressions as reported in Equations (2a) – (2c). 

As an example, we show the analytical solutions ua and um (Fig. 2, left) computed with the 
homogenized Equations (1a) – (1d), equipped with the same boundary conditions as in [5]. In 
particular, we assume that the ECM is clamped at 𝑥𝑥 = 0  and traction free at 𝑥𝑥 = 𝐿𝐿, while the FA 
is traction free at 𝑥𝑥 = 0 and subjected to an imposed displacement 𝑢𝑢�= 2 nm applied at 𝑥𝑥 = 𝐿𝐿. 
Moreover, we plot the trend of FA’s traction, Ta, in the case of ductile rupture [10] (Fig. 2, right). 
In this case, we fix ka,1 = 2 pN/nm, ka,2 = 0.7 pN/nm, km,1 = 8.7 pN/nm, km,2 = 11.4 pN/nm, ki,1 = 3.9 
pN/nm, ki,2 = 6.3 pN/nm and Γ = 0.6 (see Fig. 1(b)). The value 𝐿𝐿𝑑𝑑𝑒𝑒𝑑𝑑 = 0.336 μm descends from a 
minimization analysis of the energy put forward in [5]. Although the micro-scale elastic 
parameters are chosen to give a proof of concept of our model, they are physically sound and taken 
within ranges of values experimentally predicted [1-8, 26-28].  

 
Figure 2: Left: analytical solutions 𝒖𝒖𝒂𝒂 and 𝒖𝒖𝒎𝒎 with homogenized coefficients. Right: Trend of 
FA’s traction (Ta) in the case of ductile rupture. The values of the constitutive parameters are 

from [10]. 
We can motivate the difference in the trends of ua and um by noticing that, while the adhesion 

plaque is subjected to the imposed displacement 𝑢𝑢�, the ECM is not. Moreover, the two components 
of the FA-ECM system respond differently to the forces exchanged through the integrins because 
of their diverse elastic properties. This behavior is coherent with that predicted by classical shear 
lag models  [5, 23, 24]. Finally, these results constitute the first step towards a deeper investigation 
of the decohesive phenomenon and aiming, through a multi-scale approach, at furnishing a more 
detailed description of the overall nucleation and front advancement [26]. 
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Abstract. Periodic and non-routine inspections on buildings, infrastructures, and sites of historical 
or architectural interest frequently involve a necessary deepening of the knowledge of natural or 
artificial stone materials of the built heritage. Insight into stone materials is of particular relevance 
when the problem is approached of fine-tuning best practices for assessment and maintenance 
within Life Cycle Assessment methodologies, in the light of an increased awareness that social, 
infrastructural and environmental issues and policies cannot be faced by single compartments but 
need comprehensive evaluation. Permeability has been early recognized as a basic property for the 
assessment of durability of concrete and stone materials. This contribution reports and discusses 
selected conclusions of studies which have scrutinized a large body of theoretical and technical 
scientific literature on permeability testing of concrete, as well as of regulatory literature, keeping 
a historical perspective and a focus in pinpointing fundamental open research issues of both 
theoretical and applied relevance in the mechanics of permeation of fluids through porous media. 
The fundamental experimental studies conducted in the first decades of last century are also the 
starting point for an assessment of the continuum mechanics and thermodynamics equations 
describing the flow of compressible fluids in porous media and for a critical review of the approach 
of current European standards to the determination of concrete watertightness. 
Introduction  
The first published documents reporting of studies on concrete permeability can be traced back to 
the first quarter of the last century and were mainly devoted to verifying the applicability of 
Darcy’s law to water permeability for this porous construction material which was new, or 
considered new, at the time. The work by Withey and Wiepking [1] together with other remarkable 
experimental studies developed in the U.S.A., among others by McMillan and Lyse [2], Ruettgers 
et al., [3, 4], and Vidal and Samson [5], were all devoted to find a suitable test setup and 
methodology to correctly evaluate the intrinsic permeability and the material and testing 
parameters influencing experimental results. The porous nature of concrete was well understood, 
and its watertightness was considered essential for the efficiency of strategic constructions like 
dams and bridges. In the same years, in Europe, experimental works developed in the U.K. by 
Glanville [6] and Madgwick [7] and in France by Mary [8] were carried out on the subject of 
concrete and stone permeability. Although the testing apparatuses and the tested stone and concrete 
materials were different, all these research efforts were focused on the identification of regularly 
observable phenomena and material properties. The only common features shared by the different 
experimental procedures were the creation of a uniaxial steady-state flow through a porous 
medium specimen acting like a filter under open-flow conditions and having, in general, a tile-like 
shape with thickness generally lower than 5 cm. These common features had, among others, the 
objective of maximizing the fluid flow in order to facilitate measurement by conveniently reducing 
error factors, like the formation of air pockets, as well as testing duration.  
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A comprehensive treatise on the flow of homogeneous fluids through porous media, with a 
focus on large-scale geological problems also of multiaxial nature, was published by Muskat [9] 
while studies focused on the correlation of permeability to microstructural parameters of the stone 
filter were successfully developed by Kozeny [10] and Carman [11]. It is worth remarking that all 
these studies gave for granted that the experimental determination of permeability is to be obtained 
by set-ups enforcing uniaxial steady-state open-flow conditions. Additional phenomena 
introducing deviations from the basic Darcy’s formula, determined by the use of gases as 
permeating fluids, were later investigated by Klinkenberg [12]. Studies dedicated to Portland 
cement pastes were carried out by Powers et al. [13, 14]. Hallmark of the subsequent period from 
the fifties of the past century onwards, concerning permeability testing in concrete, was the 
evolution of tests in the wake of standardization processes controlling the transfer to a broader 
public of knowledge and procedures from scientific, industrial and engineering corps’ research. 
For instance, one important regulative publication in this standardization process was the Initial 
Surface Absorption Testing methodology (ISAT) [15]. The main aspects to be underlined of this 
subsequent period are a partial renouncement to pressure-cells and set-ups granting strict 
conditions of uniaxial open flow (see, for instance, Levitt [16]), the renouncement to thorough 
oven drying of all specimens before test, the attempt to accommodate nondestructive on-site 
testing (Figg [17]), and a general push towards practices for concrete watertightness testing having 
a much more conventional character. It is necessary to wait the end of the ‘80s to find a study by 
Dhir et al. [18] performing a review of the ISAT and Figg’s techniques and a partial reconnection 
with past methods based on the quantitative determination of intrinsic permeability by steady state 
uniaxial flow transmission. The results of the above-mentioned trend of pushing towards more 
conventional practices for concrete watertightness testing can be observed at present times 
examining the codes actually in force in the EU, almost all derived from EN 12390-8:2019 [19]. 
Most codes and combined provisions are based on just measuring the penetration, after splitting 
test, of the depth of water in an almost 10 cm deep concrete specimen, after a 72 hrs constant 
pressure.  

A comprehensive critical review of one hundred years of permeability tests has been recently 
carried out by Monaco et al. [20] with the objective of assessing a near-zero-invasiveness practice 
which is therein proposed for the Life Cycle Assessment (LCA) of concrete structures and building 
manufacts by integrating actions of surveying, sampling, and watertightness testing of a concrete 
cover object of appraisal for possible replacement.  

This contribution reports and discusses selected conclusions by Monaco et al. [20], keeping a 
focus in pinpointing fundamental open research issues of both theoretical and applied relevance in 
the mechanics of permeation of fluids through porous media with some critical considerations on 
current European standards for the determination of concrete watertightness. Given the importance 
of uniaxial flow, the document also reports in brief the main conclusions of an assessment of the 
continuum mechanics and thermodynamics equations describing uniaxial open-flow permeation 
of compressible fluids in a porous filter (Serpieri and Monaco [21]). 
Fundamental mechanical quantities and phenomena in stone permeability testing 
As reviewed in Muskat’s treatise [9], the permeation of an incompressible liquid through a 
cylindrical filter made of a macroscopically homogeneous porous medium saturated by a 
Newtonian fluid – under the usual hypotheses of stationary conditions, macroscopically uniform, 
uniaxial and nonturbulent flow – is well described by Darcy’s linear relation, depending on the 
permeability 𝐾𝐾𝑃𝑃, a proportionality constant (in [𝑚𝑚/𝑠𝑠]) which is characteristic of the porous 
medium and which also depends on the fluid properties. For incompressible liquids, the pressure 
gradient and the velocity are uniform through the filter length and Darcy’s relation can be 
conveniently expressed in the form containing the intrinsic permeability which has the dimension 
of square meters. As shown in the theoretical and experimental studies by Kozeny [10] and Carman 
[11], in complete saturation the intrinsic permeability is reasonably well predicted by a correlation 
with the specific surface area and the void volume fraction. It should be remarked that the valid 
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predictive character of Carman’s correlation has been successfully verified not only for granular 
beds of highly controlled geometry, investigated in the original works, but also subsequently for 
hardened concrete pastes by Powers and Brownyard [13]. These Authors have shown that, by 
assuming porosity to be equal to the nonevaporable water and by applying the method by Brunauer, 
Emett and Teller [22] to acquire measures of the specific surface of solid boundaries from the 
experimental determination of adsorption isotherm curves, a reasonable prediction is obtained of 
lowest intrinsic permeability values, in the range [10−18, 10−19] m2, inferable from experimental 
data on cement pastes reported by Ruettgers et al. [4] concerning the concretes employed in the 
construction of the Colorado Boulder ‘Hoover’ dam. Water-adsorption-related phenomena 
entailing deviations from the fundamental equation were studied by Carman [11] and Zunker [23], 
while the following compact expression of the deviation of intrinsic permeability for Portland 
cement pastes due to adsorbed water represents the results tabulated by Powers and Brownyard 
[13]: 

𝐾𝐾𝑃𝑃𝑃𝑃 = 5.96 ∙ 10−22 ∙ �
𝑤𝑤 𝑐𝑐⁄ − 0.15

0.038
− 𝑘𝑘1�

3

∙
1

𝑤𝑤 𝑐𝑐⁄ + 1 3.16⁄ , (1) 

where 𝑤𝑤 𝑐𝑐⁄  is the water-cement ratio and 𝑘𝑘1 is a parameter varying from 1 to approximately 4 
tentatively accounting for the possible reduction of space available to transmission due to adsorbed 
water. A relation which predicts a deviation from Darcy’s equation when the testing fluid is 
compressible, such as in air-permeability testing, and when conditions are isothermal was 
proposed by Muskat [9]: 
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(𝑝𝑝12 − 𝑝𝑝22)

2𝑝𝑝1
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where 𝑝𝑝1 and 𝑝𝑝2 are the inlet and outlet velocity, respectively, 𝐴𝐴 is the cross-sectional area, 𝜇𝜇 
the viscosity and 𝜇𝜇 the filter length. The close adherence of Eq. (2) to experimental data had been 
earlier verified by Madgwick [7] in studies on the permeability of several construction materials 
like building stones, bricks and plasters. It should be noticed, however, that while Madgwick 
derived (2) by never explicitly mentioning an isothermal hypothesis, Muskat [9] proceeded 
explicitly from such a hypothesis. A second deviation, observed only with gases, was shown by 
Klinkenberg [12] who theoretically derived and experimentally validated relations capable of 
accounting for a flow increment due to the so-called phenomenon of gas-slippage.  

For water permeation, two further possible side-phenomena which, depending on the stone 
constitution and the test duration, may affect a regular steady permeation, and thus should be 
considered prior to an open-flow permeation test, are: 1) the decrease of permeability to water 
along test run time, termed by some authors “self-sealing”, and 2) the opposite phenomenon of 
“self-unsealing” which is a gain of permeability during the test. The root causes for a same 
observed self-sealing or self-unsealing behavior can however be of very different mechanical or 
chemical nature. In concretes, the possible presence of unhydrated reactive cement fractions is a 
main common cause for self-sealing [2]. Hearn et al. [24] provided important insights on further 
factors, other than cement paste hydration, which might determine a permeability reduction, 
including: clogging, osmotic pressure, precipitation of soluble hydrates, chemical interaction 
between the water and the cement matrix, dissolution of air into permeating water, and incomplete 
saturation of the test specimen.  

Self-unsealing can be originated by leaching of significant fractions of soluble components 
possibly present in the stone matrix and, although deserving the utmost attention for stone 
durability, appears instead to be a much less investigated phenomenon. El-Dieb and Hooton [25] 
recorded the variation of water-permeability as function of time in three concrete mixes. Their 
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study exemplifies a typical graph of the recorded coefficient of permeability (in m/s) plotted versus 
the time at which permeability is measured, and shows that, during 80 hours testing, permeability 
undergoes an almost ten-fold increase probably ascribable to dissolution or transport of soluble 
components.  
A general model of uniaxial permeation of liquids and gases through stone materials 
A continuum mechanics theory of permeation of a fluid phase in a porous medium which is 
sufficiently general to address the case of a compressible fluid and which, proceeding from the 
consideration of a minimum possible number of kinematic descriptors, is also purely-mechanical, 
purely variational and purely macroscopic (in that it does not require a detailed knowledge or 
detailed assumptions on the small-scale features of the porous medium and of the solid-fluid 
interaction) has been derived by Serpieri and Travascio [26] on the basis of canonic variational 
arguments and of preceding studies by Serpieri and Rosati [27], Serpieri et al. [28]; and by 
Travascio et al. [29]. For compelling page limits, only the final set of equations governing the 
stationary thermomechanical variational statement of the uniaxial permeation of an ideal gas is 
synoptically reported below.  

𝜌𝜌�𝑓𝑓�̅�𝑣𝑓𝑓 = 𝜌𝜌�𝑓𝑓0�̅�𝑣𝑓𝑓0            Complete space saturation + stationary Eulerian mass balance (3) 

𝐽𝐽𝑓𝑓 = 𝜌𝜌�𝑓𝑓0
𝜌𝜌�𝑓𝑓

                                                                                                Lagrangian mass balance (4) 

−𝑝𝑝′ − 𝜇𝜇
𝐾𝐾𝑃𝑃𝑃𝑃

�̅�𝑣𝑓𝑓 = 𝜌𝜌�𝑓𝑓�̅�𝑣𝑓𝑓�̅�𝑣𝑓𝑓′            Linear momentum balance under stationary conditions (5) 

𝜌𝜌�𝑓𝑓0
𝑀𝑀
𝐶𝐶𝑣𝑣𝑇𝑇′�̅�𝑣𝑓𝑓 = 𝑘𝑘𝑇𝑇𝑇𝑇′′ − 𝑝𝑝𝐽𝐽𝑓𝑓′ �̅�𝑣𝑓𝑓                       Energy balance under stationary conditions (6) 

𝑝𝑝 = 𝜌𝜌�𝑓𝑓0𝑅𝑅
𝑀𝑀

𝑇𝑇
𝐽𝐽𝑓𝑓

                                                                                                                 Ideal gas law (7) 

In the equations above, 𝜌𝜌�𝑓𝑓 is the true fluid density, �̅�𝑣𝑓𝑓 is the seepage velocity (𝜌𝜌�𝑓𝑓0 and �̅�𝑣𝑓𝑓0 being 
reference values), 𝐽𝐽𝑓𝑓 is the finite volumetric strain of the fluid, 𝑀𝑀 is the molar mass of the gas, 𝑇𝑇 
the absolute temperature, 𝐶𝐶𝑣𝑣 is the constant-volume heat capacity of the fluid, 𝑘𝑘𝑇𝑇 its thermal 
conductivity, 𝑅𝑅 is the universal gas constant, and prime notation indicates space derivation as 
usual.  

Serpieri and Monaco [21] have shown that the system above can be reduced to the following 
single differential equation in the only unknown 𝑝𝑝: 
𝐾𝐾𝑃𝑃𝑃𝑃
𝜇𝜇

1
𝑘𝑘𝑇𝑇

𝜌𝜌�𝑓𝑓0𝑅𝑅
𝑀𝑀

�
𝐶𝐶𝑣𝑣
𝑅𝑅

(𝑝𝑝𝑝𝑝′)′ + 𝑝𝑝𝑝𝑝′′� 𝑝𝑝′ + (𝑝𝑝𝑝𝑝′)′′ = 0 (8) 

which, upon integration and approximation of negligible terms, provides a temperature-
dependent solution encompassing deviations from the basic isothermal formula (2). Such solution 
can be employed to derive correlations applicable to the technical problem of air-permeability 
measurement in thin concrete filters which can be obtained from specimens carved out from an 
ordinary concrete cover. 
Discussion 
In the light of the studies herein summarized, research issues having both theoretical and applied 
relevance in the mechanics of stone permeability – in particular for concrete –, which are judged 
to be still-open or deserving further elucidation are: 
• the definition of a general permeability measurement protocol capable of discerning the 

presence of a self-unsealing, self-sealing or stationary behavior in a given concrete specimen 
of tile-like form from recordings of permeability during a test of suitable duration; 
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• the determination of bounds to experimental and theoretical uncertainties associated with the 
possible occurrence of phenomena of self-unsealing and self-sealing; 

• the definition of an experimental protocol, based on permeability variations, capable of 
discerning the possible presence of fractions of unhydrated cement and of swelling 
constituents in a given concrete mix. 

A final comment is devoted to most recent and currently active standards, such as EN 12390-
8, [19], which are based on a conventional measurement of penetration depth. The literature review 
has shown that intrinsic permeability by open-flow tests should be preferred, as a diagnostic 
parameter, to penetration depth since the former is less affected than the latter by hygrothermal 
and environmental factors.  

The invasiveness of the size of the specimens, even 10 cm deep, prescribed by some recent 
standards is also pointed out in the light of the evidence that many testing protocols of the past 
have successfully employed much thinner specimens setting a path for the definition of less 
invasive standards. 
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Abstract. Spider silks have been intensively studied among natural materials for their extreme 
mechanical properties such as very high strength, ultimate strain, and toughness. Another striking 
phenomenon characterizing spider silk, known as supercontraction, is a substantial contraction, up 
to a half of the initial length, occurring when an unconstrained silk thread is exposed to a wet 
environment. We propose a multiscale model that deduces the hygro-dependent macroscopic 
behaviour of the spider silks starting from the nano and micro-structure properties of the material. 
In particular, we describe the influence of humidity at the macromolecular scale by considering 
the moisture effects disrupting hydrogen-bonds and enabling the decrease of the natural (zero 
force) end-to-end chains length due to entropic effects. The main novelty of our theoretical 
approach is a description in the field of solid-solid phase transitions, with the system undergoing 
a transition driven by humidity from an unfolded, hard dry to a folded, soft wet configuration. 
Based on a statistical mechanical approach, we are able to describe the temperature dependence of 
the supercontraction effects and its cooperative properties quantitatively predicting the observed 
experimental behaviour. 
Introduction 
Spider silk is the most studied natural material for his extreme mechanical properties, in particular 
the strength and the toughness overcoming also many high-performance man-made materials. 
Moreover, in the framework of biomimetics, spider silks are considered as the basis of a new class 
of high-performance fibers [1,2]. However, the behavior of the spider silk is very sensitive to 
external environmental conditions. More in detail, a Relative Humidity (RH) above a certain 
critical threshold, may give rise to an abrupt variation of material properties and a significant 
reduction in the fiber length, known as supercontraction and discovered by Work in 1977 [3]. This 
contraction is due the influence of the hydration water molecules at the macromolecular scale that 
disrupt Hydrogen-bonds, thus enabling the decrease of the natural end-to-end chain length due to 
entropic effects [4–6]. 

The observation of a stress reaching values of tens of MPa in experiments at fixed length is very 
interesting also in the perspective of humidity driven actuators and sensors  [7–9]. The silk 
properties change is localized in a small range of RH (few points percent) and this is related to the 
transition from a stiff state to a rubbery state undergoing entropic coiling [10,11] with important 
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analogies with the glass transition typically induced by temperature in polymers. As in the case of 
other solids undergoing phase transitions, such as shape memory nanowires, where one observes 
a switch from the austenitic to the martensitic phase or in protein materials undergoing unfolding 
from a stiff to a softer configurations [12], the evolution of the system is regulated by the transition 
strategy among different phase configurations as the external fields are modified [13]. In this 
perspective, starting from the pioneering work of Müller and Villaggio [13], extended to include 
the fundamental thermal effects based on a Statistical Mechanics approach, lattices of elements 
with non-convex energies and intrinsic discrete length-scale have been used to mimic many 
biological systems, such as the misfolding and refolding in proteins [14,15], the DNA denaturation 
and replication [16,17], the attachment and detachment of tau proteins in the neuronal axon, 
usually associated to neurodegenerative diseases [18,19], and in the study of focal 
adhesions [20,21].  

Here we extend this approach to study the experimentally observed transition in spider silks, 
describing the mechanical properties of the soft and hard phases of the silks at the molecular length 
scale. Specifically, we extend the model proposed in [12,22] to account for the effect of the relative 
humidity inducing the supercontraction, here modelled as a phase transition. This effect is due to 
an internal change of the natural configuration of the hard phase, and it can be described, following 
the classical Landau approach to phase transition, by introducing a RH-dependent transition energy 
as show in FIG. 1. The behavior of the silks is also highly affected by temperature effects (see 
Refs.  [11,23]). Thus, in this paper we introduce thermal fields in the framework of equilibrium 
Statistical Mechanics, that has been proved to be an effective tool for describing thermal effects in 
multistable systems  [24–27]. We deduce an analytic approach quantitatively describing the 
humidity and temperature effects in the supercontraction phenomenon. Such analytic results are in 
our opinion fundamental also in the spirit of biomimetics.  
Model 
Following the theoretical model developed in  [22], we analyse a discrete chain with 𝑁𝑁 two-state 
elements (see Fig. 1), each described by a bistable potential energy having two wells characterized 
by different elastic constants 𝑘𝑘 (unfolded state) and 𝛼𝛼𝑘𝑘 (folded state), where 0 < 𝛼𝛼 < 1. Moreover, 
the two states have their equilibrium lengths equal to 𝑙𝑙 and 𝜒𝜒𝑙𝑙 with 0 < 𝜒𝜒 < 1. 
Following an Ising type approach the overall energy assumes the compact form 

 Φ = ∑ �𝑄𝑄(𝑆𝑆𝑖𝑖) + 𝐾𝐾(𝑆𝑆𝑖𝑖)
2

��𝜆𝜆𝑖𝑖 − 𝜆𝜆0(𝑆𝑆𝑖𝑖)�𝑙𝑙�
2�𝑁𝑁

𝑖𝑖=1 − 𝐽𝐽 ∑ 𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖+1𝑁𝑁−1
𝑖𝑖=1

  (1) 

where the internal variables 𝑆𝑆𝑖𝑖 = ±1  identify the phase (energy wells) of each spring. Here, 𝜆𝜆𝑖𝑖 is 
the stretch of the i-th spring and 𝜆𝜆0(−1) =  1, 𝜆𝜆0(+1)  = 𝜒𝜒,  are the natural configurations. The 
parameter 𝐽𝐽 > 0 penalizes energy interfaces. It is useful to take into account the nondimensional 
energy 𝜑𝜑 

 𝜑𝜑 = Φ
𝐽𝐽

= ∑ �𝑄𝑄�(𝑆𝑆𝑖𝑖) + 𝐾𝐾�(𝑆𝑆𝑖𝑖)
2

��𝜆𝜆𝑖𝑖 − 𝜆𝜆0(𝑆𝑆𝑖𝑖)��
2�𝑁𝑁

𝑖𝑖=1 − ∑ 𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖+1𝑁𝑁−1
𝑖𝑖=1

  (2) 

where  𝑄𝑄�(𝑆𝑆𝑖𝑖) = 𝑄𝑄(𝑆𝑆𝑖𝑖)/𝐽𝐽 and 𝐾𝐾�(𝑆𝑆𝑖𝑖) = 𝐾𝐾(𝑆𝑆𝑖𝑖 )𝑙𝑙2/𝐽𝐽, 𝑘𝑘� =  𝑘𝑘𝑙𝑙2/𝐽𝐽 and 𝐾𝐾�(−1) = 𝑘𝑘�  and 𝐾𝐾�(+1) = 𝛼𝛼𝑘𝑘� .  
The main novelty of the proposed approach is the microstructure-inspired assumption of 𝑄𝑄 
depending on the relative humidity as 
 

 
  𝑄𝑄�(RH) = 1

J h(RH)
  

(3) 
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where we included the dependence on the relative humidity in the quantity h(RH); this dependence 
will be specialized in the following to adapt the results of the model to the experimental results. 
 

 
 

Figure 1: a) Scheme of a chain with three elements. Top: the chain is in the unfolded 
configuration (𝑺𝑺𝒊𝒊 = −𝟏𝟏) with the green circles representing the H-bonds naturally present in the 

silk; middle: the hydration water molecules link and disrupt the H-bonds; bottom: final folded 
(supercontracted)  configuration (𝑺𝑺𝒊𝒊 = +𝟏𝟏). b) Scheme of the energy wells of a single element. 

To introduce temperature effects in the framework of the equilibrium Statistical Mechanics, we 
consider the canonical partition function also including the fixed force acting on the last element 
of the chain (the so-called Gibbs ensemble): 

 𝑍𝑍𝐺𝐺�𝑓𝑓� = 𝑙𝑙𝑁𝑁 ∑ ∫ 𝑒𝑒−𝛽𝛽��𝜑𝜑−�̃�𝑓 ∑ 𝜆𝜆𝑖𝑖𝑁𝑁
𝑖𝑖=1 �𝑑𝑑𝜆𝜆1ℝ𝑁𝑁 . . . 𝜆𝜆𝑁𝑁.{𝑆𝑆𝑖𝑖}

  (4) 

Here, the non-dimensional force is defined as 𝑓𝑓 = 𝑓𝑓 𝑙𝑙/𝐽𝐽 and 

 𝛽𝛽� = 𝛽𝛽 𝐽𝐽 = 𝐽𝐽
𝑘𝑘𝐵𝐵𝑇𝑇

.  (5) 

The sums over {𝑆𝑆𝑖𝑖} must be considered extended to the values +1 and −1 for each spin variable 
(𝑖𝑖 =  1, . . . ,𝑁𝑁).  

By definition, the Gibbs free energy is 

 𝒢𝒢 = − 1
𝛽𝛽�

ln𝑍𝑍𝐺𝐺�𝑓𝑓�.  (6) 

Thus, in order to evaluate the unrestrained supercontraction phenomenon, we compute the 
expectation value of the average deformation of the chain for 𝑓𝑓 = 0, as 

 𝑁𝑁�̅�𝜆 = ⟨∑ 𝜆𝜆𝑖𝑖𝑁𝑁
𝑖𝑖=1 ⟩ = − 𝑑𝑑𝒢𝒢

𝑑𝑑�̃�𝑓
�
�̃�𝑓=0

.  (7) 

A direct evaluation of this quantity, (see  [22] for detailed calculations) gives 

 λ� = 1
2
��1 + c−−c+

√Δ
� + χ �1 − c−−c+

√Δ
��,  (8) 

where 𝑐𝑐− = 𝑐𝑐(−1) and 𝑐𝑐+ = 𝑐𝑐(+1) with  
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 𝑐𝑐(𝑠𝑠𝑖𝑖) = � 2π
𝛽𝛽�𝑘𝑘� (𝑠𝑠𝑖𝑖)

𝑒𝑒−β� 𝑄𝑄�(𝑠𝑠𝑖𝑖),𝛥𝛥 = (𝑐𝑐+ − 𝑐𝑐−)2 + 4 𝑐𝑐+ 𝑐𝑐− 𝑒𝑒−4 𝛽𝛽
� .  (9) 

Experimental comparison 
The effectiveness of the model in reproducing the experimental behavior of the phase transition 
occurring in spider silks, i.e. the supercontraction, is verified by quantitatively comparing the 
values of the silk thread stretch as a function of the external humidity at different temperatures. In 
Fig. 2 we represent by markers the experiments performed on Argiope trifasciata spider silk 
fibers [23], that exhibits a relevant contraction, reaching less than half of its length in dry 
conditions. The curves obtained by Eq. (7) are accurate in predicting the main physical phenomena 

observed during the phase transition at variable RH and temperature. We assumed h(𝑅𝑅𝑅𝑅) = 𝛾𝛾�𝑅𝑅𝑅𝑅
100

 

obtaining 𝑄𝑄�(RH) = 1
𝛿𝛿�𝑅𝑅𝑅𝑅/100 

, with 𝛿𝛿 = 𝐽𝐽 𝛾𝛾. We use the experimental data at the reference 

temperature (𝑇𝑇𝑟𝑟 = 20°𝐶𝐶) to fit the parameters of the model 𝛿𝛿 and 𝛽𝛽�𝑟𝑟, whereas from Eq. (4) we can 
compute the values 𝛽𝛽� = 𝛽𝛽�𝑟𝑟 𝑇𝑇𝑟𝑟/𝑇𝑇 for other temperatures. We remark that for the main parameters 
of the model we employed the values measured during the experiments in  [23], i.e. 𝜒𝜒 = 0.46 
corresponding to the stretch of the fiber at the saturation of the RH and 𝛼𝛼 = 0.005 corresponding 
to the ratio of the stiffness of the silk in the full supercontracted (soft, folded) state and pristine 
(hard, unfolded) state.  

 
Figure 2: Comparison of the model with experiments [23]. Values of the parameters 

: 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎;  𝝌𝝌 = 𝟎𝟎.𝟒𝟒𝟒𝟒,𝜷𝜷�𝒓𝒓 = 𝟏𝟏.𝟒𝟒,𝜹𝜹 = 𝟎𝟎.𝟎𝟎𝟓𝟓. 
Thus, based on minimal assumptions on the microscopic structure, we can describe a solid-solid 

phase transition, with the system undergoing an unfolded-folded (hard→soft) transition driven by 
the humidity. Based on an equilibrium statistical mechanical approach, we can deduce analytically 
the temperature dependence of the supercontraction effect and its cooperative properties, 
quantitatively predicting the observed experimental behavior.  
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Abstract. The brain tissue is a very complex biological material exhibiting viscoelastic-type 
properties at the macroscopic level, arising from a hierarchical multiscale structure. Thus, to 
describe such interesting features at the molecular level, we introduce a model mimicking the 
coupling of microtubules and tau proteins inside the neuronal axon and we study the rate-
dependent response under different conditions of applied load, rate, and temperature.   
Introduction 
One of the most complex biological systems is the brain tissue, which is made of billions of 
neurons, the fundamental component of nervous tissue, responsible for transmitting 
electrochemical signals. It has been addressed that mechanical fields have crucial importance for 
the correct functioning of these cells [1]. Specifically, it has been found that external forces, 
impacts or traumatic accidents acting on the brain can generate damage causing severe 
consequences at the level of the axons, also years after the event, a class of pathologies known as 
Traumatic Brain Injury (TBI) [2]. This phenomenon has first been observed in U.S.A. boxers 
because a great percentage of them suffered Alzheimer’s or Parkinson’s diseases even years after 
their retirement [3]. In these patients, there is evidence that the damage acting on the brain can 
cause scattered lesions at the level of the axons, a pathology known as Diffuse Axonal Injury (DAI) 
[4]. These lesions are responsible for the axonal failure, a phenomenon that can happen abruptly 
(primary axotomy) or with a progressive degradation of the internal components of the axons 
(secondary axotomy) [5], finally resulting in the malfunction of the whole tissue. As a matter of 
fact, these multiscale features are due to the damage mechanisms and to the structure of the 
complex energy landscape at the microscale. As a consequence, the comprehension of these 
phenomena requires to understand the behaviour of the material at this length scale. 

In this paper, we study the effect of forces and loading rates at the level of the axons, considering 
two main components of the axonal cytoskeleton i.e., the microtubules (MT) and the tau proteins 
[6]. MTs are arranged in bundles and are kept together by the crosslinking tau proteins. They do 
not cover the whole length of the axon and their length may vary in the range from 2 to 100 μm. 
There can be found almost 20 MTs per section radially spaced at about 23 – 38 nm, with a Young 
Modulus of about 1.9 GPa [7]. On the other hand, the main function of the tau proteins is to 
stabilize the microtubules and maintain the correct arrangement along the axonal length [8]. It is 
important to stress that another clinical evidence is that agglomerates of tau proteins are found 
inside the brain’s white matter of patients affected by neurodegenerative diseases. This observation 
suggests the possibility that damages caused by mechanical fields may break these proteins 
depending mainly on the force and the loading rate. Indeed, three main regimes can be identified. 
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When the strain and the strain rate are low, the microtubules may slide through each other, and the 
tau proteins can detach and reattach in other vacant sites on the same MT or on adjacent ones. If 
the strain increases, the crosslink tau proteins start to break and are no longer able to reattach. 
When also the strain rate is large, there exists the possibility that the MTs break, causing 
malfunction and irreversible damage [9,10]. From a theoretical point of view, the challenge of 
describing such small systems considering both mechanical and thermal fields at varying rates is 
widely tackled using discrete or continuous models and numerical methods such as Molecular 
Dynamic (MD) simulations [11]. To mention some examples, it is possible to approach the direct 
modelling of the inertial dynamics [12,13] or to describe the evolution of the system using kinetic 
theories [14,15]. On the other hand, the possibility of investigating the microscopic 
characterization of the complex energy landscape of such systems obtaining analytical results is 
still to be thoroughly investigated, possibly considering phenomena such as hysteresis, damage, 
and residual stresses. In this spirit, we refer to recent papers where the study of different biological 
problems has been approached by analytical methods, such as the unfolding and misfolding of 
proteins materials [16-18], the effect of nucleation and propagation stresses in memory shape 
materials taking into account also thermal fields [19,20], focal adhesion [21,22], spider silks and 
new bio-inspired materials [23] or the mechanics of double-stranded polypeptide chains [24].  

Specifically, following [24], we propose a micromechanical-based model describing the 
response of the microtubules and tau proteins to different loading rates (including temperature 
effects) when a shear force is applied to the system, as shown in Fig. 1. The analysis of rate effects 
can be performed by using different approaches such as the Fokker-Planck formulation [25], 
numerical FEM simulation [26] or Langevin dynamics [27]. To highlight the role of energy 
barriers, we will tackle the problem by adopting a Bell-type theory [28] based on Kramer’s rate 
equation [29,30], as widely developed in recent works [24,31]. In particular, based on the 
possibility of evaluating the energy barriers separating the metastable states, we obtain the rate-
dependent response of a system composed of two MTs linked by tau proteins and study the 
mechanical response of such a system under shear forces for different loading rates and 
temperatures.  

  
Fig. 1: Panel a): Mechanical model of the system describing microtubules and tau 

proteins. The energies used for the two microscopic elements are displayed in 
panel b) for the tau protein and in panel c) for the microtubule.  
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Mathematical framework  
Following the theoretical model developed in [24], we consider a bundle of two elastic chains 
representing the microtubules connected by 𝑛𝑛 breakable units spaced by a length ℓ, describing the 
tau proteins. The total length of the system is 𝐿𝐿 = 𝑛𝑛ℓ. The upper and the lower chains are described 
by elastic springs, as shown in Fig. 1c). On the other hand, the behaviour of each breakable unit is 
described by introducing a discrete variable 𝜒𝜒𝑖𝑖 (a “spin” variable) such that the condition 𝜒𝜒𝑖𝑖 = 1 
(𝜒𝜒𝑖𝑖 = 0) corresponds to an attached (detached) configuration. Thus, the quantity 𝑝𝑝 = ∑ 𝜒𝜒𝑖𝑖𝑛𝑛

𝑖𝑖=1  
represents the number of attached proteins (see Fig. 1b). By considering the rescaled end-points 
displacement 𝛿𝛿 = 𝑢𝑢𝑛𝑛𝑢𝑢

Δ
= −𝑢𝑢1𝑙𝑙

Δ
 (Δ representing the breaking threshold displacement of the tau 

proteins, see Fig. 1b) and introducing the total stiffness of the system 𝜅𝜅𝑡𝑡, the free energy and the 
force-displacement relation at the equilibrium read (see Ref. [24] for a detailed calculation)  

𝑔𝑔𝑒𝑒𝑒𝑒(𝑓𝑓) = −𝑓𝑓2

𝜅𝜅𝑡𝑡
+ 𝜇𝜇2 �1 − 𝑝𝑝

𝑛𝑛
� ,               𝛿𝛿(𝑓𝑓) = 𝑓𝑓

𝜅𝜅𝑡𝑡
,   (1) 

where 

𝜅𝜅𝑡𝑡 = 4𝑛𝑛
2𝑛𝑛−𝑝𝑝−1+4𝛾𝛾(𝑝𝑝) ,   𝛾𝛾(𝑝𝑝) = sinh(𝜆𝜆)+sinh(𝑝𝑝𝜆𝜆)

2sinh[(𝑝𝑝+1)𝜆𝜆]−sinh(𝜆𝜆)−sinh(𝑝𝑝𝜆𝜆) ,   𝜆𝜆 = cosh−1 �1 + 2𝜇𝜇2

𝑛𝑛2
�. (2) 

In the previous formula, we introduced the main non-dimensional parameter of the system 

𝜇𝜇2 = 𝜅𝜅𝜏𝜏
2𝜅𝜅𝑀𝑀𝑀𝑀

𝐿𝐿2

Δ2
,     (3) 

where 𝜅𝜅𝜏𝜏 and 𝜅𝜅𝑀𝑀𝑀𝑀 are the stiffnesses of the tau proteins and the of MTs, respectively,  
Energy Barriers 
In our approach, the loading rate affects the probability of jumping from a metastable equilibrium 
solution to another, and it depends on the height of the energy barriers. The ability of overcoming 
these barriers depends, among other effects, on the mechanical and thermal fields. This approach 
allows the possibility of exploring different locally stable solutions with partially detached 
elements. To evaluate 𝑔𝑔𝑏𝑏(𝑓𝑓), i.e. the height of the barrier for a certain value of the applied shear 
force 𝑓𝑓, we initially consider the elements of the system in equilibrium and we study the effect of 
changing the position of the last attached element 𝑝𝑝 from its equilibrium value to the breaking 
threshold, by imposing a force 𝜏𝜏 (see Fig. 1a). The resulting mechanical quantities obtained by 
studying this variational problem represent the equilibrium conditions of the system when the 
energy is maximized (the analogous of a saddle point when smooth non-convex energies are 
considered [31,32]). Thus, we can evaluate the height of the barriers as 

𝑔𝑔𝑏𝑏(𝑓𝑓) = 𝑔𝑔𝜏𝜏(𝑓𝑓) − 𝑔𝑔𝑒𝑒𝑒𝑒(𝑓𝑓),     (4) 
where 𝑔𝑔𝜏𝜏(𝑓𝑓) is the maximized energy and 𝑔𝑔𝑒𝑒𝑒𝑒(𝑓𝑓) is given in Eq.(1) (see Ref. [31] for detailed 
analysis and calculation).  

Rate effects  
Following [29,32], we consider the time-dependent force 𝑓𝑓(𝑡𝑡). The loading rate reads  

𝜐𝜐(𝑡𝑡) = 𝜐𝜐0𝑒𝑒−𝛽𝛽𝑔𝑔𝑏𝑏�𝑓𝑓(𝑡𝑡)�,     (5) 
where the energy barrier is given by Eq. (4), 𝜐𝜐0 is a constitutive parameter and 𝛽𝛽 = 1/(𝐾𝐾𝐵𝐵𝑇𝑇), with 
𝑇𝑇 the absolute temperature and 𝐾𝐾𝐵𝐵 the Boltzmann constant. Following [32], we define the 
probability 𝑃𝑃𝑝𝑝(𝑡𝑡) that the system exhibits 𝑝𝑝 attached units a time 𝑡𝑡. The evolution equation for this 
probability is a first-order differential equation of the form  

𝑑𝑑 𝑃𝑃𝑝𝑝(𝑡𝑡)
𝑑𝑑 𝑡𝑡

= −𝜐𝜐𝑝𝑝→𝑝𝑝−1(𝑡𝑡)𝑃𝑃𝑝𝑝(𝑡𝑡) + 𝜐𝜐𝑝𝑝+1→𝑝𝑝(𝑡𝑡)𝑃𝑃𝑝𝑝+1(𝑡𝑡).   (6) 
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By Eq. (6) we can obtain the value of 𝑃𝑃𝑝𝑝(𝑡𝑡) at time 𝑡𝑡. In particular, it depends on the process 
where the configuration of the system can pass from the state with 𝑝𝑝 attached elements to that with 
𝑝𝑝 − 1 (with rate 𝜐𝜐𝑝𝑝→𝑝𝑝−1(𝑡𝑡)) and the process where the system goes from a configuration with 𝑝𝑝 +
1 attached elements to 𝑝𝑝 (with rate 𝜐𝜐𝑝𝑝+1→𝑝𝑝(𝑡𝑡)). Two configurations must be considered separately 
i.e., 𝜐𝜐𝑛𝑛+1→𝑛𝑛(𝑡𝑡) = 0 and 𝜐𝜐0→−1(𝑡𝑡) = 0. Starting the analysis at time 𝑡𝑡 = 0, the probability of being 
in the fully attached configuration (𝑝𝑝 = 𝑛𝑛) is 𝑃𝑃𝑛𝑛(𝑡𝑡) = 1. Following the action of the applied force, 
the tau proteins start to detach and the probability of finding the system in the initial state decreases 
while the probability of being in the configuration with 𝑝𝑝 = 𝑛𝑛 − 1 increases. This process goes on 
until the system completely breaks (corresponding to the configuration with 𝑝𝑝 = 0).  
Eventually, the total displacement is  

〈𝛿𝛿(𝑡𝑡)〉 = ∑ 𝑃𝑃𝑝𝑝(𝑡𝑡)𝛿𝛿(𝑝𝑝)𝑛𝑛
𝑝𝑝=0 ,     (7) 

with 𝛿𝛿(𝑝𝑝, 𝑡𝑡) given by Eq. (1).  

Results and discussion 
To approach the problem of the rate-dependent response of the microtubule bundles into the 
neuronal axon, we introduced a microscale-based model describing two MTs connected by 
crosslinking tau proteins. In Fig. 2a we show the effect of the loading rate 𝜐𝜐𝑓𝑓 (with the applied 
shear force being 𝑓𝑓 = 𝜐𝜐𝑓𝑓𝑡𝑡). It is possible to observe that as the rate grows the force breaking 
thresholds increase and the system is not able to explore metastable configuration, being confined 
in the solution 𝑝𝑝 = 𝑛𝑛. On the other hand, for low rates, solutions with partially detached elements 
are found before rupture, which occurs at smaller values of the force. Thus, at increasing rates, a 
“Maxwell” behaviour is preferred, with the overall collapse of the system attained without 
exploring other solutions whereas for decreasing rates the sequential detachment of the tau proteins 
is observed, as described in many papers [10,33,34]. In Fig. 2b we show the effect of changing 
temperatures, affecting the possibility of overcoming the energy barriers. As the temperature 
increases, the system exhibits a ductile type of fracture attained at low forces and explores different 
metastable solutions. Conversely, when the zero-temperature limit is approached, i.e. 𝛽𝛽 → ∞, the 
system is ‘frozen’ in the configuration with all the elements attached, following the “Maxwell” 
path. 

Eventually, we obtained the mechanical response of a simple bundle composed of two MTs and 
crosslinking tau proteins and we observed the effect of the loading rate and the temperature. 
Through our model, we obtained results previously described in the literature, where other methods 
such as numerical FEM simulations, Molecular Dynamics or continuum models have been used 
to approach the analysis of similar systems [8-11,33,34]. 

Fig. 2: Panel a) Effect of the loading rate. Panel b) Effect of the temperature.   
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Abstract. In this work, an advanced numerical model, based on the cohesive zone approach and 
the moving mesh technique, is proposed to simulate fracture propagation in quasi-brittle materials. 
In particular, the proposed numerical procedure consists of two stages. In the former one, 
according to the inter-element crack approach, once a suitable stress criterion for fracture onset is 
satisfied, a mesh boundary, representing the crack segment, is selected and aligned along the crack 
propagation direction by using the well-known moving mesh technique. In the latter one a zero-
thickness interface cohesive element, equipped with a traction-separation law, is inserted on-the-
fly along the previously selected mesh boundary, in order to describe the nonlinear fracture 
process. Comparisons with available experimental and numerical results have highlighted the 
effectiveness and the reliability of the proposed model in the prediction of the brittle fracture 
phenomenon. 
Introduction 
The accurate prediction of fracture propagation in quasi-brittle materials is one of the most 
challenging issues in the framework of structural mechanics because of the complex interplay of 
different irreversible processes such as defects nucleation, micro-cracks growth. In the literature, 
different numerical models, based on smeared and discrete fracture approaches, have been 
proposed to analyze fracture phenomena and their influence on the global mechanical response of 
the structures [1]. In particular, the discrete fracture models simulate the crack as an actual 
displacement discontinuity within or between the finite elements of a standard computational 
mesh, adopting a suitable cohesive traction-separation law to describe the crack propagation within 
the so-called fracture process zone (FPZ) [2,3]. Such a modeling approach results to be very 
efficient for predicting the fracture process in quasi-brittle materials with respect to the smeared 
crack approaches that often lead to ill-posed boundary value problems (BVPs) [4]. The discrete 
crack models are often employed to simulate the interfacial crack in adhesive-bonded ductile 
sheets by using different phenomenological-type traction-separation laws, to describe the 
mechanical behavior of the cohesive forces acting along a predefined crack path [5,6]. Recently, 
to predict unknown crack paths, a diffuse interface model has been introduced and employed to 
investigate the damage phenomena in quasi-brittle materials and masonry structures [7,8]. 
However, such a model suffers from the well-known artificial compliance effect and requires a 
suitable calibration of the cohesive properties of the embedded interfaces to ensure the desired 
numerical accuracy [9,10]. Moreover, the strongly nonlinear fracture behavior, including plate end 
debonding phenomena, has been properly simulated by cohesive crack models [11,12]. In some 
recent works, fracture models, based on discrete and smeared crack approaches, have been 
incorporated within advanced numerical homogenization to predict micro-cracking and contact 
evolution in composite materials [13–16]. However, fracture mechanics-based models result to be 
very efficient for predicting damage phenomena with a-priori known crack path but provide some 
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divergences with respect to the experimental outcomes, in terms of crack patterns, in the case of 
unknown crack paths. To overcomes these drawbacks, the moving mesh technique has been 
recently introduced in the structural mechanics field to easily permit the moving of the 
computational mesh according to specific conditions [17–19]. 

In this work, an advanced numerical model, based on the cohesive zone approach and the 
moving mesh technique, is proposed to simulate fracture propagation in quasi-brittle materials. In 
particular, the cohesive fracture model, based on an inter-element crack approach, has been 
employed to describe the nonlinear behavior of the crack while the moving mesh technique allows 
aligning the crack element along the crack propagation direction. 
Adopted numerical framework for cracking simulation  
The numerical procedure proposed to simulate the crack propagation in quasi-brittle materials 
consists of two stages. In the former one, according to the inter-element crack approach, once a 
suitable stress criterion for fracture onset is satisfied, a mesh boundary, representing the crack 
segment, is selected and aligned along the crack propagation direction by using the well-known 
moving mesh technique. In the latter one a zero-thickness interface cohesive element, equipped 
with a traction-separation law, is inserted on-the-fly along the previously selected mesh boundary, 
in order to describe the nonlinear fracture process. 

 
Fig. 1. Equilibrium problem for a 2D fractured body (a), adopted traction-separation law (b), and 
arbitrary closed path around the crack tip for J-integral approach (c). 

In particular, the adopted interface cohesive model relies on a variational formulation referring 
to the problem of a fractured body containing a discontinuity Γd, representing an existing crack 
(Fig.1a). The associated BVP is expressed in the following weak form: find u∈U such that   

( ) ( )  ( )   
\ \

 d  d  d  d      
d d d N

V
Ω Γ Γ Ω Γ Γ

⋅ Ω + ⋅ Γ = ⋅ Ω + ⋅ Γ ∀ ∈∫ ∫ ∫ ∫C u v K u u v f v t v vε ε ,  (1) 

where C and ε are the fourth-order elasticity tensor and the linear strain operator, respectively, 
whereas u and v are the unknown displacement field and arbitrary virtual displacement field, 
respectively, which belong to the set of kinematically admissible displacements U and to set of 
kinematically admissible variations of the approximated displacement field V, respectively. The 
second term in Eq. 1, represents the nonlinear constitutive behavior of the cohesive interfaces 
expressed by a traction-separation law, reported in Fig. 1b, which involves the following effective 
displacement jump: 

 2 2=m n sδ δ δ+ . (2) 

A stress-based criterion has been employed to detect the onset of the fracture and to insert a 
cohesive crack element. In particular, when the normal stress along a mesh boundary exceeds the 
critical tensile strength of the material, such an element is selected and aligned with the theoretical 
crack propagation direction. The direction of the crack extension has been found by the maximum 
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energy release rate (ERR). ERR is computed by using the J-integral-based approach with respect 
to a closed path containing the crack tip and a local coordinate system aligned with the crack 
direction: 

 i
k k ij j

k

uJ Wn n d
x

σ
Γ

 ∂
= − Γ ∂ 

∫ ,  (3) 

with Γ= Γext + Γ++ Γ− an arbitrary closed path around the crack tip singularity (see Fig. 1c). Is 
worth noting that, the Γ+ and Γ− represent the faces of the stress-free crack. The ERR can be 
expressed as a function of J vector components, J1 and J2, as follows: G = J1cos(θ )+J2sin(θ ). 
Maximization of G yields to evaluation of the kinking angle: 

2

1

arctan J
J

θ
 

=  
 

.  (4) 

After that, the selected crack element is aligned according to the computed kinking angle (Eq. 
4). The crack alignment procedure is accomplished by relocating nodes performed by the Arbitrary 
Lagrangian-Eulerian (ALE) description. To this end, a referential configuration Ωχ, whose points 
are identified by the reference coordinates χ, is introduced. The corresponding mesh displacement 
field umesh = X − χ represents a structural change, which, in the context of this work, consists in 
the selected element rotation of the small kink emanated from the current crack tip. 
Numerical results  
In order to validate the proposed numerical fracture model, a numerical simulation of the three-
point bending test, experimentally tested by Rots in [20], is performed, involving a plain concrete 
specimen. Both geometry and boundary conditions of the notched concrete beam are depicted in 
Fig. 2a. The Young’s modulus and the Poisson’s ratio of the bulk material are equal to 20 GPa and 
0.20, respectively. The cohesive parameters, i.e. critical tensile stress, mode-I fracture energy, and 
initial cohesive stiffness, required by the adopted traction-separation law, are set equal to tc = 2.4 
MPa, G = 113 N/m, and K = 1E15 N/m³, respectively.  

 
Fig. 2. Geometry and boundary conditions (a) and adopted numerical discretization (b). 

The numerical discretization adopted for the analysis has been reported in Fig. 2b. In particular, 
within the critical zone ahead of the pre-crack, a suitable mesh refinement has been performed, 
using a uniform (isotropic) Delaunay tessellation and imposing a maximum edge length of 3.00 
mm, which results in an average mesh size of about 1.46 mm. 
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Fig. 3. Numerical loading curves together with the experimental envelope (a) and crack pattern 

obtained by the proposed model and the DIM model (b). 
The numerical results, in terms of load carrying capacity and crack pattern, are reported in Fig. 

3. In particular, Fig. 3a shows a comparison of the loading curves predicted by the proposed model, 
the Diffuse Interface Model (DIM), and the experimental test. The numerical model (DIM), taken 
for comparison purposes, has been recently introduced by some of the authors in [21,22] and relies 
on an inter-element fracture approach according to which cohesive interfaces are inserted at the 
beginning of the simulation along all mesh boundaries inside the critical zone. We can note that 
the proposed model predicts a loading curve within the experimental envelope providing a 
numerical prediction, in terms of peak load, better than the DIM model. This result is confirmed 
by the crack pattern (see Fig. 3b) predicted by the proposed model which results to be coincident 
with the exact crack path, assuming self-similar propagation. 
Conclusions 
In this work, a numerical model, based on the cohesive fracture approach and the moving mesh 
technique, has been proposed to simulate the crack propagation in quasi-brittle materials. In 
particular, once a suitable stress criterion for fracture onset is satisfied, a boundary of the adopted 
mesh is selected and aligned with the theoretical crack direction. This alignment procedure relies 
on the J-integral approach, to compute the kinking angle, and the moving mesh technique, to 
relocate nodes of the mesh due to the crack update. Mode-I fracture has been simulated by the 
proposed model involving quasi-brittle materials like concrete. Comparisons with available 
experimental and numerical results have highlighted the effectiveness and the reliability of the 
proposed model to predict the cracking behavior in concrete structures. As a future perspective of 
this work, the proposed model could be incorporated into a multiscale approach to improve the 
related computational performances, similarly to what has been suggested by [23–25]. 
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Abstract. In this paper the solution for the one-dimensional Stefan problem of fractional order 
was examined, considering a generalization of Fourier's law, in which flux is related to temperature 
through Caputo's fractional derivative.  
Introduction 
The term phase transformation denotes the transition of a thermodynamic system from one 
aggregate state to another. Dealing with phase transformations, it is necessary to refer to the so-
called processes at the interface. They are characterized by two distinct phases and a moving 
interface advancing and consequently by the transformation of one phase and the gradual decrease 
of the other. Typical examples may be liquid-solid phase changes, chemical reactions, liquid-vapor 
transformations etc. 

These phenomena were observed in the late 19th century by Slovenian physicist Joseph Stefan, 
especially the formation of ice in the polar seas, to whom we owe the so-called formulation of 
Stefan's problem [1]. 

Stefan problems are systems of partial derivative differential equations comprising two 
governing equations, for the two phases, with respective boundary conditions and another 
differential equation called Stefan condition, valid at the interface and binding the two phases [2]. 
Given the high nonlinearity of these problems, depending on the choice of boundary conditions 
and because, as time goes on, one domain widens and one shrinks, it is not always possible to 
derive analytical solutions, so it is often necessary to proceed numerically. 

The pivotal equation governing the heat diffusion process of both phases is the Fourier law, 
which links the flux to the temperature gradient. In previous years, however, it has been observed 
that in multiphase conductors or in the presence of high-frequency phenomena, the Fourier 
equation, in its the steady state, cannot fully describe such processes [3]. For this reason, 
modifications and generalizations of Fourier's law have been proposed in the last half of the past 
century. 

Cattaneo suggested a modification of Fourier's law, introducing a new term that considers the 
rate of heat flow [4], but Fourier/Cattaneo law-based models are not appropriate for capturing the 
behavior of recent applications such as high-efficiency exchangers, microprocessor cooling or 
additive manufacturing. 

So, in [5] a fractional formulation of the Fourier equation was proposed, replacing the standard 
integer-order derivative and integral with real-order operators. 

The aim of this paper is to exploit the fractional formulation of Fourier's law to reach the 
solutions found in [6], starting with physical considerations. 
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Derivation of fractional Fourier law 
Considering an inhomogeneous medium (Fig. 1), consisting of several masses, mi, with different 
heat capacities 𝐶𝐶(𝑉𝑉)(𝑧𝑧) , separated by conductive material with different conductivities 𝜒𝜒(𝑉𝑉)(𝑧𝑧) 
and subjected to a flow of heat 𝑞𝑞�(𝑡𝑡): 

 
Fig. 1. Thermodynamical model of inhomogeneous medium [5]. 

Capacities and conductivities hold the following power laws: 𝐶𝐶(𝑉𝑉)(𝑧𝑧) =
𝐶𝐶𝛽𝛽

(𝑉𝑉)𝑧𝑧−𝛽𝛽

Γ[1−𝛽𝛽] , 𝜒𝜒(𝑉𝑉)(𝑧𝑧) =
𝜒𝜒𝛽𝛽

(𝑉𝑉)𝑧𝑧−𝛽𝛽

Γ[1−𝛽𝛽]  with dimensions �𝐶𝐶𝛽𝛽
(𝑉𝑉)� = 𝐿𝐿2+𝛽𝛽𝑇𝑇2

𝐾𝐾
, �𝜒𝜒𝛽𝛽

(𝑉𝑉)� = 𝑀𝑀𝐿𝐿1+𝛽𝛽

𝐾𝐾𝑇𝑇3
. If we examine an infinitesimal part (Fig. 

2) of the medium: 
 

 
Fig. 2. Thermal energy balance of the jth-mass [5]. 

The energy balance for the generic mass 𝑚𝑚𝑗𝑗 involves the rate of internal energy 𝑈𝑈𝑗𝑗 of the mass and 
the incoming and outgoing energy fluxes: 

 
𝑑𝑑𝑈𝑈𝑗𝑗(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑗𝑗
𝑑𝑑𝑢𝑢𝑗𝑗(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑗𝑗𝐶𝐶𝑗𝑗
(𝑉𝑉) 𝑑𝑑𝑇𝑇𝑗𝑗(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝐴𝐴𝑗𝑗𝑞𝑞𝑗𝑗(𝑡𝑡) − 𝐴𝐴𝑗𝑗+1𝑞𝑞𝑗𝑗+1(𝑡𝑡).                                                                                        (1) 

In which 𝑢𝑢𝑗𝑗  is the internal density function of the mass 𝑚𝑚𝑗𝑗. The mass 𝑚𝑚𝑗𝑗 occupies the volume of 
𝐴𝐴Δ𝑧𝑧, so introducing the density ϱ, we can express the mass as 𝑚𝑚𝑗𝑗 = 𝜚𝜚𝐴𝐴Δ𝑧𝑧. Simplifying the 
previous expression, we get (assuming 𝐴𝐴𝑗𝑗 = 𝐴𝐴𝑗𝑗+1): 

 

𝜚𝜚𝐶𝐶𝑗𝑗
(𝑉𝑉) 𝑑𝑑𝑇𝑇𝑗𝑗(𝑡𝑡)

𝑑𝑑𝑡𝑡
= −

𝑞𝑞𝑗𝑗+1(𝑡𝑡) − 𝑞𝑞𝑗𝑗(𝑡𝑡)
Δ𝑧𝑧

.                                                                                                     (2) 
 
Introducing the temperature field 𝑇𝑇𝑗𝑗(𝑡𝑡) → 𝑇𝑇�𝑧𝑧𝑗𝑗 , 𝑡𝑡�, the thermal energy flux field 𝑞𝑞𝑗𝑗(𝑡𝑡) →

𝑞𝑞�𝑧𝑧𝑗𝑗 , 𝑡𝑡�, 𝐶𝐶𝑗𝑗
(𝑉𝑉) → 𝐶𝐶(𝑉𝑉)�𝑧𝑧𝑗𝑗� and performing the limit ∆𝑧𝑧 → 0 in (2) we obtain the following balance 

equation: 
 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 77-82  https://doi.org/10.21741/9781644902431-13 

 

 
79 

𝜚𝜚𝐶𝐶(𝑉𝑉)(𝑧𝑧)
𝜕𝜕𝑇𝑇(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= −
𝜕𝜕𝑞𝑞(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

.                                                                                                           (3) 
 
We can substitute to 𝑞𝑞(𝑧𝑧, 𝑡𝑡) the Fourier law: 𝑞𝑞(𝑧𝑧, 𝑡𝑡) = −𝜒𝜒(𝑉𝑉)(𝑧𝑧) 𝜕𝜕𝑇𝑇(𝑧𝑧,𝑡𝑡)

𝜕𝜕𝑧𝑧
. Finally, we reach the 

diffusion temperature equation: 
 

𝜚𝜚𝐶𝐶(𝑉𝑉)(𝑧𝑧)
𝜕𝜕𝑇𝑇(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑧𝑧
�𝜒𝜒(𝑉𝑉)(𝑧𝑧)

𝜕𝜕𝑇𝑇(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

� .                                                                                       (4) 

 
It remains only to associate the (4) with the corresponding boundary conditions: 𝑞𝑞�(𝑡𝑡) =
lim
𝑧𝑧→0

�−𝜒𝜒(𝑉𝑉)(𝑧𝑧) 𝜕𝜕𝑇𝑇(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝑧𝑧

�    ,   lim
𝑧𝑧→∞

𝑇𝑇 (𝑧𝑧, 𝑡𝑡) = 0. The solution of (4) was found by applying the Laplace 
transform, applying boundary conditions, and then anti-transforming (refer to [5] for more details, 
𝑅𝑅𝛽𝛽 is the anomalous thermal conductivity coefficient): 

 
𝑞𝑞�(𝑡𝑡)
= 𝑅𝑅𝛽𝛽�𝐷𝐷0+

𝛽𝛽 𝑇𝑇0�(𝑡𝑡).                                                                                                                            (5) 
 

Formulation of Fractional Stefan Problem 
Before writing the fractional system, we derive Stefan's condition by the fractional Fourier law. 
Consider two infinitesimal times (highlighted in the figure below) consider two infinitesimal times 
(accentuated in the figure below), in which we will obtain two different values of the interface, 
respectively 𝑠𝑠(𝑡𝑡0) and 𝑠𝑠(𝑡𝑡1): 

 

 
Fig. 3. Schematic representation of two generic heat diffusion times, at which we find two 

interface values. 

We know from thermodynamics that to melt a piece of bar from 𝑠𝑠(𝑡𝑡0) to 𝑠𝑠(𝑡𝑡1) requires heat 
equal to: 

 

𝑄𝑄1 = 𝑉𝑉𝜚𝜚𝑉𝑉 = 𝐴𝐴�𝑠𝑠(𝑡𝑡1)
− 𝑠𝑠(𝑡𝑡0)�𝜚𝜚𝑉𝑉.                                                                                                        (6) 

Heat within both phases propagates through flux of fractional Fourier law, which takes this form: 
 

𝑞𝑞𝛽𝛽,𝑖𝑖 = −𝑘𝑘𝛽𝛽,𝑖𝑖 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝑖𝑖
𝜕𝜕𝜕𝜕

� (𝜕𝜕, 𝑡𝑡).                                                                                                               (7) 
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Where the dimensions of the anomalous diffusivity coefficient are �𝑘𝑘𝛽𝛽,𝑖𝑖� = 𝑔𝑔 𝑐𝑐𝑐𝑐
𝑠𝑠3−𝛽𝛽𝐾𝐾

. To employ the 
principle of energy conservation and equalize the fluxes of liquid and solid to heat 𝑄𝑄1, it is 
necessary to integrate them twice, first with respect to area and then with respect to time. 

 

𝑄𝑄2 = 𝐴𝐴 � �−𝑘𝑘𝛽𝛽,𝐿𝐿 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝐿𝐿
𝜕𝜕𝜕𝜕

� (𝑠𝑠(𝑡𝑡), 𝑡𝑡)

𝑡𝑡1

𝑡𝑡𝑜𝑜

+ 𝑘𝑘𝛽𝛽,𝑆𝑆 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝑆𝑆
𝜕𝜕𝜕𝜕

� (𝜕𝜕, 𝑡𝑡)�𝑑𝑑𝑡𝑡.                                           (8) 

 
Now we can equalize 𝑄𝑄1 = 𝑄𝑄2 and make some simplifications: 

 
�𝑠𝑠(𝑡𝑡1) − 𝑠𝑠(𝑡𝑡0)�𝜚𝜚𝑉𝑉

= � �−𝑘𝑘𝛽𝛽,𝐿𝐿 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝐿𝐿
𝜕𝜕𝜕𝜕

� (𝑠𝑠(𝑡𝑡), 𝑡𝑡) + 𝑘𝑘𝛽𝛽,𝑆𝑆 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝑆𝑆
𝜕𝜕𝜕𝜕

� (𝑠𝑠(𝑡𝑡), 𝑡𝑡)�

𝑡𝑡1

𝑡𝑡𝑜𝑜

𝑑𝑑𝑡𝑡.            (9) 

 
We divide both members by (𝑡𝑡1 − 𝑡𝑡0) and perform the limit for 𝑡𝑡1 → 𝑡𝑡0. Then, since 𝑡𝑡0 can be any 
instant, we substitute 𝑡𝑡: 

 
𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

(𝑡𝑡) = −𝛾𝛾𝛽𝛽,𝐿𝐿 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝐿𝐿
𝜕𝜕𝜕𝜕

� (𝑠𝑠(𝑡𝑡), 𝑡𝑡)

+ 𝛾𝛾𝛽𝛽,𝑆𝑆 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝑆𝑆
𝜕𝜕𝜕𝜕

� (𝑠𝑠(𝑡𝑡), 𝑡𝑡).                                                 (10) 
 

Where 𝛾𝛾𝛽𝛽,𝑖𝑖 = 𝑘𝑘𝛽𝛽,𝑖𝑖

𝜚𝜚𝜚𝜚
 with these dimensions �𝛾𝛾𝛽𝛽,𝑖𝑖� = 𝑐𝑐𝑐𝑐2

𝑠𝑠1−𝛽𝛽𝐾𝐾
. It becomes interesting to note that for 𝛽𝛽 →

0 in (10) we again obtain the classic Stefan's condition. Then writing the complete system in term 
of Caputo derivative [7,8] with  0 < 𝛽𝛽 < 1: 
 

Liquid side: 
 

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝑇𝑇𝐿𝐿
𝜕𝜕𝑡𝑡

(𝑟𝑟, 𝑡𝑡) = 𝛼𝛼𝛽𝛽,𝐿𝐿 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕2𝑇𝑇𝐿𝐿
𝜕𝜕𝜕𝜕2

� (𝜕𝜕, 𝑡𝑡)                        0 < 𝜕𝜕 < 𝑠𝑠(𝑡𝑡), 𝑡𝑡 > 0.                                (10.𝑎𝑎)

𝜕𝜕𝑇𝑇𝐿𝐿
𝜕𝜕𝜕𝜕

(0, 𝑡𝑡) = −
𝑞𝑞𝑐𝑐(𝑡𝑡)
𝑘𝑘𝐿𝐿

= −
𝑞𝑞0

𝑘𝑘𝐿𝐿√𝑡𝑡1−𝛽𝛽
.                                                                                             (10. 𝑏𝑏)

𝑇𝑇𝐿𝐿(𝑠𝑠(𝑡𝑡), 𝑡𝑡) = 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡.                                                                                                                           (10. 𝑐𝑐)

 

 
Solid side: 
 

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝑇𝑇𝑆𝑆
𝜕𝜕𝑡𝑡

(𝑟𝑟, 𝑡𝑡) = 𝛼𝛼𝛽𝛽,𝑆𝑆 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕2𝑇𝑇𝑆𝑆
𝜕𝜕𝜕𝜕2

� (𝜕𝜕, 𝑡𝑡)                     𝑠𝑠(𝑡𝑡) < 𝜕𝜕 < ∞, 𝑡𝑡 > 0.                                  (11.𝑎𝑎)

𝑇𝑇𝑆𝑆(𝑠𝑠(𝑡𝑡), 𝑡𝑡) = 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡.                                                                                                                           (11. 𝑏𝑏)
𝑇𝑇𝑆𝑆(∞, 𝑡𝑡) = 𝑇𝑇𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶.                                                                                                                               (11. 𝑐𝑐)
𝑇𝑇𝑆𝑆(𝜕𝜕, 0) = 𝑇𝑇𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶.                                                                                                                               (11.𝑑𝑑)
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Interface condition: 
 

�
𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

(𝑡𝑡) = −𝛾𝛾𝛽𝛽,𝐿𝐿 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝐿𝐿
𝜕𝜕𝜕𝜕

� (𝑠𝑠(𝑡𝑡), 𝑡𝑡) + 𝛾𝛾𝛽𝛽,𝑆𝑆 � 𝐷𝐷0𝑐𝑐 𝑡𝑡
𝛽𝛽 𝜕𝜕𝑇𝑇𝑆𝑆
𝜕𝜕𝜕𝜕

� (𝑠𝑠(𝑡𝑡), 𝑡𝑡).                                             (12. 𝑎𝑎)

𝑠𝑠(0) = 0.                                                                                                                                             (12. 𝑏𝑏)
 

 
Where 𝛼𝛼𝛽𝛽,𝑖𝑖 = 𝑘𝑘𝛽𝛽,𝑖𝑖

𝜚𝜚 𝑐𝑐𝑐𝑐𝑖𝑖
 are the anomalous diffusivity coefficients: �𝛼𝛼𝛽𝛽,𝑖𝑖� = 𝑐𝑐𝑐𝑐2

𝑠𝑠1−𝛽𝛽
. The solutions of 

(11.𝑎𝑎 − 12. 𝑏𝑏)  were found in [6], not shown here for brevity. 
 
Numerical Application 
Now some comparisons between the classical and fractional solutions will follow. The numerical 
data that will be used, for example purposes only, are from a Titanium alloy. For simplicity, 
parameters such as thermal conductivity, which depend on the order of derivation in the fractional 
case, will be taken in equal number value with respect to their integer-order counterparts. So, for 
example, 𝑘𝑘𝛽𝛽,𝐿𝐿 = 𝑘𝑘𝐿𝐿.  Here are data for the Titanium alloy used: 𝜚𝜚 = 2.67 𝑔𝑔

𝑐𝑐𝑐𝑐3, 𝑉𝑉 = 171.6 𝐽𝐽
𝑔𝑔

, 𝑘𝑘𝐿𝐿 =

0.3 𝑊𝑊
𝑐𝑐𝑐𝑐 𝐾𝐾

, 𝑐𝑐𝑐𝑐,𝐿𝐿 = 1.18 𝐽𝐽
𝑔𝑔 𝐾𝐾

, 𝑘𝑘𝑆𝑆 = 0.081 𝑊𝑊
𝑐𝑐𝑐𝑐 𝐾𝐾

, 𝑐𝑐𝑐𝑐,𝑆𝑆 = 0.43 𝐽𝐽
𝑔𝑔 𝐾𝐾

, 𝑞𝑞0 = 1000 𝑊𝑊
𝑐𝑐𝑐𝑐2 √𝑠𝑠 ,𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 = 1923 𝐾𝐾, 

𝑇𝑇𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶 = 298 𝐾𝐾. In the next graph it is possible to observe, for a certain fixed time, different 
interface curves as 𝛽𝛽 changes:  
 

 
Fig. 4. Interface functions in 𝜷𝜷 dependence, while in blue the classic solution.  

For 𝛽𝛽 = 0 the interface function derived from the problem in fractional form (dashed red curve) 
coincides with the classical solution (blue curve). Instead, as 𝛽𝛽 increases there is a rapid decrease 
in the process, so fast that even just for a 𝛽𝛽 = 0.5 the process reaches almost complete stationarity. 
Examples were not given for values above 0.5 because the curves were completely parallel to the 
x-axis, meaning that the interface remains in the same position for all time. 

Lastly, in Fig. 4, the functions of temperature distributions at the same time fixed for the 
interface graph and at different values of 𝛽𝛽 were plotted. Again, for 𝛽𝛽 = 0, the fractional functions 
(black and grey) coincide with the classical functions (red and blue). The other liquid and solid 
curves have been plotted in the same colour for simplicity.  
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Fig. 5. Temperature distributions for liquid and solid in 𝜷𝜷 dependence. In red and blue the 

solutions of the classical problem, in orange the melting temperature. The point where the curves 
meet on the melting line is the value of the interface. 

  
Conclusions 
In this paper, the solution for the one-dimensional stefan problem of fractional order was 
examined. It started from the fractional beta-order generalization of Fourier's law and then derived 
the formulation of the problem. By varying the order of the differintegral operator the process goes 
into subdiffusion and already for small values of beta slows down considerably, while for 𝛽𝛽 = 0 
we obtain to the solution of the classical problem. 
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Abstract. In this paper, an enhanced beam model based on a 5-parameter displacement field, 
recently proposed by the authors and able to reproduce the Poisson effect in transverse direction 
is presented, and utilized to simulate the fully geometrically nonlinear response of elastic beam 
structures. The adoption of the linear solution as approximation functions for the nonlinear case 
allows prediction of nonlinear response of problems involving complex geometries with a 
relatively small computational effort. Several numerical examples of benchmark problems are 
analyzed, highlighting the characteristic features of the proposed five-parameter model and 
comparing the results with those obtained using the classical Bernoulli beam model and 3D finite 
element model.  
Introduction 
The development of enriched beam models aiming to overcome the classical Euler-Bernoulli or 
Timoshenko-Ehrenfest hypotheses [1] is currently an active research subject. Among them, the 
cubic displacement model proposed by Reddy in the early 1980s [2] is certainly among the most 
popular [3-5], and has paved the way to many models proposed later on, generally motivated by 
the need to create a consistent and straightforward model able to simulate the mechanical behavior 
of the new materials and structures now available. For instance, in [6] the authors compare the 
high-order beam theories available in the literature to describe sandwich beams and based on 
polynomial expansions, whereas in [7] the authors propose a strain-based geometrically 

nonlinear beam formulation for structural and aeroelastic modeling and analysis of slender 
wings of very flexible aircraft. A beam model suitable for meta-materials design in a dynamic 
setting and formulated directly in a discrete way is recently reported in [8]. A cubic displacement 
field for flexural analysis of two-layered composite beams is proposed in [9], and a higher-order 
beam model able to accurately represent the buckling behavior of three-dimensional thin-walled 
structures is proposed in [10]. The number of works dealing with this subject is very large, and the 
interested readers can find in [1,11] reviews of the literature containing hundreds of papers devoted 
to bending, buckling and free vibration analyses based on different beam models. A common 
feature of all this model, justified by experimental evidence, is adopting an axial displacement 
component enriched with various contributions while leaving the transverse component unchanged 
(i.e., assuming inextensibility of the transverse normal lines and, as a consequence, neglecting the 
Poisson effect). Nevertheless, such a hypothesis also affects the strain and the stress distribution 
over the beam, sometimes in a meaningful way. Moreover, the assumption of constant transverse 
displacement in the beam thickness does not allow to evaluate the Poisson effects which, in some 
cases, can be of considerable interest [12]. In this paper, the nonlinear version of the enhanced 
beam model based on a 5-parameter displacement field, recently proposed in [13] and able to 
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reproduce the Poisson effect in transverse direction is presented. This work summarizes the results 
recently published by the authors in [14] and stems from the 7-parameter displacement field, 
proposed in [15] for large deformation analysis of composite shell structures, simplified by the 
one-dimensional nature inherent in the beam model. The loss of information in the passage from 
a two-dimensional to a one-dimensional model is rewarded by the identification of an analytical 
solution able to overcome the difficulties associated with the numerical implementation of the 2D 
model. As in [15], the new kinematic model is utilized to simulate the fully geometrically nonlinear 
response of elastic beam structures. 
Governing equations 
Structural theories can be developed by expanding the displacements in a power series of the 
transverse coordinates [1]. In the proposed model the displacement field is a linear expansion of 
the thickness coordinate around the mid-surface and the transverse displacement is parabolic 
through the thickness coordinate y of the beam as follow (Figure 1): 
 

2 0x v

y u

s u
y y

s v
ϕ
ϕ ψ

      
= + +      
     

                       (1) 

 
Fig. 1: Displacement field proposed in Eq. (1), compared with classical Bernoulli beam model. 
The Figure shows how both the new parameters   ψ and 

uϕ  contribute to the deformation in the 
direction perpendicular to the cross section area. The remaining kinematic parameters are 

common to the Timoshenko beam model. 
Given the displacement field (1), under the von Karman hypothesis the linear and nonlinear 

strain components can be accordingly calculated as: 
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the dual stress vector corresponding to the linear strain can be obtained by invoking the virtual 

work equivalence:  
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having indicate with ,T T
x y xy x yX Xσ σ τ   = =   σ X  the vectors containing the stress and the 

applied mass-forces, respectively, with: 
 

[ ]
[ ]

;

;

T
v u u

T
u v
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u v

η χ χ ϕ φ ω

ϕ ϕ ψ

=

=

q

U
                    (4) 

 
the generalized strain and displacement vectors and with:  
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2
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;

;
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x y x y yA

y y y y dA N M M N T M V

X X yX yX y X dA n p m r q

σ σ τ σ τ σ τ   = =   

 = = 

∫
∫

Q
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The derived vector of generalized stress and applied load, respectively.  

 

 
Fig. 2: Mechanical interpretation of the generalized loads deriving by the mass forces. In the 
proposed model, the axial load Xx returns the two distributed loads n(x) and m(x), the latter 

accounting fort he position of n(x). Both are considered in first and higher-order beam theories, 
whereas Bernoulli beam model only consider n(x). Regarding the out-of-plane contributes, the 
proposed model shares with ones available in the literature the generalized component p(x). To 

this it adds the two more contributes q(x) and r(x) invisible tot he classical models.    
 

It is worth noticing that, compared with the Timoshenko beam, the proposed model presents 
the four more stress components ( ), , ,xy y yM N V M dual to the strain components ( ), , ,u uχ ϕ φ ω  and 
the two more applied loads ( ),r q dual to the displacements ( ),uϕ ψ . In particular, the applied load 

yA
r yX dA= ∫  can be interpreted as a moment resulting from the mass force 𝑋𝑋𝑋𝑋 applied in the 

direction perpendicular to the middle line of the beam, so that an applied load 0 1
y y yX X X y= + , 

varying linearly along y, returns in addition to the generalized load 0
0 yp I X=  common to the 

classical beam models, an additional component 1
2 yr I X= . If isotropic, in plane stress state the 

constitutive relationships between stress and strain components involved in the proposed model 
is: 
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The development of the nonlinear equilibrium equations lies on the application of the Principle 

of the Minimum Potential Energy, sum of the elastic stored energy and geometric potential energy, 
obtained neglecting terms of order higher than two [1]. The sum of external energy with the linear 
and non-linear contribution of the internal virtual energy assumes the form: 
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The weak form of the equilibrium equations: 
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gives the following system of two in-plane: 
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and three out-of-plane: 
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equilibrium equations. It is interesting to note that the proposed kinematic model also affects 

the equations governing the in-plane behavior: assuming a Poisson’s ratio 𝜈𝜈 = 0, Eqs. (9) returns 
two uncoupled equations, the first of which related to the 𝑢𝑢-component and coincident with the 
classical in-plane equilibrium equation, the latter in terms of the 𝜑𝜑𝑢𝑢-component. Both are affected 
by a nonlinear contribution (set to zero assuming the von Kármán hypothesis). The analytical 
solution of the linear expressions of Eqs. (9-10), reported in [13] and [14] are finally adopted in a 
displacement-based approach to solve structures with general geometries. 
Examples 
The proposed example is a simply supported, two-member L-shaped structure subjected to a single 
eccentric load shown in Fig. 3. Each member has a length 6𝐿𝐿 = 120 cm and a 2 cm by 3 cm 
rectangular cross section. Originally proposed by Lee et al. [16], and later studied by several 
researchers [17–19], this structure exhibits complicated equilibrium path, characterized by large 
displacement including both snap-through and snap-back phenomena. Fig. 3 contains a 
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comparison of the present solution with the solution given in [17] in terms of 𝑢𝑢 and 𝑣𝑣 displacement 
components of the loaded point.  
 

 

 
Fig. 3: Geometry, stress field and equilibrium path of a Lee’s frame with 𝐿𝐿 = 20 cm and ℎ = 0.3 

cm. The Figure shows as the proposed model still accurately traces the equilibrium path with 
negligible differences with respect to the analytical solution. However, the stress field obtained 
at section 𝐶𝐶 still shows significant variations with the Poisson ratio 𝜈𝜈, matching the Bernoulli’s 

values only for 𝜈𝜈 = 0. 
 
The proposed model accurately traces the equilibrium path, with negligible differences with 
respect to both Bernoulli and analytical solution for each value of the Poisson ratio; however, it 
shows an increasing value of any 𝜎𝜎-component by increasing the Poisson ratio 𝜈𝜈. 
Summary 
In this work an enhanced beam model suitable for nonlinear analysis of frame structures us 
developed. The model’s ability to predict both displacements and stresses is tested by comparing 
the produced results with ones available in the literature for the classical Bernoulli beam model. 
The obtained results show that, for straight thin beams, the displacement field does not present 
appreciable differences but when the Poisson ratio is different from zero the related stress field 
show substantial increase in magnitude.  
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Abstract. Prandtl’s membrane analogy for cylindrical bars under torsion is extended to beams 
with multi-material cross section of any geometry. It was demonstrated that the problem is 
governed by equations formally analogue to those describing the deformation of an inflated 
membrane, differently tensioned in the regions corresponding to the cross-section domains hosting 
different materials. The analogy allows to evaluate not only the state of stress in the composite bar, 
but also its torsional stiffness. Here, the proposed method is used to evaluate the torsional response 
of a wide range of geometries, corresponding to glued multi-material bars, layered composites and 
laminated glass with reinforcements. 
Introduction 
There is a renewed and growing interest for non-homogeneous, multi-material, sandwich and 
laminated beams and bars. It is important to assess their response to torsion because they can be 
used as shafts, or at risk of flexural-torsional buckling. Elements of this type are usually verified 
using three-dimensional Finite Element (FE) models, requiring a consistent computational effort 
and a particular attention at the interface and boundary conditions at the end sections.  

It is well known that the linear elastic problem à la De Saint Venant for a cylindrical bar under 
torsion is governed by differential equations and boundary conditions presenting a formal analogy 
with those describing the small deformation of an inflated initially-flat membrane stretched by an 
uniform equibiaxial stress, shaped as the cross section of the bar and constrained at the border. 
This membrane or soap-film analogy, ingeniously first proposed by Prandtl in 1903 [1], has been 
recently extended [2] to multi-material cross sections of any geometry. Specifically, it has been 
demonstrated that the problem is governed by the same equations describing the deformation of 
an inflated membrane, differently tensioned in the regions corresponding to the cross-section 
domains hosting different materials, under a stress state inversely proportional to shear moduli of 
the materials. The torsional stiffness is related to the volume enclosed between the deformed 
membrane and its reference flat configuration. The model allows to recover the case of multi-
connected cross sections, by considering the holes as material domains with vanishing elastic 
stiffness. In the analogy, these correspond to infinitely taut regions of the membrane, that remain 
plane when pressurized.  

Here, we present the practical use of the extended membrane analogy, to estimate the torsional 
stiffness in three different kind of composites: multi-material bars with circular symmetry, layered 
composites  and laminated glass strengthened by stiff elements. For the simplest case, the multi-
tensioned membrane problem can be solved in closed from, while for more complex geometries 
the membrane problem is implemented in a commercial FE code. In general, the numerical model 
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of the membrane presents no difficulty, and it is certainly much easier than implementing a three-
dimensional FE model for the whole bar. 
The membrane analogy 
Consider the De Saint–Venant’s problem for a prismatic bar, whose cross section is composed by 
N different materials, with shear modulus Gi (i=1,…, N), connected by smooth interfaces, 
subjected to a load distribution at the ends equipollent to a torque T. With reference to Fig. 1, 
introduce the right-handed reference system (x,y,z), with z coincident with the bar axis, and denote 
by Ωi the domain hosting the ith material, by Γi0 the intersection of the boundary of Ωi with the 
external boundary, and by Γij the interface between materials i and j (i ≠ j). To distinguish ‘open’ 
and ‘closed’ bi-material interfaces, the latter will be formally denoted by 0

ijΓ . 

   
Figure 1. Scheme of a multi-material cross section. 

 
In analogy with the classical approach by Prandtl, introduce, for each material domain, the stress 

function Fi(x,y), such that the shear stresses take the form 
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Using the same arguments of the classical approach, for the ith material, 
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matching conditions [3] require the continuity of the normal traction, and of the strain in tangential 
direction. In terms of stress function, this may be written as [2]  
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where n denote outward normal vector on Γij, as depicted in Figure 1. If the jth material domain 
Ωj is enclosed by a closed curve 0

ijΓ , recalling (2), one obtains [2] 
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Once the stress function has been determined, the torque T and the torsional stiffness k are 
obtained as 
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Consider now an inflated membrane, defined by the same domain Ω, subjected to a uniform 
pressure p, whose (equibiaxial) tension is not uniform: the membrane portions corresponding to 
the domains Ωi are subjected to the tension si =1/(2Gi). Denoting with wi(x, y) the out-of-plane 
displacement of the portion Ωi, the governing equations read 

iii inspyxw Ω−=∆ /),(   and   00 ii onyxw Γ=),( , (6) 

with interface conditions 
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The first of (7) states the continuity of the membrane displacement at the interface, while the 
second may be interpreted by considering that, under the hypothesis of small out-of-plane 
displacements, n∂∂ /),( yxws ii represents the out-of-plane force per unit length exerted on the 
interface by the tension of the membrane portion Ωi. Therefore, it corresponds to the out-of-plane 
equilibrium condition for the interface Γij. Observe that the in-plane equilibrium of the interface 
cannot be satisfied (except for the trivial case si =sj). Hence, the membrane necessitates constrains 
in correspondence of the interface, which allow out-of-plane movements but refrain in-plane 
displacements, providing a constraint reaction that re-establishes in-plane equilibrium. 

If the contour 0
ijΓ  is closed, it may be verified that 
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which corresponds to the condition of global equilibrium in the out-of-plane direction of the 
whole membrane portion Ωj, subjected to a total load jpA . 

There is a formal analogy between equations (2-4), governing the torsional response of the 
multi-material bar, and the “multi-tensioned” membrane equations (6-8). As in the classical 
Prandtl’s analogy, the torque T and the torsional stiffeness k (5) correspond to the double of the 
volume V contained between the deformed membrane and its projection on the (x, y) plane, and to 
2V/p, respectively. As discussed in [2], the analogy may be extended to multiply connected cross 
sections, by considering the holes as domains hosting a material with vanishing elastic modulus, 
corresponding in the analogy to regions where the membrane is infinitely taut, i.e., sj → ∞. 
Practical application 
For simplest geometries, the problem can be solved in closed form, providing exact results. For 
most complicated cases, the analogy is very useful, but not for an experimental verification, as 
originally conceived by Prandtl, which is possible but not easy. More conveniently, the membrane 
problem can be directly implemented in a commercial FE code, allowing to consider membrane 
portions with different tautness. Therefore, one can determine the torsional stiffness for multi-
material sections of any kind with a two-dimensional numerical model, at the same time evaluating 
the stress state, and use the result in a subsequent structural model based on 1D beam elements. 
This procedure simplifies the common engineering approach based on a 3D FE model, requiring 
a consistent effort for meshing and a particular attention at the interface and boundary conditions 
at the beam ends. 
Working Examples 
Example 1: Glued multi-material bar with circular symmetry. 
Consider the multi-material bar whose cross section is shown in Fig. 2a, composed of an inner 
cylindrical bar of radius R23 and an external hollow cylinder with internal radius R12 and external 
radius R01, both made of steel (G1=G3= 80 GPa), glued by a thin layer of glue, of thickness t and 
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mean radius Rm, with variable shear modulus G2. Thanks to the circular symmetry, both the 
torsional and the membrane problems, associated with eq,s (2-3) and (6-7), respectively, can be 
solved in closed form. The volume enclosed in the deformed membrane is given by 
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Hence, the torsional stiffness (5) is 
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Fig. 2b shows k as a function of G2, for R01= 20 mm and Rm=10 mm (obviously, R23= Rm-t/2 
and R12= Rm+t/2), for different values of t, together with the qualitative deformed shape of the 
corresponding membranes, for different values of G2. It is evident that the influence of the glue 
stiffness on the overall torsional stiffness is quite limited. 

 

a) b)  
Figure 2. Example 1. a) Considered geometry, and b) torsional stiffness as a function of G2, 

with qualitative membrane deformed shape for G2=G1/100, G2=G1/2, and G2=G1. 
Example 2: triple laminated glass element. 
Consider now the triple laminated glass element of Fig. 3a, with b=200 mm, composed of three 
glass plies (h =12 mm, Gglass =28.69 GPa), bonded by two interlayers of thickness t = 1.52 mm. 
To evaluate the influence of the interlayer properties on the torsional response, its shear modulus 
Gint is made to vary between 0 (correspondent to infinitely taught membrane) and Gglass. 

To numerically evaluate the torsional stiffness, a 3D model has been implemented with the 
software ABAQUS. A relative rigid rotation of 0.1 rad has been prescribed to the extreme cross 
sections of a 1m long beam, while allowing the warping of the cross section. The body has been 
discretized with quadratic solid elements with reduced integration. The membrane model has been 
implemented by using linear quadrilateral membrane elements with reduced integration, with the 
same mesh used for the beam cross section. Null displacements have been prescribed on the 
external boundary, while at the inner interfaces only the in-plane displacements are prevented. 
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a)   b)  
Figure 3. Example 2. a) Considered geometry, and b) torsional stiffness as a function of Gint, 
with qualitative membrane deformed shape for Gint=10 MPa, Gint=100 MPa, and Gint=1000 

MPa. 
Fig. 3b shows the comparison of the torsional stiffness evaluated by means of the torsion FE 

analyses (circles), and with the membrane analogy (stars). The results are in very good agreement 
(max error of the order of 1%). The analytically evaluated bounding values, corresponding to the 
cases of interlayer with vanishing stiffness (Gint →0) and of a full-glass section (Gint = Gglass) are 
plotted on the same graph. Remarkably, the computational effort required to numerically solve the 
membrane problem is of about 1% of that required to solve the 3D torsion problem. 

Example 3: triple laminated glass element, with steel reinforcement. 
Laminated glass beams and fins are often reinforced by steel elements, to avoid brittle response 
and to enhanced their failure behavior [4]. Here, the same triple laminated glass element studied 
in Example 2, reinforced by a steel element of width w=10 mm, as shown in Fig. 4, is considered.  

 

Figure 4. Example 3. Considered geometry. 
The numerical evaluation of the torsional stiffness has been conducted as described for Example 

2, by considering two different values for the interlayer stiffness, i.e., Gint=10 MPa, and Gint=100 
MPa. The qualitative membrane deformed shape for these cases are shown in Fig. 5. 
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a)  b)  
Figure 5. Example 3Membrane deformed shape for a) Gint=10 MPa, b) Gint=100 MPa. 

Table 1 records the torsional stiffness k, evaluated either with FE analysis of the torsion problem 
and with the membrane analogy. Again, the results are in very good agreement. The computational 
effort required to numerically solve the membrane problem is of about 0.6% of that required to 
solve the 3D torsion problem. 

Table 1. Example 3. Torsional stiffness for Gint=10 MPa and Gint=100 MPa. 
 k (FEM-torsion) [Nm2] k (FEM-membrane) [Nm2] Error [%] 
Gint= 10 MPa 31615.95 31604.00 0.038 
Gint= 100 MPa 76467.32 76558.25 -0.119 

 
Conclusions 
The semi-analytical method based on an extension of the classical Prandtl’s membrane analogy, 
allows to readily evaluate the torsional properties of multi-material bars. This method replaces the 
3D FE analysis of the torsion problem for the bar, which is time-consuming due to the complex 
shape and the high numbers of materials, with a FE model of the equivalent membrane structure. 
In the worked examples, this required about the 1% of the computational effort for the 3D case. 

The practical use of this method has been here demonstrated for a wide range of geometries, 
corresponding to glued multi-material bars, layered composites and laminated glass beams with 
reinforcements. The worked examples confirm the potential of this approach in providing both a 
qualitative (intuitive) and quantitative indication of the torsional properties, and its advantages in 
the practice of structural design. We believe that the method here proposed may represent a 
powerful tool to engineers for the characterization of the torsional response of composite and 
layered structures, also in view of their verification against buckling under bending.  
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Abstract. Flexural tensegrities represent a class of structural elements composed of segments in 
unilateral contact along properly-designed pitch profiles and held together by pre-tensioned cables. 
The cables are constrained in cavities inside the segments and can move within them, while the 
segments can roll one another along the pitch surfaces, thus straining the cables to an amount 
dictated by the shape of the contact profiles, and affecting the energy landscape of the assembly. 
A range of possible field applications, yet to be fully explored, is here presented. 
Introduction 
The term tensegrity was coined by Buckminster Füller [1] to indicate structures whose integrity is 
granted by tensioned cables, prestressed by matching a few floating compression struts. A novel 
type of beam-like structures was proposed in [2]. They have been named flexural tensegrity to 
indicate that they are formed by a chain of segments whose integrity under flexure is provided by 
prestressed tendons anchored at the beam ends and pressing the segments together. The key point 
is that the contact surfaces of adjacent segments are shaped according to properly designed pitch 
profiles, such that the relative rotation of the segments opens up the joints. There is a substantial 
difference with prestressed reinforced concrete segmented beams, for which the contact joints are 
approximately flat surfaces, designed to remain tight (no opening) at least in the serviceability 
limit state. Here, on the contrary, the opening of the joints produces the straining of the tendons, 
free to move in properly shaped cavities inside the segments (unbonded cables), to an amount 
dictated by the shape of the contact surfaces. This affects the elastic energy of the system, thus 
characterizing the constitutive bending properties, as a function of the shape of contact profiles.  

The flexural-tensegrity concept can be explored in many forms. By changing the shape of the 
contact profiles, while the cables axially move inside tubular sheaths, either linear, or sub-linear 
or super-linear constitutive responses can be obtained [2]. As a function of the tendon stiffness, 
nonlinear Duffing-like vibrations are attained and can be controlled by varying the tendon force 
[3]. By enhancing the mobility of the tendon in large cavities, the bending energy can be made 
non-convex in type [4], possibly achieving complex snap-through sequential motions [5]. The 
limit, when the number of segments goes to infinity and their length to zero, corresponds to a 
particular type of Euler's elastica with nonlocal response [6], whose bent shape can be computed 
either analytically (with elliptic integrals), or numerically.  

Here, we want to present a possible range of field applications, yet to be fully explored. The 
segmental beam can be used in archery, to manufacture a new type of bow [7], and in soft robotics, 
obtaining limbs controlled by internal/external cables. Multi-stable flexural tensegrities can be 
employed for propulsion in fluids in the form of flagellating tails [8], while larger scale 
applications in kinetic architecture, yet to be fully appreciated, can be found in the manufacturing 
of movable skeletons supporting envelopes for water collection and shielding. 
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The concept of flexural tensegrity 
Flexural-tensegrity structures [2] consist of segments, supposed to be stiff, that are pierced and 
house tubular sheaths, or properly shaped larger cavities, through which an unbonded elastic cable 
can freely slide while keeping the segments together. Specifically, the contact surfaces are tailor-
shaped, so that the segments can rotate one another along the design pitch profiles in pure rolling 
motion (no sliding). To illustrate, Figs. 1(a) and 1(b) report a theoretical scheme for a simply-
supported flexural-tensegrity beam under transversal loads in the reference straight configuration 
and in the deformed state under applied loads, respectively. The cable (red solid line in Fig. 1) is 
tensioned and anchored only at the beam ends, where additional springs can be added in series to 
increase the cable compliance. A detail view of the segments in contact is shown in Fig. 1(c): the 
segments are pressed together and a certain stiffness against relative rotation is offered, similarly 
to a spring hinge, because their rotation causes the elongation of the cable. The elongation between 
segments 𝑖𝑖 and 𝑖𝑖 + 1 in Fig. 1(c) is indicated as Λ𝑖𝑖 , while the total elongation of the cable reads 
Λ = ∑ Λ𝑖𝑖𝑛𝑛−1

𝑖𝑖=1  , being 𝑛𝑛 the total number of segments in the chain. Note that, since the cable can 
freely slide within the segments, the increase of length due to the relative rotation of just one joint 
causes an increase of tensile force in the cable that is transmitted to all the other joints of the 
segmental beam. This renders the flexural response nonlocal in type.  

 

 
(a) 

 
 

(c)  
(b) 

Fig. 1. Theoretical scheme for a simply-supported flexural-tensegrity beam under transversal 
loads: (a) reference straight configuration; (b) deformation under applied loads; (c) detail of the 
contact joint, with indication of the lever arm 𝑎𝑎𝑖𝑖 and the local cable elongation 𝛬𝛬𝑖𝑖. 

Another noteworthy parameter, reported in Fig. 1(c) is the lever arm 𝑎𝑎𝑖𝑖 of the cable tensile force 
𝑁𝑁 with respect to the pitch point. Let 𝑁𝑁0 denote the initial prestress in the cable and 𝐾𝐾 its effective 
axial stiffness, accounting for the springs in series. Hence, the internal bending moment at joint 𝑖𝑖 
can be written as 𝑀𝑀𝑖𝑖 = 𝑁𝑁𝑎𝑎𝑖𝑖 = (𝑁𝑁0 + 𝐾𝐾Λ)𝑎𝑎𝑖𝑖 . Note that both Λ𝑖𝑖 and 𝑎𝑎𝑖𝑖 depend upon the shape of 
the pitch profiles when the relative rotation of the segments is increased: the response of the joint 
can be tuned by simply changing the shape of contact profiles, kept fixed the cable properties. 

The requirement that the segments are in pure rolling contact is fulfilled by means of the 
interlocking provided by conjugate profiles associated with the pitch profiles, for which various 
possibilities are reported in Fig. 2. Each segment is composed of three layers: the central one 
reproduces the pitch profile, while the two external ones are shaped according to the conjugate 
profiles. Each one of the external layers can be shaped according to smooth conjugate profiles, as 
per Fig. 2(a), or manufactured with multiple teeth similarly to spur gears, as in Fig. 2(b).  

Under the hypothesis of stiff segments (rigid in the limit case), one can overlook their 
deformation energy, so that the only contribution remains that of the (compliant) tendon. In this 
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case, with respect to the reference state under null external actions, the variation of the strain 
energy of the structure reads ∆𝑈𝑈 = 𝑁𝑁0Λ + KΛ2/2, which depends upon the cable initial prestress 
𝑁𝑁0 and, specifically, the shape of contact profiles through the total cable elongation Λ. The 
Lagrangian variables for the bending problem can be set equal to the rotations 𝜑𝜑𝑖𝑖 of the segment 
𝑖𝑖, 𝑖𝑖 = 1. . .𝑛𝑛 (Fig. 1(b)). A variational approach, via Hamilton principle [9], can be used to find the 
set of nonlinear equations governing the static and dynamic response of the structural system. 

 

 
(a) 

 
(b) 

Fig. 2. Three-dimensional drawing of the joint. Exploded view and assembled joint in the rotated 
state for: example (a) with one pair of smooth conjugate profiles (external layers) and pitch 
profiles (central layer) and (b) with toothed profiles (external layers) and pitch profiles (central 
layer). Blue dashed lines indicate the cable axis; exposed portion of the cable is drawn in red in 
the rotated configurations. 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 
Fig. 3. Flexural-tensegrity bow: (a) photograph of the assembled bow; (b) components of the bow, 
including segments, bow string, prestressing tendons and additional springs; (c) the bow can be 
packed in a prismatic box for transportation. (d) Influence of the shape of pitch profiles on drawing 
force 𝑃𝑃 as a function of drawing height 𝑓𝑓. 

Examples 
The beam-like segmental structure, with just one cable passing through the segments inside a 
tubular sheath, as per the schematic of Fig. 1, has been used to manufacture the elastic limbs of a 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 97-102  https://doi.org/10.21741/9781644902431-16 

 

 
100 

new type of bow. The assembled bow is displayed in Fig. 3(a); the various components (segments, 
bow string, one prestressed tendon for each limb, and additional springs) are shown in Fig. 3(b). 
The segmental assembly permits to fold the bow by slackening the tendons; it can be totally 
disassembled and stored in a small box for easy transportation (Fig. 3(c)). The design is focused 
on the shape of contact profiles to attain different responses for the bow. Fig. 3(d) compares the 
static drawing of two bows in terms of drawing force 𝑃𝑃 as a function of the drawing height 𝑓𝑓 for 
two different shapes of the contact profiles; the theoretical description is corroborated by 
experimental dots in the chart. Note that power-law profiles of the type 𝑦𝑦 ∝ 𝑥𝑥4 provide a response 
more concave than circular/elliptic profiles, for the same prestress 𝑁𝑁0 ≈ 16.5 N, so that a greater 
amount of energy is stored in the deformed limbs and can be later transmitted to the fired arrow. 
 

 
(a) 

 

 

 

(b) 

 
(c) 

Fig. 4. Application to propulsion in fluids: flexural-tensegrity snapping flagellum. (a) Schematics 
of the structure with large cavities inside the segments where the cable can move; the snap occurs 
between configurations A and B. (b) Views of a toy boat propelled by the device, with evidence of 
the actuation via crank and crankshaft connected to a motor; the tail is equipped with a fin to 
enhance propulsion. (c) Toy boat sailing in a water tank. 

The presence of large cavities inside the segments, instead of a tubular sheath, can provoke the 
snapping of a segmental cantilever, in response to a localized perturbation, represented by the 
relative rotation of the end segments close to the clamp restraint [5]. Hence, the cantilever can 
function as a tail that flagellates under a cyclic relative rotation of these segments, finding specific 
applications in propulsion devices for locomotion in fluids. Fig. 4(a) reports a schematic section 
of the cantilever segmental beam. Here, the internal cavities are represented by the non-hatched 
regions inside the segments. The cable (red solid line) can move inside these cavities: while 
rotating the driving segment, at a certain point the configuration becomes unstable and the beam 
reverses its shape, passing from state A to state B. By changing the sign of the driving rotation, 
the beam can snap back to the original state. Fig. 4(b) shows the application to a toy boat, where 
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the actuation is obtained through a simple crank and crankshaft mechanism connected to an electric 
motor. In this example, the terminal segment is equipped with a fin, to enhance the propulsion [8]. 
Fig. 4(c) reports the final field experiment where the toy boat is sailing in a water tank. 

 

 
(a) 

  
(b) 

Fig. 5. Applications to robotics. (a) Schematics of a cable-actuated limb: the centroidal tendon 
gives integrity to the assembly, while the eccentric one controls grasping when pulled. (b) 
Corresponding robotic picker manufactured according to this principle. 

 
(a) 

 
(b) 

   
(c) 

Fig 6. Applications in architecture. Flexural-tensegrity arch: (a) photograph of a small-scale 
concrete arch and (b) corresponding mobility as the tendon prestress is varied. Flexural-tensegrity 
umbrella: (c) photograph of a small-scale polylactide structure in the open/closed configuration. 

Using two cables a robotic segmental limb can be manufactured. As represented in Fig. 5(a), 
one tendon (red color) passes through the segments in a centroidal tubular sheath to provide 
integrity to the assembly, while another tubular sheath, eccentric with respect to the segment 
centroid, hosts the control cable (blue color): by pulling this second tendon, the limb folds. 
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Combining two of such limbs, a cable-actuated picker of the type shown in Fig. 5(b) can be 
obtained, which is capable of grasping and collecting also very soft objects. 

Applications in kinetic architecture can be found in the manufacturing of movable skeletons 
supporting envelopes for water collection and shielding. In Fig. 6(a) a concrete flexural-tensegrity 
arch is proposed, with the mobility shown in Fig. 6(b) as the tension force in the cable is varied. 
With a functioning similar to that of the flagellating tail of Fig. 4(a), an umbrella can be designed 
that opens and closes like a flower, as shown in Fig. 6(c). Note that the structural bending stiffness 
of the segmental assembly can be tuned by pulling/releasing the prestressing tendons [3][6]; 
therefore, the force in the cable can be controlled to reduce structural vibrations. This can be very 
useful to manufacture seismic-resistant bracing systems, amenable to actively respond to 
earthquakes, especially where the seismic hazard is particularly high. 
Conclusive remarks 
A range of possible field applications has been presented within the class of flexural-tensegrity 
segmental structures, to show the versatility and the potentials of this recently proposed structural 
concept, yet to be fully explored and appreciated. Although the examples were limited to 2D planar 
mobility and small-scale structures, these represent a noteworthy rich scenario. The extension to 
full 3D mobility is the subject of current research. 
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Abstract. We discussed the peculiarities of three structural projects. The El Ferdan swing bridge 
over the Suez Canal, the longest in the world, required the optimization of structural weight and 
deflection, pursed with genetic algorithms. The Museum of the Future in Dubai, is supported by a 
single-layer steel gridshell following a pseudo-toroidal double-curvature surface, which required 
the optimization of a great number of diagrid nodes, parametrically designed with a custom tool. 
The competition-winner project for the new Stadio Milano follows the vision of a Gothic Cathedral 
with slender buttresses, tall multi-storey arched frames, all covered by a first-class cable-supported 
glazed facade, which fulfils the clean “glass-box” architectural intent. Although very sophisticated 
calculation tools are available, these experiences suggest that the human contribution of the 
structural engineer is still, at least for now, of paramount importance. 
Introduction 
Advancements in numerical structural analysis have freed the engineer from the burden of 
calculations. Buildings and bridges of rare beauty, that thirty years ago could not have been 
conceived due to the difficulties in the calculations, are now reality. We are witnessing an actual 
Renaissance in structural engineering, to carry out the finest futuristic designs by imaginative 
architects. At the same time, we assist at the definition of increasingly complex technical 
regulations and standards: even the simplest structures (regular frames, truss bridges) shall comply 
with long verification formulas, where each uncertainty carries a coefficient, to be somehow 
calibrated. At the same time, the paradigm of artificial intelligence suggests that everything can be 
dealt with automatically, via modern calculation tools, making the human contribution of the 
structural engineer and the basic knowledge of structural mechanics superfluous. Does all this 
contribute to the Renaissance trend? On the one hand, the engineer is hindered in creative design, 
because the counterintuitive complexity of the rule, which can only be pursed with a numerical 
approach, prevents a synthetic vision: the structure is not governed, but governs! On the other 
hand, standards and codes are of little help, if not an obstacle, for complex or innovative designs, 
whereas the automatic decision making approach cannot fulfill all the requirements. Here we 
humbly present a few structures we know well enough from working on them, with the aim of 
highlighting the problems and the scientific advancements (modeling, structural optimization, 
customized parametric approach) they required, which could not be completely solved by 
standards and automatized numerical tools. 
The swing bridges over the Suez Canal 
The project for the two double swing bridges at El Ferdan, Ismailia over the Suez Canal 
[en.wikipedia.org/wiki/El_Ferdan_Railway_Bridge] consists in the retrofitting and upgrading of 
the existing bridge from one to double rail lane, and in the design of a new double-rail lane bridge, 
with geometry similar to the existing one. With a total length of 640 m, and a 340 m span between 
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the central piers, this is the longest swing bridge in the world. Fig. 1(a) shows half portion of the 
new bridge in the rotated configuration. This is a metallic truss structure, assembled by welding 
on the bank of the canal as represented in Fig. 1(b). The design included the mechanical rotation 
and its locking system through electrical motors and hydraulic pistons. A detail of the cylindrical 
hinge with rollers that permit the rotation of the two halves of the bridge is indicated in Fig. 1(c). 

For a bridge of this type, it is of paramount importance to minimize the weight, to facilitate the 
movement, as well as the deflection, both in the “open” and “closed” configurations, to fit the 
constraints. Derivative-free genetic optimization algorithms were implemented for minimum 
weight (objective 1) and minimum displacement (objective 2). These objectives are in contrast one 
other: to obtain the minimum weight the structure should be as thin as possible, but to reduce the 
displacement, the structure has to be strengthened. 

 

 
(a) 

  
(b) 

 
(c) 

Fig. 1. The new swing bridges at El Ferdan over the Suez Canal. (a) View of half portion of the 
completed bridge in the rotated configuration. (b) The bridge during the construction phase on 
the bank of the canal. (c) Detail of the cylindrical hinge with rollers that permits the rotation. 
 

Genetic algorithms are based on principles of natural genetics and selection. In derivate-free 
algorithms [1], to find the optimum it is not required to calculate the derivative of the fitness 
function, which is in general hard to define. The typical procedure is based on: a starting population 
of individuals (usually a “preset” configuration defined by experience is used as a starting point); 
each point is characterized by a set of variables, composing the pool of genes of each individual; 
objective functions are evaluated for each individual to obtain the fitness; a new generation is 
defined and includes the best individuals from the previous population and new individuals 
generated with reproduction, crossover and mutation techniques; objective function are evaluated 
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for each new individual; new generations are defined up to convergence. For the case at hand, 
following [2] and [3], the workflow consisted in: 1) creation of FEM model based on the starting 
geometry; 2) random increment of area for each structural element to create a new individual; 3) 
structural analysis of this new individual from point 2; 4) determination of fitness functions for 
each individual; 5) use of the genetic algorithm to define the new individuals based on the elitism, 
mutuation and crossover between different genes; 6) structural analysis of this new individuals 
from point 5; 7) iteration from point 4 to 6 until the optimal solution is reached. The software 
chosen for the parametric structural analysis is Grasshopper associated with SAP2000. 

Fig 2(a) describes, in the plane total weight vs. vertical displacement, the results of the first 
generation: the initial condition, corresponding to the configuration of Fig. 2(c) is highlighted as a 
red dot. The other points are the results of the structural analysis for random increments of the 
variables, represented by the area of each truss element. Observe in the graphs the Pareto Front, 
i.e., the locus of points of solution that dominate all the other solutions (dominant solutions). 

 

 
(a) 

 
(b) 

 
(c)  

(d) 
Fig.2. Genetic algorithm for structural optimization. Graphs of total weight vs. vertical 
displacement obtained with (a) the first generation of optimization and (b) after 12 simulations. 
Structural model for (c) the initial condition, highlighted with a red dot in the graphs (a), and (d) 
final optimal configuration at the end of the process, with indication of the area increments.  

The typical analysis for each population is made on 60 individuals, subjected to a set of 
constraints (structural verification according to Egyptian codes, cost reliability-interaction [4]). 
Fig. 2(b) shows the distribution of fitness function for the successive generations, where each dot 
is associated with one individual. The first generation is represented by the blue dots on the right-
hand-side of the graph. Following generations show that the genetic algorithm provides new 
individuals (genetic evolution of genes) with solutions better than the previous ones. The evolutive 
trend is clearly visible, because the Pareto front moves leftwards. The latest generation gives 
individuals placed on the best pareto front: part of them optimizes weight  and the others minimize 
displacements and members ratio. The selected solution, after many simulations and verification, 
is represented in Fig. 2(d), with indication of the area increments with respect to the initial 
condition of Fig. 2(c). The results were systematically compared with hand-made optimization, in 
order to corroborate the results obtained with the complex genetic algorithm. 
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The Museum of the Future in Dubai 
The Museum of the Future [en.wikipedia.org/wiki/Museum_of_the_Future] in Dubai, UAE, 
shown in Fig. 3(a), is a multistorey building, with steel-RC composite floors and steel floor trusses 
supported by following the feature pseudo-toroidal double-curvature surface; additional lateral 
stiffness is provided by an internal RC core. The tubular truss of the shell is visible in photograph 
of Fig. 3(b), taken before the installation of the metallic cladding, 
 

 
(a) 

 
(b) 

 
(c) 

   
(d) 

Fig. 3. Museum of the Future in Dubai. (a) The completed building and (b) the tubular truss 
structure before the installation of the metallic cladding. (c) The model for the definition of the 
geometry of the nodes and (d) their assembly during the construction phase. 

The steelwork connections and the construction method were designed by analyzing the staged 
erection sequence, to meet the specified construction tolerances and to allow for the effect of the 
lock-in forces into the connections and members design. This included the optimization of the 
diagrid nodes in order to minimize the use of internal stiffeners and simplify the steel-contractor 
manufacturing operations. Since all nodes are different one another (different geometries, pipes 
and internal actions), more than 800 FEM models had to be developed, by using a dedicated 
internal parametric tool developed in Grasshopper [5]. Fig. 3(c) indicates the model that defines 
the geometry of the nodes; their assembly during the construction phase is shown in Fig. 3(d). 
The new Stadio Milano 
The competition-winner design for the new Stadio Milano, shown in Fig. 4(a), was developed 
following the architectural vision [www.nuovostadiomilano.com/it] of a “Gothic Cathedral”. This 
is materialized by slender regularly-spaced buttresses and tall multi-storey arched frames, covered 
by a glass envelope, as per Fig. 4(b). In the structural design the arrangement of the members 

https://en.wikipedia.org/wiki/Museum_of_the_Future
https://www.nuovostadiomilano.com/it
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intuitively follows the flow of the forces, as in gothic architecture. A modular repetition of the 
structural frames reduces both the construction costs and the erection time, improving quality.  

 

 
(a) 

 
(b) 

 
(c) 

 

  
(d) 

Fig. 4. The new Stadio Milano. Rendering of (a) the completed building and (b) detail view of the 
structure with the glazed curtain wall. (c) Schematic section of the load-bearing structures and (d) 
details of the cable supported glass façade.  

A section of the load bearing structure is shown in Fig. 4(c). A very innovative transparent 
façade is planned, where the glass panels are supported by a set of vertical stainless steel cables 
[6], tensioned between the upper buttresses at the roof level, and the lower RC cantilevers at the 
Galleria Mezzanine level. These synergically contribute to balance, at the roof level, the 
overturning moment due to the cantilever roof, spanning over the playfield, as well as the large 
cantilever at the corner of the Galleria Mezzanine (the upward forces from the cables reduce the 
long-term deflection of the concrete slab). Glass panels are heat-strengthened, stratified with high 
performance polymers, connected to the cables by custom-designed stainless steel clamped 
connectors, indicated in Fig. 4(d). Cable supported glazed surfaces have remarkable properties, 
including blast-resistance capacity [7]. The design will provide the Milan Stadium with a first-
class, transparent and elegant glazed facade, to fulfill the clean “glass-box” architectural intent. 
Conclusive remarks 
The design process of the structures discussed here was quite complex, as it required the selection 
of geometry, static scheme and initial parameters, before proceeding with the structural analysis 
and verification of the suitability of members and connections. Modern calculation tools allow 
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structural verifications to be carried out in a very short time on a large number of models, in which 
the geometry and sections can be varied until an optimal configuration is achieved. Although 
genetic algorithms based on parametric design tools apparently make it possible to automatically 
obtain the prefigured target according to the paradigm of the so-called Artificial Intelligence, 
nothing can replace, at least for now, the skill of a wise structural engineer. The designer has to 
make a rather difficult decision in selecting a preliminary, albeit rough, solution (preset), among 
all the possible alternatives, adequately satisfying all the requirements in terms of safety and 
serviceability imposed by design codes and a number of specified merit criteria such as cost and 
weight. Human, as opposed to artificial, intelligence is necessary to find an good preset, 
sufficiently closed to the ideal one, in order to direct the software operations and associated 
processing (crossover, migration, mutation), not only to reduce the required computation time, but 
also to reach a reasonable engineering optimum among all possible local optima.  

Although it is commonly believed that the use of increasingly complex regulations may suggest 
universal design rules, these rules can only be used in the verification phase. Only a deep 
knowledge of structural theory and a wide experience on the really built constructions can allow 
the extreme synthesis of a complex structure in a simple but significant scheme, verifiable on the 
basis of elementary formulas, which will guide the preliminary, but necessary, basic choices. 
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Abstract. Glass façades are often required to withstand against explosive events due to 
premeditated or accidental causes. Laminates made by glass plies bonded by thin polymeric foils 
(laminated glass) need to be used to avoid catastrophic breakage. The paradigmatic case study 
considered is that of a rectangular three-layer laminate, made of two glass plies, modelled as 
Kirchhoff-Love plates, sandwiching a thin viscoelastic polymeric interlayer. Its time-dependent 
response under the action of a blast wave is described via fractional calculus operators, whose 
main advantage is that only two material constants are needed for an exhaustive characterization. 
The dynamic equations are treated à la Galёrkin and their integration in time relies on the 
Grünwald-Letnikov approach. The fractional characterization presents noteworthy advantages 
from a computational point of view. We find that the maximum stress peak is mildly affected by 
the viscosity of the interlayer, which instead dictates the subsequent rebounding oscillations.  
Viscoelastic properties of polymeric interlayer 
Laminated glass is a composite formed by two (or more) glass plies sandwiching one (or more) 
polymeric foil(s), permanently bonded with a process at high temperature and pressure in 
autoclave. The polymeric interlayer is too thin to present bending capacity, but it contributes to 
the stiffness and strength of the laminate by coupling the glass plies [1, 2]. Its viscoelastic behavior 
is characterized by the relaxation function 𝑅𝑅(𝑡𝑡). Since the lamination process in autoclave can 
modify the mechanical properties of the interlayer, the relaxation curve should be measured 
directly on laminated glass samples. Shear relaxation tests are usually performed but, for practical 
reasons, the observation period shall be in an interval varying from a minimum of a few seconds 
to a maximum of a few weeks. Further details about the experimental procedures can be in found 
in [3] and [4]. The extrapolation to smaller/larger time scales can be done on the basis of Time–
Temperature Superposition (TTS) principle, according to which a variation of the testing 
temperature is associated with a variation of the time scale for the viscosity effects [5]. For most 
commercial polymers, the typical shape of 𝑅𝑅(𝑡𝑡), in the bi-logarithmic stress–time plane, is as 
indicated in Figure 1: it presents two pseudo-linear branches, connected by a transition zone. 
Figure 1 Qualitative plot of a typical relaxation function 𝑅𝑅(𝑡𝑡). The first branch is fitted by a power 
law (straight line), which allows to analytically extrapolate the values at time scales of the same 
order of the characteristic load duration 𝑇𝑇𝑇𝑇Under the impulsive action of a blast wave, the branch 
of interest is certainly that on the left hand side of the graph. As represented in the figure, this 
branch can be analytically fitted by a power law (linear trend in the bi-log scale) of the form 
 𝑅𝑅(𝑡𝑡) =

𝐶𝐶𝛼𝛼
𝛤𝛤(1 − 𝛼𝛼) 𝑡𝑡

−𝛼𝛼, (1) 

where 𝛤𝛤(∙) is the Euler’s Gamma function, 𝐶𝐶𝛼𝛼[MPa s𝛼𝛼] is a dimensional coefficient, and 𝛼𝛼 the 
number associated with the slope of the line in the bi-log graph.  
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Figure 1 Qualitative plot of a typical relaxation function 𝑅𝑅(𝑡𝑡). The first branch is fitted by a 

power law (straight line), which allows to analytically extrapolate the values at time scales of the 
same order of the characteristic load duration 𝑇𝑇𝑇𝑇 of the blast wave. 

The structural model for laminated plates 
The schematic representation of the composite plate is shown in Figure 2. This is a three-layer 
plate composed by two thick elastic plies (layers ‘‘1’’ and ‘‘2’’) sandwiching one thin viscoelastic 
core (layer ‘‘0’’). A reference frame is introduced: the (𝑥𝑥,𝑦𝑦) axes are located in-plane, while the 
𝑧𝑧 axis indicates the out-of-plane direction, with the mid-surface of each layer corresponding to 
𝑧𝑧 =  0. The external plies are subjected only to the bending contribution; while the core produces 
the shear coupling under the assumption that there is no sliding at the interfaces. The thickness of 
the external plies is denoted by ℎ𝑖𝑖 with 𝑖𝑖 =  1, 2, so that the distance between the mid-planes reads 
ℎ� = ℎ0 + (ℎ1 + ℎ2)/2,  where ℎ0 represents the thickness of polymeric core. With reference to 
Figures 2(b) and 2(c), the interlayer ‘‘0’’ undergoes shear strains, which depend on the in-plane 
displacements 𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑡𝑡) and 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑡𝑡) of the external layers, for 𝑖𝑖 =  1, 2, as well as 
the out-of-plane displacement 𝑤𝑤 = 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑡𝑡), which is the same for both layers. For a constitutive 
model based on fractional calculus, the shear forces per unit length 𝑄𝑄𝑥𝑥,0 and 𝑄𝑄𝑦𝑦,0 depend on the 
shear stresses 𝜏𝜏𝑥𝑥𝑥𝑥,0 = 𝜏𝜏𝑥𝑥𝑥𝑥,0(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) and 𝜏𝜏𝑦𝑦𝑥𝑥,0 = 𝜏𝜏𝑦𝑦𝑥𝑥,0(𝑥𝑥,𝑦𝑦, 𝑡𝑡), in the form 
 
 

𝑄𝑄𝑥𝑥,0 = 𝑄𝑄𝑥𝑥,0(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = � τ𝑥𝑥𝑥𝑥,0

ℎ0/2

−ℎ0/2
 𝑇𝑇𝑧𝑧 = 𝐶𝐶α0

𝐶𝐶𝒟𝒟𝑡𝑡
α �𝑢𝑢2 − 𝑢𝑢1 + ℎ�

∂𝑤𝑤
∂𝑥𝑥
� (𝑡𝑡), (2.1) 

 
𝑄𝑄𝑦𝑦,0 = 𝑄𝑄𝑦𝑦,0(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = � τ𝑦𝑦𝑥𝑥,0

ℎ0/2

−ℎ0/2
 𝑇𝑇𝑧𝑧 = 𝐶𝐶α0

𝐶𝐶𝒟𝒟𝑡𝑡
α �𝑣𝑣2 − 𝑣𝑣1 + ℎ�

∂𝑤𝑤
∂𝑦𝑦
� (𝑡𝑡), (2.2) 

 
where  0𝐶𝐶𝒟𝒟𝑡𝑡

𝛼𝛼[… ] denotes Caputo’s fractional derivative of order α, with 0 < 𝛼𝛼 < 1, defined as 
 

 
 

𝟎𝟎𝟎𝟎𝑪𝑪𝓓𝓓𝒕𝒕
𝛂𝛂[𝒇𝒇(⋅)](𝒕𝒕) =

𝟏𝟏
𝜞𝜞(𝟏𝟏 − 𝜶𝜶)�

(𝒕𝒕 − �̅�𝒕)−𝛂𝛂
𝒕𝒕

𝟎𝟎
 �̇�𝒇(�̅�𝒕) 𝒅𝒅�̅�𝒕.  
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Figure 2 Schematic representation of a three-layer laminated glass plate. The glass plies are 

denoted as ‘‘1’’ and ‘‘2’’, while the core is the layer ‘‘0’’. For each layer, the reference system 
is located at one corner of the corresponding middle plane, with the 𝑧𝑧 axis in the out-of-plane 

direction. The figure shows (a) the undistorted reference configuration and (b) the 𝒙𝒙 −  𝒛𝒛 view 
and the (c) 𝒚𝒚 −  𝒛𝒛 view of the deformed configuration of the plate, with indication of the 

variables used to describe the displacement field. 
The glass plates are modelled according to Kirchhoff-Love plate theory, with Young’s modulus 

𝐸𝐸1 =  𝐸𝐸2  ≡  𝐸𝐸𝑔𝑔 and Poisson’s ratio 𝜈𝜈1  =  𝜈𝜈2  ≡  𝜈𝜈, and with the same thickness (ℎ2 = ℎ 1 ≡ ℎ). 
Their dimensions are indicated as 𝑎𝑎 ×  𝑏𝑏 ×  ℎ. The inertia of the laminate is accounted by means 
of the global mass per unit area 𝜇𝜇. Due to the geometric and load symmetry, 𝑢𝑢1 =  −𝑢𝑢2 and 𝑣𝑣1  =
 −𝑣𝑣2. Hence, setting 𝛥𝛥𝑢𝑢 =  𝑢𝑢2 −  𝑢𝑢1 and 𝛥𝛥𝑣𝑣 =  𝑣𝑣 2 −  𝑣𝑣1, the problem is described by the three 
dynamic equations [6] 
 

 
μ
∂2𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

∂𝑡𝑡2
+

𝐸𝐸𝑔𝑔ℎ3

6(1 − ν2)�
∂4𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

∂𝑥𝑥4
+ 2

∂4𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
∂𝑥𝑥2 ∂𝑦𝑦2

+
∂4𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

∂𝑦𝑦4
�

=
ℎ�
ℎ0
𝐶𝐶α0

𝐶𝐶𝒟𝒟𝑡𝑡
α �
∂Δ𝑢𝑢(𝑥𝑥,𝑦𝑦,⋅)

∂𝑥𝑥
+ ℎ�

∂2𝑤𝑤(𝑥𝑥,𝑦𝑦,⋅)
∂𝑥𝑥2

� (𝑡𝑡)

+
ℎ�
ℎ0
𝐶𝐶α0

𝐶𝐶𝒟𝒟𝑡𝑡
α �
∂Δ𝑣𝑣(𝑥𝑥,𝑦𝑦,⋅)

∂𝑦𝑦
+ ℎ�

∂2𝑤𝑤(𝑥𝑥,𝑦𝑦,⋅)
∂𝑦𝑦2

� (𝑡𝑡) + 𝑝𝑝(𝑡𝑡) 

 

(3.1) 

 𝐸𝐸𝑔𝑔ℎ
1 − ν2

�
∂2Δ𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

∂𝑥𝑥2
+

1
2

(1 − ν)
∂2Δ𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

∂𝑦𝑦2
+

1
2

(1 + ν)
∂2Δ𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

∂𝑥𝑥 ∂𝑦𝑦
�

=
2
ℎ0
𝐶𝐶α 𝒟𝒟𝑡𝑡

α
0
𝐶𝐶 �Δ𝑢𝑢(𝑥𝑥,𝑦𝑦,⋅) + ℎ�

∂𝑤𝑤(𝑥𝑥,𝑦𝑦,⋅)
∂𝑥𝑥

� (𝑡𝑡), 
(3.2) 
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 𝐸𝐸𝑔𝑔ℎ
1 − 𝜈𝜈2

�
𝜕𝜕2𝛥𝛥𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑦𝑦2
+

1
2

(1 − 𝜈𝜈)
𝜕𝜕2𝛥𝛥𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑥𝑥2
+

1
2

(1 + 𝜈𝜈)
𝜕𝜕2𝛥𝛥𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
�

=
2
ℎ0
𝐶𝐶𝛼𝛼 𝒟𝒟𝑡𝑡

𝛼𝛼
0
𝐶𝐶 �𝛥𝛥𝑣𝑣(𝑥𝑥, 𝑦𝑦,⋅) + ℎ�

𝜕𝜕𝑤𝑤(𝑥𝑥,𝑦𝑦,⋅)
𝜕𝜕𝑦𝑦

� (𝑡𝑡), 
(3.3) 

 
where   

 
 

𝑝𝑝(𝑡𝑡) = 𝑝𝑝𝑟𝑟 �1 −
𝑡𝑡
𝑇𝑇𝑑𝑑
� 𝑒𝑒−𝛽𝛽

𝑡𝑡
𝑇𝑇𝑑𝑑 (4) 

 
represents the loading action interpreted via Friedlander equation [7]. We set 𝑝𝑝𝑟𝑟 = 80 kPa as 

peak overpressure, 𝑇𝑇𝑑𝑑 = 12.7 ∙ 10−3 s as time positive duration and 𝛽𝛽 = 0.95 denotes the decay 
coefficient. The time history recalls that classified as EXV25, in accordance with the standard ISO 
16933:2007 [8]. In order to solve the set of equilibrium equations for a simply supported plate, the 
unknown variables and the loading action are expressed in double Fourier sine series, in the form 
 
 

𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = � �𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡)
𝑁𝑁

𝑚𝑚=1

sin �
𝑚𝑚π𝑥𝑥
𝑎𝑎

�
𝑀𝑀

𝑚𝑚=1

sin �
𝑛𝑛π𝑦𝑦
𝑏𝑏
� (5.1) 

 
Δ𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = � �Δ𝑢𝑢𝑚𝑚𝑚𝑚(𝑡𝑡)

𝑁𝑁

𝑚𝑚=1

cos �
𝑚𝑚π𝑥𝑥
𝑎𝑎

�
𝑀𝑀

𝑚𝑚=1

sin �
𝑛𝑛π𝑦𝑦
𝑏𝑏
� (5.2) 

 
Δ𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = � �Δ𝑣𝑣𝑚𝑚𝑚𝑚(𝑡𝑡)

𝑁𝑁

𝑚𝑚=1

sin �
𝑚𝑚π𝑥𝑥
𝑎𝑎

�
𝑀𝑀

𝑚𝑚=1

cos �
𝑛𝑛π𝑦𝑦
𝑏𝑏
� (5.3) 

 
Δ𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = � �Δ𝑣𝑣𝑚𝑚𝑚𝑚(𝑡𝑡)

𝑁𝑁

𝑚𝑚=1

sin �
𝑚𝑚π𝑥𝑥
𝑎𝑎

�
𝑀𝑀

𝑚𝑚=1

cos �
𝑛𝑛π𝑦𝑦
𝑏𝑏
� (5.4) 

 
This choice automatically fulfils the boundary conditions for a simply supported plate along the 

perimeter with in-plane free edges. By substituting them in the solving system (3.1)-(3.3), we can 
find the time dependent functions (modes 𝑚𝑚 − 𝑛𝑛) 𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡), 𝛥𝛥𝑚𝑚𝑚𝑚(𝑡𝑡) and 𝛥𝛥𝑣𝑣𝑚𝑚𝑚𝑚(𝑡𝑡) with a step-by-
step numerical integration, relying on the Grünwald-Letnikov approach [9] for fractional 
derivatives. The imposed initial conditions are 𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝛥𝛥𝑢𝑢𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝛥𝛥𝑣𝑣𝑚𝑚𝑚𝑚(𝑡𝑡) = 0 for 𝑡𝑡 <  0. 
Numerical experiments 
The geometric and mechanical parameters for the considered laminated plate are 𝒂𝒂 ×  𝒃𝒃 ×  𝒉𝒉𝒊𝒊 =
 𝟏𝟏 ×  𝟏𝟏 ×  𝟎𝟎.𝟎𝟎𝟏𝟏 m3, 𝒊𝒊 =  𝟏𝟏,𝟐𝟐 , 𝒉𝒉𝟎𝟎  =  𝟐𝟐.𝟐𝟐𝟐𝟐 mm, 𝑬𝑬𝒈𝒈  =  𝟕𝟕𝟎𝟎 GPa, 𝝂𝝂 =  𝟎𝟎.𝟐𝟐𝟐𝟐, densities 𝝆𝝆 =
 𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎 kg/m3 and  𝝆𝝆𝟎𝟎 = 𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎 kg/m3. The constitutive properties for three different types of 
interlayer, labelled as materials A B and C, according to the experimental campaign of [10] are: 
𝜶𝜶 =  𝟎𝟎.𝟏𝟏𝟐𝟐𝟐𝟐, 𝑪𝑪𝜶𝜶 = 𝟎𝟎.𝟒𝟒𝟕𝟕𝟒𝟒 MPa s𝛼𝛼 (material A); 𝜶𝜶 = 𝟎𝟎.𝟏𝟏𝟏𝟏𝟕𝟕, 𝑪𝑪𝜶𝜶 = 𝟗𝟗.𝟒𝟒𝟎𝟎𝟗𝟗 MPa s𝛼𝛼 (material B); 
𝜶𝜶 =  𝟎𝟎.𝟏𝟏𝟏𝟏𝟕𝟕, 𝑪𝑪𝜶𝜶  =  𝟐𝟐𝟒𝟒.𝟏𝟏𝟏𝟏𝟐𝟐 MPa s𝛼𝛼 (material C). In order to understand how the hereditary 
memory of viscoelasticity contributes to the dynamic response, it is interesting to compare the 
bending stress 𝝈𝝈𝒙𝒙𝒙𝒙 with the correspondent solution for perfectly elastic interlayers. The stress is 
evaluated at the plate center (𝒙𝒙,𝒚𝒚) = (𝒂𝒂 𝟐𝟐,𝒃𝒃 𝟐𝟐⁄⁄ ), on the external surface not directly invested by 
the pressure wave. The relaxation functions are assumed to be power laws and these are 
represented by inclined straight lines on bi-log plane; the equivalence with an elastic material 
(quasi-elastic approximation) is done by considering for it a shear modulus corresponding to the 
value of the relaxation curve at characteristic duration of the load 𝑻𝑻𝒅𝒅. Graphically, the elastic 
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behavior corresponds to a horizontal line (𝛼𝛼 = 0), which intersects the relaxation function at 𝒕𝒕 =
 𝑻𝑻𝒅𝒅, where 𝑻𝑻𝒅𝒅 =  𝟏𝟏𝟐𝟐.𝟕𝟕 ∙ 𝟏𝟏𝟎𝟎−𝟏𝟏 s is the time duration of the compression phase provided by 
Friedlander equation (4). Hence, the elastic limit corresponds to 𝑹𝑹(𝒕𝒕) = 𝑪𝑪𝟎𝟎 which, for the cases at 
hand, corresponds to 𝑪𝑪𝟎𝟎 =  𝟎𝟎.𝟐𝟐𝟏𝟏𝟐𝟐 MPa for material A, 𝑪𝑪𝟎𝟎 =  𝟏𝟏𝟒𝟒.𝟒𝟒𝟐𝟐𝟒𝟒 MPa for material B, 𝑪𝑪𝟎𝟎 =
 𝟏𝟏𝟐𝟐𝟗𝟗.𝟐𝟐𝟏𝟏𝟓𝟓 MPa for material C. The results to be compared are reported in Figure 3 for the three 
considered interlayers. 

 
Figure 3 Stress component 𝝈𝝈𝒙𝒙𝒙𝒙 evaluated at the centre of ply 2 at 𝒛𝒛 = −𝒉𝒉 𝟐𝟐⁄ . The plate is simply 

supported along its edges, and it is subjected to the blast pressure 𝒑𝒑(𝒕𝒕). The corresponding 
solutions are compared with the quasi-elastic approximation. (a) Interlayer of type A; (b) 

interlayer B; (c) interlayer C. 
In all the cases, there is a good superimposition between viscoelastic and elastic responses for 

what concerns the first peak. If we consider the response in a broader time interval, the difference 
is minimal when the interlayer is made of material C, the stiffest of all, inasmuch the monolithic 
limit (rigid shear coupling of the plies) is attained. Materials A and B provide a similar response: 
the dissipation due to the viscous component decreases the magnitude of the successive peaks and 
slightly increases the frequency of oscillations. With the interlayer is of type A, the sandwich is 
more compliant; hence, there are less oscillations within the considered time interval if compared 
with the other materials. 
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Conclusions 
The case study is represented by a three-layer plate, where two elastic glass plies sandwich a thin 
polymeric foil without bending capacity, but sufficient to provide the shear coupling of the glass 
plies. The novelty of the presented analysis consists in the fractional constitutive model used for 
the interlayer. If compared with the more classic viscoelastic description via Prony series, the 
fractional approach is more straightforward and computationally advantageous, since only two 
parameters are needed to characterize the material response. The numerical experiments have 
accounted for three different polymeric interlayers, so to obtain a spectrum of dynamic responses 
in terms of stress. Under impulsive loading, the first (maximum) peak is not qualitatively affected 
by the viscosity of the interlayer, which however significantly lowers the values of the subsequent 
rebounding peaks. The greatest limitation of this model is represented by the assumption of linear 
elastic model à la Kirchhoff–Love for the glass plates, therefore neglecting the geometric non-
linearities, which certainly play a role under high deformations. The extension to a non-linear 
model will represent the subject of future work.  
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Abstract. We propose a derivation of a damage model in slender structures, focusing on the 
particular case of a rod. The peculiarity of the model is that it takes into account the changes in 
rigidity of the body, distinguishing between bending, traction and the possible mixed interactions 
between the two. The approach is based on a matched asymptotic expansion, taking the recent 
work of Baldelli et al [1] as starting point. Choosing the slenderness of the rod as small parameter 
for the asymptotic expansion, we determine the first order at which a correction occurs with respect 
to the Saint-Venant solution of the elastic problem, due to the presence of a crack. The results 
highlight that the presence of a defect affects in different ways the bending and  traction rigidities 
of the rod, and that a coupling between the two deformation modes might occur, depending on the 
geometry of the crack. Moreover, the derivation allows to explicitly calculate the coefficients of 
this correction, for any given depth of the crack, by means of a simple numerical procedure. 
Application to the classic three-point bending problem is considered in order to highlight the 
predictive capabilities of the model. These results suggest ways in which state of the art phase-
field models (e.g. [2]) for damage could be refined. This work goes in the direction of developing 
phase-field models suitable for application to slender structures, where the use of reduced 
dimensional models has proved promising [3]. 
Introduction 
In modeling of fracture and damage of structures, a lot of attention has been devoted to the case of 
slender structures. A particular regime of loading is that when bending and membrane stresses 
interact in non-trivial ways. This happens in some important applications, such as thin shells that 
have bending and membrane deformation coupling due to geometric constraints (Gauss 
compatibility) [4, 5]. Such structures are characterized by their slenderness and give way to 
interesting applications taking advantage of their shape morphing features [6, 7]. The question then 
arises as to how to properly model damage for such cases.  Currently in damage models, the state 
of the art of the classical phase-field approach is to introduce a unique damage parameter, which 
modulates the change of all stiffness constants that appear in the definition of the elastic energy. 
For example, considering a 1D beam: 

 
 𝐸𝐸𝑒𝑒 = 1

2 ∫ (1 − 𝛼𝛼)2𝛺𝛺 (𝐴𝐴0𝜀𝜀2 + 𝐷𝐷0𝜒𝜒2),                 (1) 
 

where 𝜀𝜀 and 𝜒𝜒 are the stretching and curvature measures, 𝐴𝐴0 and 𝐷𝐷0 the relative stiffness 
constants, and 𝛼𝛼 is a scalar field describing the damaging of the structure. In this work we consider 
the case when different effects on the coefficients are possible, as well as coupling effects between 
stretching and bending contributions: 
 
 𝐸𝐸𝑒𝑒 = 1

2 ∫ (𝐴𝐴(𝛼𝛼)𝜀𝜀2 + 𝐷𝐷(𝛼𝛼)𝜒𝜒2 + 2𝐶𝐶(𝛼𝛼)𝜀𝜀𝜒𝜒)𝛺𝛺 .               (2)  
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For sake of simplicity, we will focus on the case when the crack starts at the middle of a beam, 
on one of the two lateral faces. The main features of this model are that the progressive damaging 
of the material could affect the stiffnesses differently, and also that the presence of a crack is 
expected to couple bending and stretching effects, since the reduction in thickness of the cross 
section causes the neutral axis of bending to be displaced. In order to do this, we consider a case 
of particular interest, that of a slender beam subject to traction force and bending load at the bases. 
In the domain of small displacements, the base solution of the 1D elastic problem is that of Saint-
Venant. The presence (or the possible nucleation) of a crack causes a modification of the base 
solution, in that at the middle section the axial displacement and section rotation will show a jump 
discontinuity. The assumption of slenderness allows us to use an asymptotic approach, expanding 
the base solution in powers of a small parameter. 

In the following, we will give an outline of the asymptotic procedure. The final result will be 
the calculation of the first order of correction (in the small parameter) of the solution, with respect 
to the base Saint-Venant solution. This correction coincides with the jumps in axial displacement 
and rotation due to the crack. These additional deformations can be modeled with an additional 
compliance, or, inversely, with a decrease in the stiffnesses. These factors will determine the crack-
dependent coefficients of the energy, as in the example of Eq. 2, and allow us to formulate our 
damage model. 

Figure 1. Schematic representation of the beam with a crack in the mid section, of the loading 
and other important geometric quantities. 

 
Problem and non-dimensionalization 
The solid domain is defined in the Cartesian space with coordinates 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, and has large width, 
𝑏𝑏, in the 𝑥𝑥3 direction. In the other two directions, the domain of the beam occupies the rectangle 
[−𝐿𝐿 2⁄ , 𝐿𝐿 2⁄ ] × [−ℎ 2⁄ ,ℎ 2⁄ ], where ℎ ≪ 𝐿𝐿 ≪ 𝑏𝑏, and 𝑥𝑥1 is in the direction of the axis, while 𝑥𝑥2 
is in the direction of the thickness. We introduce the dimensionless parameter 𝜂𝜂 = ℎ 𝐿𝐿⁄ , and we 
will study the elasticity problem, in a small displacements setting, when the domain has a surface 
crack, with profile symmetric about the 𝑥𝑥2 axis. The problem will be two dimensional, under the 
assumption of plane strain. The following non-dimensional coordinates are introduced: 𝑥𝑥1 = 𝑥𝑥1 𝐿𝐿⁄  
and 𝑦𝑦 = 𝑥𝑥2 ℎ⁄ . We can then scale the displacement field 

 
 𝑢𝑢(𝑥𝑥) = 𝐿𝐿𝑢𝑢𝜂𝜂(𝑥𝑥1,𝑦𝑦),                  (3) 
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the strains and stress tensors 
 

  𝐸𝐸
(𝑥𝑥) = 𝜂𝜂𝐸𝐸𝜂𝜂(𝑥𝑥1,𝑦𝑦),

𝑆𝑆(𝑥𝑥) = 𝜂𝜂𝜂𝜂𝑆𝑆𝜂𝜂(𝑥𝑥1,𝑦𝑦),                  (4) 

 
and the traction and bending load along the beam 

 

 
𝑀𝑀𝛼𝛼𝛼𝛼(𝑥𝑥) = 𝜂𝜂3𝑏𝑏𝜂𝜂𝐿𝐿2𝑀𝑀𝛼𝛼𝛼𝛼

𝜂𝜂 (𝑥𝑥1,𝑦𝑦),
𝑁𝑁(𝑥𝑥) = 𝜂𝜂2𝑏𝑏𝜂𝜂𝐿𝐿𝑁𝑁𝜂𝜂(𝑥𝑥1,𝑦𝑦),

                                                                                          (5) 

 
noticing that the powers of 𝜂𝜂 that appear in Eq. 5 are such that the traction and bending load 

scale differently with respect to the small parameter: their relative scaling is such that their 
contribution to the stress will be of the same order in  𝜂𝜂 in the expansion, allowing for the 
possibility of interactions between bending and traction in the solution. 

 
Outer and inner asymptotic expansion 
We suppose that, far from the boundaries of the crack in the middle of the domain, the 
displacements, stresses and strains admit the following asymptotic expansion in the small 
parameter: 
 

 
𝑢𝑢𝜂𝜂 = 𝑢𝑢0(𝑥𝑥1,𝑦𝑦) + 𝜂𝜂𝑢𝑢1(𝑥𝑥1,𝑦𝑦) + 𝜂𝜂2𝑢𝑢2(𝑥𝑥1,𝑦𝑦) + 𝜂𝜂3𝑢𝑢3(𝑥𝑥1,𝑦𝑦) + ⋯ ,

𝑆𝑆𝜂𝜂 = 𝜂𝜂−2𝑆𝑆−2(𝑥𝑥1,𝑦𝑦) + 𝜂𝜂−1𝑆𝑆−1(𝑥𝑥1,𝑦𝑦) + 𝑆𝑆0(𝑥𝑥1,𝑦𝑦) + 𝜂𝜂𝑆𝑆1(𝑥𝑥1,𝑦𝑦) + ⋯ ,
𝐸𝐸𝜂𝜂 = 𝜂𝜂−2𝐸𝐸−2(𝑥𝑥1,𝑦𝑦) + 𝜂𝜂−1𝐸𝐸−1(𝑥𝑥1,𝑦𝑦) + 𝐸𝐸0(𝑥𝑥1,𝑦𝑦) + 𝜂𝜂𝐸𝐸1(𝑥𝑥1,𝑦𝑦) + ⋯ .

                                 (6) 

 
This coincides with the power expansion of the Saint-Venant solution, and is not valid in the 
proximity of the crack region, since a boundary layer is present. Another asymptotic expansion 
has to be derived, after a rescaling of the coordinates. Then, once the two expansions have been 
determined, it will be enforced that the two coincide in a transition region, where both are supposed 
to be valid. The rescaling consists of a stretching of the domain in the axial direction, rewriting the 
elastic problem in the variable 
 
 𝑥𝑥 = 𝑥𝑥1

𝜂𝜂
,                                                                                                                                (7) 

 
and the inner expansion: 
 

 
𝑢𝑢𝜂𝜂 = 𝑣𝑣0(𝑥𝑥,𝑦𝑦) + 𝜂𝜂𝑣𝑣1(𝑥𝑥,𝑦𝑦) + 𝜂𝜂2𝑣𝑣2(𝑥𝑥,𝑦𝑦) + 𝜂𝜂3𝑣𝑣3(𝑥𝑥,𝑦𝑦) + ⋯ ,

𝑆𝑆𝜂𝜂 = 𝜂𝜂−2𝜎𝜎−2(𝑥𝑥, 𝑦𝑦) + 𝜂𝜂−1𝜎𝜎−1(𝑥𝑥,𝑦𝑦) + 𝜎𝜎0(𝑥𝑥,𝑦𝑦) + 𝜂𝜂𝜎𝜎1(𝑥𝑥,𝑦𝑦) + ⋯ ,
𝐸𝐸𝜂𝜂 = 𝜂𝜂−2𝛾𝛾−2(𝑥𝑥,𝑦𝑦) + 𝜂𝜂−1𝛾𝛾−1(𝑥𝑥,𝑦𝑦) + 𝛾𝛾0(𝑥𝑥,𝑦𝑦) + 𝜂𝜂𝛾𝛾1(𝑥𝑥,𝑦𝑦) + ⋯ .

                                         (8) 

 
Matching and energy of the new beam model 
The matching of the two asymptotic expansions requires that these coincide when the outer 
solution is evaluated at  𝑥𝑥1 = 0, and the inner one for 𝑥𝑥 tending to infinity. This yields three 
equations, choosing to stop at the first order at which a correction is obtained with respect to the 
Saint-Venant solution: 
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lim
𝑥𝑥→±∞

𝑣𝑣0(𝑥𝑥,𝑦𝑦) = 𝑢𝑢0(0±,𝑦𝑦),

lim
𝑥𝑥→±∞

𝑣𝑣1(𝑥𝑥, 𝑦𝑦) = 𝑢𝑢1(0±,𝑦𝑦) + lim
𝑥𝑥→±∞

𝑥𝑥𝑢𝑢,1
0 (0±,𝑦𝑦),

lim
𝑥𝑥→±∞

𝑣𝑣2(𝑥𝑥,𝑦𝑦) = 𝑢𝑢2(0±,𝑦𝑦) + lim
𝑥𝑥→±∞

�𝑥𝑥𝑢𝑢,1
1 (0±,𝑦𝑦) + 1

2
𝑥𝑥2𝑢𝑢,11

0 (0±,𝑦𝑦)� ,

                                  (9) 

 
and from the solution of these, the jumps of the solution (which is allowed to possibly be 
discontinuous at  𝑥𝑥1 = 0) in terms of the external loads are calculated 
 

 
��𝑈𝑈,1

1�� = 𝐶𝐶𝑡𝑡(1 − 𝜈𝜈2)𝑁𝑁0(0) + 12𝐶𝐶𝑏𝑏(1 − 𝜈𝜈2)𝑀𝑀11
0 (0),

�[𝑈𝑈2]� = 𝐾𝐾𝑡𝑡2(1 − 𝜈𝜈2)𝑁𝑁0(0) + 12𝐾𝐾𝑏𝑏2(1 − 𝜈𝜈2)𝑀𝑀11
0 (0),

�[𝑊𝑊2]� = 𝐾𝐾𝑡𝑡1(1 − 𝜈𝜈2)𝑁𝑁0(0) + 12𝐾𝐾𝑏𝑏1(1− 𝜈𝜈2)𝑀𝑀11
0 (0).

                                                         (10) 

 
Here, W and U are the axial and transversal components of the displacements at a certain order. 
The coefficients that relate these jumps and the external loads are the additional compliance of the 
beam due to the presence of a boundary layer, which in turn is due to the crack of the domain. To 
get back to a continuous model, we assume that the calculated jumps occur as a linear distribution 
in a small region of width 𝑙𝑙𝑐𝑐 = 𝑙𝑙𝑐𝑐 𝐿𝐿⁄ . This allows us to calculate the derivatives of the approximated 
jumps, and thus the strains and the compliance coefficients. These are given by: 
 
 

 �𝑎𝑎 𝑐𝑐
𝑐𝑐 𝑑𝑑

� = (1 − 𝜈𝜈2)�
�1 + 𝜂𝜂𝐾𝐾𝑡𝑡1

𝑙𝑙𝑐𝑐
� 12 𝜂𝜂𝐾𝐾𝑏𝑏1

𝑙𝑙𝑐𝑐
𝜂𝜂𝐶𝐶𝑡𝑡
𝑙𝑙𝑐𝑐

12 �1 + 𝜂𝜂𝐶𝐶𝑏𝑏
𝑙𝑙𝑐𝑐
�
�                                                                     (11) 

 
The energy of the beam, in the interval �− 𝑙𝑙𝑐𝑐 2⁄ , 𝑙𝑙𝑐𝑐 2⁄ �, can then be written as: 
 

 𝑃𝑃𝜂𝜂,𝑙𝑙𝑐𝑐 = −1
2 ∫ �𝑎𝑎 𝑐𝑐

𝑐𝑐 𝑑𝑑
�

𝑙𝑙𝑐𝑐
2

−𝑙𝑙𝑐𝑐2
�
𝑁𝑁𝑒𝑒
𝜂𝜂

𝑀𝑀𝑒𝑒
𝜂𝜂� ⋅ �

𝑁𝑁𝑒𝑒
𝜂𝜂

𝑀𝑀𝑒𝑒
𝜂𝜂�d𝑥𝑥1.                                                                               (12) 

 
Far from the crack, instead, the energy is unchanged with respect to the base solution. 

 
Discussion and conclusions 
Using an asymptotic expansion, we calculated the perturbation of the solution of an elastic beam 
due to a crack. This perturbation is determined by 4 scalar coefficients, representing the additional 
deformations with respect to the non-cracked beam, due to traction and bending, or to the 
interaction of the two. This latter effect will be present if the non-diagonal coefficient of the 
stiffness (or compliance)  matrix is non-zero. These coefficients have to be calculated numerically, 
for any value of the non-dimensional crack depth in the interval (0,1). Once these are known, the 
problem is determined and one can solve it as a 1D damage model. The first thing to notice is that, 
from the numerical results, these coefficients are clearly different and have a different evolution 
when the crack propagates along the thickness of the structure. This confirms the starting idea that, 
in general, the effect of a crack on the bending and traction stiffnesses is different. Furthermore, 
the off-diagonal values of the stiffness (or compliance) matrix in general will be non-zero; that is, 
a coupling energy term between bending and traction will be generated by the presence of the 
crack. This opens up to interesting future directions of research: once the model is obtained, it can 
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be applied to some cases of interest (e.g., the classic three-point bending problem), and compared 
with experimental data, if available. This initial work can then be extended to other cases where 
the interaction between traction and bending effects can be interesting, prominent among these, 
the study of thin shells [8-10], using asymptotic techniques which have been extensively studied 
[1, 11-14] in literature. 
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Abstract. In the present work, a two-dimensional model based on a higher order Layer-Wise (LW) 
approach is presented for the static and dynamic analysis of doubly-curved anisotropic shell 
structures. The Equivalent Single Layer (ESL) methodology is also obtained as particular case of 
LW. Each lamina of the stacking sequence is modelled as an anisotropic continuum. The 
fundamental equations account for both surface and concentrated loads, as well as the effects of 
the Winkler-Pasternak foundation. Moreover, non-conventional boundary conditions are 
introduced, and the numerical solution is assessed from the Generalized Differential Quadrature 
(GDQ) method. The proposed formulation is validated with respect to refined three-dimensional 
simulations, pointing out its accuracy and computational efficiency. 
Introduction 
In many engineering applications, layered structures with complex shapes are very frequently 
adopted in many branches of engineering. In this context, novel design perspectives require more 
complicated models capable of providing accurate predictions in terms of structural response. 

Among two-dimensional methodologies, the Layer-Wise (LW) formulation [1] seems to 
provide very accurate results with respect to three-dimensional solutions, accounting for the 
compatibility conditions at the interface between adjacent laminae. More specifically, the 
governing equations are solved directly within each lamina. On the other hand, when the 
Equivalent Single Layer (ESL) approach [2-3] is adopted, a reference surface is provided for the 
entire structure, and a higher order through-the-thickness expansion of the field variable is adopted 
taking into account a generalized formulation. 

From literature, closed-form solutions can be derived only for a limited number of cases, such 
that numerical procedures like classical finite elements are more suitable to solve approximately 
more complicated cases. In this context, refined simulations can be very high computationally 
demanding, thus spectral collocation approaches like the Generalized Differential Quadrature 
(GDQ) are adopted [4] since they lead to very accurate results with a reduced number of Degrees 
of Freedom (DOFs). 

In the present contribution, a generalized higher order two-dimensional formulation based on a 
LW approach is proposed to study the linear statics and dynamics of laminated shell structures 
featuring a double curvature, general lamination schemes, and enforced with unconventional 
external constrains [5]. Then, a unified higher order ESL theory is outlined as a particular case of 
the LW. A numerical solution of the fundamental equations is provided, taking into account the 
GDQ method. A doubly-curved shell structure is here selected as benchmark, characterized by a 
softcore lamination scheme, and unconventional boundary conditions. The results are compared 
to those ones obtained from a 3D Finite Element Method (FEM), pointing out the accuracy of the 
proposed formulation, and its computational efficiency. The present ESL and LW higher order 
formulations have been implemented in the DiQuMASPAB software [4], and all the material 
properties are obtained from its database. 
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Theoretical formulation 
Let consider a laminated doubly-curved shell made of l  laminae, described in a reference surface 
( )1 2,α αr  located in its middle thickness. In particular, a global coordinate system 1 2' ,O α α ζ  is 

introduced starting from the principal directions of ( )1 2,α αr . Furthermore, a local coordinate 
system ( )

1 2' , kO α α ζ  is assessed in each k -th layer of thickness kh , with 1,...,k l= . As a consequence, 
the position vector ( ) ( )1 2, ,k α α ζR  of an arbitrary point of the shell can be described as [1]: 

( ) ( )( ) ( ) ( )1
1 2 1 2 1 2, , , ,

2 2
k k kk k

k

h
z

ζ ζ
α α ζ α α α α+ + 

= + + 
 

R r n  (1) 

where ( ) 0 1 0 1
1 2 1 1 2 2, , ,α α α α α α   ∈ ×     and 1,k kζ ζ ζ + ∈   . In addition, 1,k kζ ζ +  denote the locations of 

the intrados and the extrados of the lamina at issue in the global reference system, respectively, 
whereas the dimensionless local out-of-plane coordinate is defined as ( )2 k

k kz hζ= . In other words, 
in Eq. (1) a midsurface is provided for each lamina, so that the global and the local out-of-plane 
coordinates ζ  and ( )kζ  are related as: 

( )kd dζ ζ=   (2) 

On the other hand, the geometry of the structure can be described in the ESL framework in 
terms of the global thickness coordinate ζ , as follows [2]: 

( ) ( ) ( )1 2 1 2 1 2, , , ,α α ζ α α ζ α α= +R r n   (3) 

Referring to the local geometric reference system ( )
1 2' kO α α ζ , the three-dimensional 

displacement field vector ( ) ( )( ) ( ) ( ) ( )
1 2 1 2 3, ,

Tk k k k kU U Uα α ζ  =  U  is described by means of generalized 

thickness functions ( )i kFα
τ  for 1,...,3i =   collected in the matrix ( )k

τF  defined in each k -th layer for 
each 0,..., 1Nτ = + . Thus, ( )k

iU  is expressed in terms of the so-called generalized displacement field 
components ( )k

iu τ , setting 1,2,3i = : 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )( ) ( ) ( )

1

2

3

1 1
1 1

2 2 1 2
0 0

3 3

0 0

0 0 , ,

0 0

kk k

N N
kk k k k k k

k k k

FU u

U F u

U uF

α τ
τ

α τ τ
τ τ

τ τα τ
τ

α α ζ
+ +

= =

    
    
 = ↔ =   
    
        

∑ ∑U F u  (4) 

Based on the ESL approach, the relation ( ) ( )kτ τ=u u  should be considered in Eq. (4). The 
constitutive equation considered in the problem is valid for generally anisotropic materials relating 
each component of the three-dimensional stress and strain vectors ( )kσ  and ( )kε : 
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 (5) 

The elastic stiffness matrix ( ) ( ) ( ) ( )( )Tk k k k=E T E T  of Eq. (5), referred to the geometric reference 

system ( )
1 2' kO α α ζ , is derived from the rotation transformation ( ) ( )k

kϑT  of matrix ( )kE , with 
coefficients ( )k

ijE  for , 1,...,6i j = , associated to the reference system of the material [4]. The 
fundamental equations and the related boundary conditions are derived from the Hamiltonian 
Principle, accounting for the virtual variation of the elastic strain energy, kinetic energy and 
external work. Referring to an arbitrary τ -th kinematic expansion order, one gets: 

( ) ( ) ( ) ( ) ( )
1 1

0 0
for 0,..., 1, 1,...,

N N
k k k k k N k lτη η τη η τ

η η

τ
+ +

= =

− + = = + =∑ ∑L u M u q 0  (6) 

where ( )kτηL  and ( )kτηM  denote the fundamental and mass matrix, respectively. The symbol 
( ) ( ) ( ) ( )

1 2 3

Tk k k kq q qτ τ τ τ =  q  accounts for the vector of generalized external loads, whose components are 
determined according to a static equivalence principle. 

The higher order two-dimensional problem of Eq. (6) is solved with the GDQ method, starting 
from a discretization of the physical domain in N MI I×  discrete points according to the Chebyshev-
Gauss-Lobatto (CGL) distribution [4]. Referring to an arbitrary univariate function ( )f f x= , the 
GDQ technique provides the following expression for the n -th order derivative evaluated at an 
arbitrary point ix  for 1,..., Qi I= : 

( ) ( ) ( ) ( ) ( )
1

 = 1, 2,..., 
Q

i

In
n n

i ij j Qn
jx x

f x
f x f x i I

x
ς

==

∂
= ≅

∂ ∑  (7) 

where the weighting coefficients ( )n
ijς  are computed with a recursive procedure. 

Applications and results 
We now present some results from the statics and dynamics of a doubly-curved laminated panel 
with a softcore, made of generally anisotropic materials. A revolution hyperbolic hyperboloid is 
considered [4], whose reference surface can be described with principal coordinates 1 2,α α  
according to the following relation: 

( )1 2 1 2 1 1 2 2 1 3, cosh cos cosh sin sinha a cα α α α α α α= − +r e e e  (8) 
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with 2.00ma =  and 1.50mc = . The lamination scheme consists of four different layers with 
general orientation ( )30 / 70 / 70 / 45 . The two external sheets of the structure are made of graphite-

epoxy ( )( )31450 kg / mkρ = , here modeled as orthotropic material with elastic moduli 
( )
1 13.79 GPakE = , ( ) ( )

2 3 8.96 GPak kE E= = , shear moduli ( ) ( )
12 13 7.10 GPak kG G= = , ( )

23 6.21 GPakG =  
and Poisson’s ratios ( ) ( )

12 13 0.30k kν ν= = , ( )
23 0.49kν = . On the other hand, the central core is made of a 

triclinic material ( )( )37750 kg / mkρ = , characterized by the following anisotropic stiffness matrix 
( )kE  [2]: 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

11 12 16 14 15 13

12 22 26 24 25 23

16 26 66 46 56 36

14 24 46 44 45 34

15 25 56 45 55 35

13 23 36 34 35 33

98.84 53.92 0.03 1.05 0.1 50.78
53.

k k k k k k

k k k k k k

k k k k k k
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k k k k k k

k k k k k k

k k k k k k

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

 
− 

 
 
 

= = 
 
 
 
 
 

E

92 99.19 0.03 0.55 0.18 50.87
0.03 0.03 22.55 0.04 0.25 0.02

GPa
1.05 0.55 0.04 21.1 0.07 1.03

0.1 0.18 0.25 0.07 21.14 0.18
50.78 50.87 0.02 1.03 0.18 87.23

 
 − 
 −
 

− 
 − − −
 

−  

 (9) 

More specifically, the core is made of a lamina with triclinic-soft material, whose stiffness 
constants are equal to 1 1000  of those reported in Eq. (9), whereas the third layer follows exactly 
the triclinic material of Eq. (9). Unconventional boundary conditions have been enforced 
accounting for a Double-Weibull distribution of linear springs. For more details on the topic, the 
interested reader is referred to [5]. 
In Table 1 the first ten mode frequencies, calculated with different higher order ESL and LW 
theories, are compared to those ones resulting from a 3D FEM simulation with 20-node brick 
elements. 

Table 1. Free vibration analysis of a revolution hyperbolic hyperboloid laminated with generally 
anisotropic materials employing higher order theories with both the ESL and LW approaches. 

Mode [ ]Hzf  ( )K
SSSB CFF  

 3D FEM FSDT TSDT ED3 EDZ3 ED4 EDZ4 LD1 LD2 LD3 LD4 
DOFs 327402 5046 10092 10092 12615 12615 15138 20184 30276 40368 50460 

1 11.53 19.21 18.38 18.37 17.26 14.79 14.76 12.17 11.42 11.37 11.39 
2 14.96 28.02 26.70 26.69 24.60 20.24 20.16 15.30 15.06 15.09 15.24 
3 21.42 32.11 31.05 31.07 29.77 26.62 26.57 22.40 21.17 21.13 21.13 
4 28.53 43.04 41.27 41.31 39.21 35.50 35.45 29.76 28.74 28.75 28.90 
5 31.71 52.75 50.13 50.16 46.65 38.95 38.81 32.65 31.50 31.42 31.49 
6 33.12 54.80 52.27 52.35 48.62 40.82 40.73 33.80 32.96 32.95 33.18 
7 40.15 64.36 61.41 61.38 57.92 51.33 51.18 41.83 40.08 40.08 40.15 
8 43.33 66.00 63.11 63.20 59.75 52.09 51.95 44.51 43.01 42.96 42.98 
9 44.38 69.84 66.35 66.44 62.07 53.68 53.56 45.51 43.93 43.98 43.99 
10 47.04 80.76 75.26 75.23 67.94 57.89 57.77 48.89 46.85 46.86 46.93 

Geometric Inputs: Revolution Hyperbolic Hyperboloid, 2.00 ma = , 1.50 mc =  
0
1 1α = − , 1

1 1α = , 0
2 0α =  and 1

2 2α π= , 1 4 0.01 mh h= = , 2 0.10 mh = , 3 0.03 mh =  
Lamination Scheme: 1st layer: graphite-epoxy, 2nd layer: triclinic, 3rd layer: triclinic-soft, 4th layer: graphite-
epoxy 
Computational Grid: CGL distribution with 31N MI I= =  
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When the Murakami’s zigzag function [2] is adopted in Eq. (4) within an ESL framework, more 
accurate results are obtained. However, if LW simulations are performed, a perfect alignment 
between the 3D FEM-based predictions is outlined. Fig. 1 shows the first eight mode shapes of the 
structure, calculated by means of the LD4 theory, showing the three-dimensional capability of the 
proposed formulation. 

 
 

1 11.39 Hzf =  

 
 

2 15.24 Hzf =  

 
 

3 21.13 Hzf =  

 
 

4 28.90 Hzf =  

 
 

5 31.49 Hzf =  

 
 

6 33.18 Hzf =  

 
 

7 40.15 Hzf =  

 
 

8 42.98 Hzf =  

Figure 1. First eight mode shapes of a laminated anisotropic revolution hyperbolic hyperboloid 
under general boundary conditions. The modal eigenvectors have been calculated employing the 

LD4 theory. 
 
The same structure has been investigated under a static load. In particular, a load ( )

3 2000 Nq + = −  
is applied on the structure, according to Ref. [5]. Taking into account a bivariate super elliptic 
distribution [5], the external load is distributed only in a limited area within the physical domain, 
setting 1 2 0m mα α= =  and 1 2 0.53δ δ= =  and 1000n = . The three-dimensional through-the-
thickness stress distribution is depicted in Fig. 2, referring to the point of the physical domain 
located at ( ) ( )( )1 0 1 0

1 1 2 20.25 ,0.75α α α α− − . 
Classical approaches like FSDT and TSDT are not capable of predicting the three-dimensional 
finite element outcomes, as well as higher order ESL theories. The static response of the entire 
lamination scheme can be properly evaluated only with higher order LW theories for both in-plane 
and out-of-plane stress components. As can be seen from the three-dimensional solution, the abrupt 
change of stiffnesses between two adjacent layers leads to very complicated stress distributions, 
which requires a higher order LW approach among two-dimensional theories. 
Conclusions 
In the present work a generalized higher order two-dimensional theory has been presented for the 
static and modal analysis of shell structures made of generally anisotropic laminates. Following 
the LW approach, the fundamental equations are derived within each layer of the structure. As 
particular case, a unified ESL theory accounting for zigzag functions has been derived. The 
equations of motion have been discretized in a strong form via the GDQ method, together with the 
associated boundary conditions. The proposed methodology has been applied to a doubly-curved 
shell structure with a generally anisotropic lamination scheme and soft layers, showing the 
accuracy of the formulation, as well as its computational efficiency. 
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Figure 2. Through-the-thickness distributions of the three-dimensional stress components 
calculated by means of various higher order ESL theories of a fully-clamped ellipsoid subjected 

to a uniform surface load applied at the top surface. 
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Abstract. The concept of Relaxed Funicularity (R-Funicularity) has been introduced in [2] to deal 
with the difficulties of designing a shell with a funicular behavior. The R-Funicularity has been 
defined by using a parameter called generalized eccentricity: a shell is said to be R-Funicular if 
the generalized eccentricity belongs to an admissibility domain defined in terms of membrane 
forces 𝑁𝑁 and bending moments 𝑀𝑀. Here we define an 𝑁𝑁 −𝑀𝑀 admissibility domain that includes 
the shell tensile limit force 𝑁𝑁𝑡𝑡, not previously taken into account. The proposed domain is well 
described by a new parameter, the effective eccentricity, and is used to control the tensile stresses 
occurring on shells designed to be R-Funicular and to work under compression.  
Introduction 
Shells with a funicular shape with respect to a given load are ideally able to bear it without 
introducing bending. They are an example of mechanical efficiency and subject of a fruitful 
research [1]. A funicular behavior is difficult to reach due to shell’s bending stiffness, boundary 
conditions or multiple load cases. For this reason, an extension of the funicularity concept has been 
proposed defining the Relaxed Funicularity (R-Funicularity). A parameter called generalized 
eccentricity, i.e. the ratio between the generalized bending moments 𝑀𝑀 and the generalized 
membrane forces 𝑁𝑁, has been used for this purpose: a shell is R-Funicular if the generalized 
eccentricity belongs to an admissibility domain [2]. The R-Funicularity has been used to study the 
modal and dynamic behavior of shells [3]. The velaroidal shells, example of funicular shells [4], 
have been studied by estimating their R-Funicularity [5,6]. Moreover, the R-Funicularity has been 
used to assess how the funicularity of timber gridshells is affected by the laths orientation [7]. A 
shells’ shape optimization process aimed to minimize the generalized eccentricity extrema has 
been developed in [8]. A similar shape optimization process for 1D structures has been proposed 
in [9].  

Here, we introduce an 𝑁𝑁 −𝑀𝑀 admissibility domain that includes the tensile limit force 𝑁𝑁𝑡𝑡 
related to the shell’s material and thickness. The proposed domain is well described by the effective 
eccentricity, a new parameter that will be introduced by means of three main steps. First, the 
admissibility domain is shifted towards the right to include the tensile strength while showing that 
the generalized eccentricity is not a good parameter for spanning the new domain. Then, the 
effective eccentricity is introduced as a change of parameter to left shifting the ellipses. Finally, 
the mechanical meaning of the effective eccentricity is illustrated. 
Generalized Eccentricity and R-Funicularity 
Here, we briefly describe the concept of Relaxed Funicularity based on the generalized 
eccentricity; a complete discussion can be found in [2]. 

Let us consider a point P belonging to the surface S, endowed with its orthonormal basis 
𝒂𝒂1,𝒂𝒂2,𝒂𝒂3, and a generic direction 𝒖𝒖 = (cos𝜃𝜃 , sin 𝜃𝜃) (Fig. 1, Left). The membrane force 𝑁𝑁(𝜃𝜃) 
acting along 𝒖𝒖 and the bending moment 𝑀𝑀(𝜃𝜃) acting in the plane (𝒖𝒖,𝒂𝒂3) are defined as follows: 
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𝑁𝑁(𝜃𝜃) = 𝒖𝒖𝑇𝑇𝑵𝑵𝒖𝒖, 𝑀𝑀(𝜃𝜃) = 𝒖𝒖𝑇𝑇𝑴𝑴𝒖𝒖,                                                                                                    (1a, b) 

where 𝑵𝑵 and 𝑴𝑴 are the local tensors: 

𝑵𝑵 = �𝑁𝑁11 𝑁𝑁12
𝑁𝑁12 𝑁𝑁22

�,  𝑴𝑴 = �𝑀𝑀11 𝑀𝑀12
𝑀𝑀12 𝑀𝑀22

�.                                                                                         (2a, b) 

The generalized eccentricity is defined as the following ratio: 

𝑒𝑒(𝜃𝜃) = 𝑀𝑀(𝜃𝜃)
𝑁𝑁(𝜃𝜃)

.                                                                                                                             (3) 

Setting 𝛼𝛼 = 2𝜃𝜃, the following explicit form for Eq. 1a, b has been obtained (Fig. 1, Right): 

𝑁𝑁(𝛼𝛼) = 𝑁𝑁� + 𝑁𝑁� cos𝛼𝛼 + 𝑁𝑁12 sin𝛼𝛼,  𝑀𝑀(𝛼𝛼) = 𝑀𝑀� + 𝑀𝑀� cos𝛼𝛼 + 𝑀𝑀12 sin𝛼𝛼,                          (4a, b) 

where 𝑁𝑁� = 𝑁𝑁11+𝑁𝑁22
2

, 𝑁𝑁� = 𝑁𝑁11−𝑁𝑁22
2

, 𝑀𝑀� = 𝑀𝑀11+𝑀𝑀22
2

, 𝑀𝑀� = 𝑀𝑀11−𝑀𝑀22
2

. Then, the generalized eccentricity 
is reparametrized:  

𝑒𝑒(𝛼𝛼) = 𝑀𝑀(𝛼𝛼)
𝑁𝑁(𝛼𝛼).                                                                                                                             (5)

      

Figure 1 – Left: local basis and projection of internal forces [2]. Right: ellipse of eccentricity or 
RF ellipse. 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 are the slope of the upper and lower blue lines respectively; 𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚 and 

−𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚 are the slope of the red lines. 

It is well known that a 2D structure is funicular if 𝑀𝑀(𝛼𝛼) = 0 ∀ 𝛼𝛼 in each point of the surface. 
The actual behaviour exhibited by shells with non negligible thickness shows that the nullity of 
bending moments is an ideal that doesn’t verify. The aim of R-Funicularity is to define a criterium 
to consider a structure funicular in a relaxed manner when 𝑒𝑒(𝛼𝛼) belongs to an admissibility range 
[−𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚, 𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚], where 𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚 = 𝜆𝜆ℎ, being ℎ the shell thickness and 𝜆𝜆 ∈ [0, 1/2] an admissibility 
coefficient. Thus, the Relaxed Funicularity (RF) is defined as follow: “a shell is R-Funicular if, 
𝑒𝑒(𝛼𝛼) ∈ [−𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚,  𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚] ∀ 𝛼𝛼 ∈ [0,  2𝜋𝜋], for each point of the surface”(Fig. 1, Right).  

In practice the problem of the R-Funicularity is that of verifying: 

 �𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒(𝛼𝛼)�,  𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒(𝛼𝛼)�� ⊂ [−𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚,  𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚].                                                                          (6) 

Writing 𝑒𝑒 as the Rayleigh quotient: 𝑒𝑒(𝜃𝜃) = 𝒖𝒖𝑻𝑻𝑴𝑴𝒖𝒖
𝒖𝒖𝑻𝑻𝑵𝑵𝒖𝒖

, the maximum and minimum eccentricities 
(𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚) are found by solving the eigenvalue problem in Eq. 7. 
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 (𝑴𝑴− 𝑒𝑒𝑵𝑵) 𝒖𝒖 = 0.                    (7) 

The solution of Eq. 7 depends on the algebraic conditioning of M and N and has been discussed 
in [2]. The local extrema 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 of Eq. 7 have been calculated in the equation (17) of [2]. 
The global extrema of the eccentricities can be finally evaluated as follows: 

 𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒(𝛼𝛼)�,𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒(𝛼𝛼)� = � −∞, +∞ 𝑚𝑚𝑖𝑖 det(𝑵𝑵) < 0
𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖 det(𝑵𝑵) ≥ 0  .              (8) 

How to include tensile strength in the analysis 
Let us consider a brittle material with a small tensile strength 𝜎𝜎𝑡𝑡. This corresponds, in terms of the 
shell forces to the tensile limit force: 

 𝑁𝑁𝑡𝑡 = ℎ 𝜎𝜎𝑡𝑡.                  (9) 

A simple way to include tensile strength in the admissibility domain is to consider a Mohr-
Coulomb like criterion in the plane 𝑁𝑁,𝑀𝑀, by shifting the vertex of the cone from 0 to the positive 
value 𝑁𝑁𝑡𝑡. In this way the criterion becomes: 

 |𝑀𝑀(𝛼𝛼)| ≤ −𝜆𝜆ℎ (𝑁𝑁 − 𝑁𝑁𝑡𝑡) = −𝜆𝜆ℎ 𝑁𝑁 + 𝜆𝜆ℎ𝑁𝑁𝑡𝑡 = −𝜆𝜆ℎ 𝑁𝑁 + 𝑀𝑀𝑡𝑡.            (10) 

Where the flexural strength 𝑀𝑀𝑡𝑡 = 𝜆𝜆ℎ2 𝜎𝜎𝑡𝑡 takes over the same role of the cohesion in the Mohr-
Coulomb criterion (Fig. 2). The role of the quantity (𝑁𝑁 −𝑁𝑁𝑡𝑡), named effective normal force 𝑁𝑁𝑒𝑒, 
arises in Eq. 10. 

 
Figure 2 – Ellipse of eccentricities. The slopes of the blue lines and those of the red lines are, 

respectively, the eccentricity extrema and the eccentricity limits. Left: Eccentricity admissibility 
domain when no tensile strength is considered. Right: Eccentricity admissibility domain when 

the tensile limit force Nt is taken into account. 
Effective Eccentricity as a change of parameter 
In order to properly describe the admissibility domain, we perform a change of parameter, by 
plotting the ellipse of eccentricity in the plane (𝑁𝑁𝑒𝑒 ,𝑀𝑀) ∈ ℝ2.  

This is done by means of the following substitution: 

 𝑵𝑵𝑒𝑒 = 𝑵𝑵− 𝑁𝑁𝑡𝑡𝑰𝑰.                  (11) 

Consequently, the expression of the effective normal force in direction 𝒖𝒖 can be calculated as: 

 𝑁𝑁𝑒𝑒(𝛼𝛼) = 𝒖𝒖𝑇𝑇𝑵𝑵𝒆𝒆𝒖𝒖 = 𝒖𝒖𝑇𝑇(𝑵𝑵−𝑁𝑁𝑡𝑡𝑰𝑰)𝒖𝒖 = 𝒖𝒖𝑇𝑇𝑵𝑵𝒖𝒖 − 𝑁𝑁𝑡𝑡𝒖𝒖𝑇𝑇𝒖𝒖 = 𝑁𝑁(𝛼𝛼) − 𝑁𝑁𝑡𝑡.          (12) 
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After this change of parameter the ellipse of eccentricity is shifted toward the left and the 
admissibility domain passes through the origin of the plane (𝑁𝑁𝑒𝑒 ,𝑀𝑀). In this way the lines starting 
from the origin span the admissibility domain. The slope of those that are tangent to the ellipse 
represent a new descriptor, named effective eccentricity:  

 𝑒𝑒𝑒𝑒(𝛼𝛼) = 𝑀𝑀(𝛼𝛼)
𝑁𝑁𝑒𝑒(𝛼𝛼) = 𝑀𝑀(𝛼𝛼)

𝑁𝑁(𝛼𝛼)−𝑁𝑁𝑡𝑡
= 𝑁𝑁(𝛼𝛼)

𝑁𝑁𝑒𝑒(𝛼𝛼) 𝑒𝑒(𝛼𝛼).               (13) 

It is worth to notice that |𝑁𝑁𝑒𝑒| > |𝑁𝑁|, being 𝑁𝑁 < 0 and 𝑁𝑁𝑡𝑡 > 0; thus 𝑒𝑒𝑒𝑒(𝛼𝛼) is proportional to 
𝑒𝑒(𝛼𝛼) with the ratio 𝑁𝑁/𝑁𝑁𝑒𝑒 and decreases as 𝑁𝑁𝑡𝑡 increases. 

Following the definition of the effective eccentricity 𝑒𝑒𝑒𝑒(𝛼𝛼), then the problem of the 
R-Funicularity becomes to verify: 

 �𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒𝑒𝑒(𝛼𝛼)�,  𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒𝑒𝑒(𝛼𝛼)�� ⊂ [−𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚, 𝑒𝑒𝑙𝑙𝑚𝑚𝑚𝑚].              (14) 

The mechanical meaning of the effective eccentricity is depicted in Fig. 3.  

 
Figure 3 – Graphical representation of the mechanical meaning of the effective eccentricity. 

With reference to Fig. 3, the left section is subject to 𝑁𝑁 and 𝑀𝑀. These are substituted by the 
eccentric force 𝑁𝑁, located at distance 𝑒𝑒 from the centre of the section. The stress distribution 𝜎𝜎(𝑦𝑦) 
due to the eccentric force 𝑁𝑁 goes from compression (top) to tension (bottom) and can be expressed 
as the sum of the uniform tensile stress distribution 𝜎𝜎𝑡𝑡 and a trapezoidal one of compression. This 
is equivalent to the stress state occurring on a section subject to 𝑁𝑁𝑡𝑡 and 𝑁𝑁𝑒𝑒, the latter being an 
eccentric force located at distance 𝑒𝑒𝑒𝑒 from the centre of the section. Thus, when the effective 
eccentricity 𝑒𝑒𝑒𝑒 belongs to the middle-third, the tensile strength is not exceeded. 
Example 
The effective eccentricity has been evaluated with reference to a well-known funicular surface [4], 
the parabolic velaroidal surface, described by the following equation: 

𝑧𝑧 = 𝑖𝑖(𝑚𝑚,𝑦𝑦) = 𝑐𝑐 �𝑚𝑚
2

𝑚𝑚2
− 1� �𝑦𝑦

2

𝑏𝑏2
− 1�,                                                          (15) 

where a and b are the measures of the spans and c is the rise of the surface (Fig. 4). 

 

 

Figure 4 – A parabolic velaroidal surface.  
2a 

2b 

c 
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Here we have set 𝑚𝑚 = 𝑏𝑏 = 10 𝑚𝑚, 𝑐𝑐 = 5 𝑚𝑚; the shell material is concrete with a weight per unit 
volume 𝑤𝑤 = 25 𝑘𝑘𝑁𝑁/𝑚𝑚3 and a tensile strength 𝜎𝜎𝑡𝑡 = 2 𝑀𝑀𝑀𝑀𝑚𝑚, the shell thickness is ℎ = 0.1 𝑚𝑚 and 
the admissibility coefficient 𝜆𝜆 = 1/6. A finite element model of the shell structure clamped along 
the entire perimeter has been built, a shell-thin element formulation has been used. Then, a linear 
static analysis of the shell subject to self-weight has been performed and the results have been used 
to evaluate the eccentricities and the effective eccentricities (Fig. 5).  
 

 
Figure 5 – Left: eccentricity distribution. Right: effective eccentricity distribution. 

In Fig. 5, the colormap of the left graph represents the values of 𝑒𝑒𝑀𝑀,𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚|, |𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚|) 
that increases going from green to blue, the latter meaning that the eccentricity is > ℎ/2, i.e. the 
resultant force 𝑁𝑁 acts out of the cross section. The shell is R-Funicular in the light green areas. 
The effective eccentricities 𝑒𝑒𝑒𝑒𝑀𝑀,𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚|, |𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚|), are hence pictured with the 
colormap of the right graph, with the same color scale of the left one. In this case the effective 
eccentricity is everywhere included in the admissibility domain.  

By exploiting the symmetry of the studied surface, the ellipse of eccentricities has been 
evaluated for the shell elements shown in Fig. 6. 

  
Figure 6 – Non R-Funicular shell elements that turn R-Funicular when the tensile strength is 

considered. 

          
    

Figure 7 – Left: ellipse of eccentricity of the non R-Funicular shell elements. Right: the shell 
elements turn R-Funicular when the extended domain is considered. 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 127-132  https://doi.org/10.21741/9781644902431-21 

 

 
132 

As shown in Fig. 5 and in Fig. 7, the shell structure, originally non R-Funicular in the areas 
close to the boundaries, turns R-Funicular when the tensile strength is taken into account.  
Conclusions 
In this work has been developed the idea of how to formally extend the admissibility domain of 
shell’s R-Funicularity by taking into account the tensile strength of the material. A new parameter 
called effective eccentricity has been introduced on purpose, in order to consider the left shifting 
of the R-Funicularity ellipses. The mechanical meaning of the effective eccentricity has been 
illustrated. The presented numerical example shown as a partially non R-Funicular shell turns fully 
R-Funicular when the extended domain is used. As a first work in this direction the authors are 
aware that taking into account the small tensile strength of shells, designed to work in compression, 
is a tricky task. For this reason, further development of the work will aim to account for the 
contribution of the prestress exploiting a formulation analogous to that here used. 
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Abstract. Different polymeric fibrous materials, such as polyester, nylon, aramid and rayon, can 
be employed as reinforcement in tyres or in other rubber composites. The present contribution 
focuses on the experimental characterization of rayon yarns and cords and makes some steps 
towards developing a constitutive model for cords, to be later integrated into a finite element 
procedure for the analysis of fibre-reinforced composites. Uniaxial tensile tests under monotonic 
and cyclic loading together with creep tests have been performed on rayon specimens in different 
conditions. A simple, preliminary viscoelastic-viscoplastic model is proposed which can describe 
the main experimental findings for untwisted yarns. 
Introduction 
Cord-reinforced rubber components, such as tyres, are complex systems and the development of 
cost-effective computational methods for their analysis and for efficient product development at 
industrial level is still a challenging goal, see e.g. [1,2,3]. The knowledge of the material properties 
of the individual constituents and the ability to numerically simulate their behaviour represent 
important intermediate objectives. For cords, such task is rather demanding in view of the 
nonlinear constitutive behaviour of the fibres combined with the geometrical nonlinearities linked 
to the twisted structure of the material. This work reports on research activities conducted on rayon 
cords within an industry-academia collaboration in which the authors are involved. An extensive 
experimental campaign has been conducted and the obtained results, which highlight an elastic-
viscoplastic behaviour of the cords, are discussed. Attention is given to the irreversible aspect of 
such behaviour, related to the manifestation of inelastic permanent deformations, which is rarely 
taken into consideration in the literature concerning polymeric fibres (while it is more often 
considered in the case of polymer matrix materials, see e.g. [4]). A rheological model is also 
proposed for the simulation of the behaviour of untwisted yarns. 
Experimental tests on rayon yarns and cords 
Representative results of the experimental campaign carried out by the authors on the materials in 
point are reported in [5]. For this reason and also due to space limitations, only a selection of the 
obtained experimental results, complementary to those described in [5], are reported in the present 
work; in particular some creep tests that were carried out only recently are here discussed. 

Materials.  All tested materials were either rayon filament yarns or cords made from them. The 
single untwisted yarn, denoted by Y0, has a linear density of 1840 dtex (g/10000 m) and contains 
1000 filaments. Using two different twist levels applied to the same filament bundle, yarns Y38 
and Y48 are obtained, with 380 and 480 turns per meter (tpm), respectively. Two cords (also called 
multi-ply yarns) are considered: cord C2, produced by twisting two Y48 yarns together; and cord 
C3, obtained by twisting three Y38 yarns together. For both cords, the twist direction of the 
filaments in the single yarn and the ply twist direction are opposite, with the same tpm value. Note 
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that only experimental results on greige materials are reported in the present work; some results 
for dipped cord can be found in [5]. 

Monotonic and non-monotonic tensile tests.  A Zick-Roell testing machine with a 10 kN load 
cell was used to carry out the tests under displacement control, using different strain rates. The 

specimens were 500 mm long; bollard 
grips, suitable for filamentary materials, 
were employed. With reference to 
monotonic tests, we start showing some 
results that illustrate the influence of 
humidity conditions, see Fig. 1, and of 
strain rate, see Fig. 2. Note that “dry” 
conditions refer to samples that before 
being tested are kept in an oven at 100°C 
for at least two hours, while “humid” 
conditions apply to samples conditioned 
for 24 hours in the same climatic room 
where the test is run, at 20°C and at 65% 
of relative humidity. Each curve in Fig. 1 
represents the mean response for ten 
experiments on nominally identical 
specimens. The adopted strain rate was 
0.017 s-1. It is apparent that rayon fibrous 
materials are very sensitive to moisture 
content: in dry conditions, the materials 
turn out to be generally stiffer and 
characterized by a higher maximum force 
and a lower maximum elongation than 
when humid. Note that yarn Y0 exhibits an 
almost bi-linear force-strain curve, 
interpretable as linear elastic in the first 
part and plastic with linear hardening in 
the second part. Figure 2 shows how the 
response of cords C2 and C3, in humid 
conditions, is affected by the adoption of 

different strain rates. Analogous experimental results for yarn Y0 are presented in Fig. 6 (b). As 
expected, both for the yarn and for the cords, the strength increases with the strain rate; the effect 
however is fairly limited, at least for the range of strain rates considered.  

Cyclic tests give important information on the inelastic behaviour of the materials under study. 
Such tests were performed under displacement control and using a constant strain rate 
(± 0.003 s-1), enforcing non-monotonic strain histories. Figure 3 shows the cyclic response of 
cords C2 and C3, under two different strain histories (in humid conditions). The two curves are 
plotted considering the average reactive force obtained from four tests on nominally identical 
samples. For cord C3, the same figure also depics the curve obtained imposing an increasing strain 
(linear in time), using the same strain rate of the cyclic tests. One can note the presence of 
permanent deformation upon unloading and of hysteresis loops in the unloading-reloading phases. 
An analogous behaviour is observed for yarn Y0, see Fig. 7 (a). The above results indicate an 
elastic-viscoplastic behaviour of rayon fibres and cords. 

Creep tests.  Very recently the experimental campaign has been enriched with some creep tests 
that give important additional information on the time-dependent properties of the materials under 

Fig. 2: Force-strain curves for monotonic tensile 
tests on cords C2 and C3. 

       

Fig. 1: Force-strain curves of uniaxial tensile tests 
in dry and humid conditions, for yarn Y0 and cord C3. 
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study. In all the creep tests, 200 mm long 
samples are used. Each test is carried out 
on two or three specimens and the 
reported result is the average obtained 
from the different specimens. 

Figure 4 (a) shows the strain response 
to a creep test conducted on yarns Y0 and 
Y48 under a constant force of 10 N, 
holding this force for 24h (86400 s); the 
experiments are carried out at 20°C and at 
65% of relative humidity. The tests were 
done by imposing increasing values of 
strain, for 0 < t < 𝑡𝑡0, up to the attainment 

of the given force; thereafter the force is 
kept constant. The strain at time 𝑡𝑡0, 
denoted by 𝜀𝜀0, is called instantaneous 
strain. For the yarns Y0 and Y48 such 

strains (indicated by dotted horizontal lines in the graphs) turn out to be 𝜀𝜀0𝑌𝑌0 = 0.7% and 𝜀𝜀0𝑌𝑌48 =
1.7%; note that the imposed load is such that the instantaneous response can be considered elastic. 
For both yarns, creep strain develops with an ever-decreasing strain rate. Denoting by 𝜀𝜀𝑓𝑓𝑌𝑌0 and 
𝜀𝜀𝑓𝑓𝑌𝑌48the final strains at the end of the experiment (i.e. after 24 h), the values obtained are 𝜀𝜀𝑓𝑓𝑌𝑌0 =
1.8%  and  𝜀𝜀𝑓𝑓𝑌𝑌48 = 4.5%; thus the ratios 𝜀𝜀𝑓𝑓𝑌𝑌0/𝜀𝜀0𝑌𝑌0 = 2.57 and 𝜀𝜀𝑓𝑓𝑌𝑌48/𝜀𝜀0𝑌𝑌48 = 2.65 turn out to be 
similar. 

  

Analogous results for creep test carried out for cords C2 and C3 are reported in Fig. 4 (b). The 
two cords were loaded by a (constant) force of 41 N (identical for C2 and C3); for both cords this 
load level is higher than the elastic limit (determined by monotonic tensile tests). Therefore, the 
instantaneous strain (denoted by 𝜀𝜀0) comprises elastic and inelastic contributions; it turns out that 
𝜀𝜀0𝐶𝐶2 = 6.6% and 𝜀𝜀0𝐶𝐶3 = 5%. 

We also carried out creep tests at 100°C using the thermal chamber of Fig. 5 (a); note that these 
tests include load removal and a recovery phase. The results for cord C2 are shown in Fig. 5 (b) 
for two values of applied force (26 N, 83 N), held constant for 12600 s (3.5 h). The same figure 
shows also the creep response of cord C2 at 20°C and in humid condition (test conducted without 
the thermal chamber), under a load of 41 N. In Fig. 5 (b), the values of the “instantaneous” strains 
are marked by dotted horizontal segments, similarly to in Fig. 4.  

Fig. 3: Force-strain curves for cord C3 (cyclic and 
monotonic case) and for cord C2 (cyclic case only). 

𝜀𝜀0𝐶𝐶2 
𝜀𝜀0𝐶𝐶3 

𝜀𝜀0𝑌𝑌0 

𝜀𝜀0𝑌𝑌48 

Fig. 4: Creep tests (a) for two yarns (Y0, Y48) and (b) for two cords (C2, C3) under different 
loads; the horizontal dotted lines mark the values of the so-called instantaneous strains. 

(a) (b) 
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Fig. 5: (a) Thermal chamber for tests at high temperature; (b) creep-recovery response, at 
100°C, for cord C2 and creep response for the same cord at 20°C (in humid conditions); 

(c) results from corresponding uniaxial tests on cord C2, performed at the same conditions. 
Figure 5 (c) shows the result of the uniaxial tests on cord C2 performed at the same conditions 

employed in the creep tests. A square symbol is used to denote the force-strain values representing 
the “instantaneous response” at the beginning of the creep tests: in principle these square symbols 
should lie on the corresponding curves; the largest discrepancy can be noted for the creep 
instantaneous response at the higher load. One can note that among the three instantaneous strains 
shown in Fig. 5 (b-c), only the one corresponding to the lower load takes place in elastic regime. 
Numerical simulation of the experimental behaviour of the untwisted yarn Y0 
Viscoelastic-viscoplastic model. The one-dimensional rheological model depicted in Fig. 6 (a) 
consists of a linear spring (E) in series with a Kelvin unit (𝑬𝑬�,𝜼𝜼�) and with a viscoplastic unit 
comprising three elements in parallel: a frictional device (𝝈𝝈𝒚𝒚), a hardening spring (H) and a viscous 
dashpot (𝜼𝜼). All elastic and viscous parameters are meant to be constant.  

The total strain is hence the sum of three contributions: elastic, viscoelastic and viscoplastic: 
 
𝜀𝜀 = 𝜀𝜀𝑒𝑒 + 𝜀𝜀𝑣𝑣𝑒𝑒 + 𝜀𝜀𝑣𝑣𝑣𝑣          (1) 

Such 6-parameter model can represent the behaviour of a polymeric fibrous material, not 
accounting however for the geometric effects due to the twisted structure of yarns and cords; 
therefore, it is used only to simulate the behaviour of the untwisted yarn Y0. 

(c) 

(b) 
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By introducing a time discretization (𝛥𝛥𝑡𝑡 = 𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1 denoting the time step) and assuming that 
(i) the state of the model is known at time 𝑡𝑡𝑛𝑛−1 and that (ii) the strain 𝜀𝜀𝑛𝑛 at 𝑡𝑡𝑛𝑛 is given (strain-
driven process), it is possible to develop an integration algorithm over the time step for the 
updating of all the model variables to time 𝑡𝑡𝑛𝑛. The algorithm, based on Euler backward scheme, 
parallels the predictor/corrector scheme of classical rate-independent plasticity and makes use of 
“trial quantities” defined by “freezing” the viscoplastic strain 𝜀𝜀𝑣𝑣𝑣𝑣 in the step. Thus, for any give 
strain history 𝜀𝜀(𝑡𝑡), the response of the 6-parameter model can be obtained by an incremental 
method in time, with no iterations within each increment. 

Note that for the above model, the creep response under a suddenly applied load �̄�𝜎 can be 
obtained analytically and reads: 
𝜀𝜀(𝑡𝑡) = �̄�𝜎/𝐸𝐸 +  �̄�𝜎/𝐸𝐸��1 − 𝑒𝑒𝑒𝑒𝑒𝑒�−𝐸𝐸�𝑡𝑡/𝜂𝜂���  +  (�̄�𝜎 − 𝜎𝜎𝑦𝑦)(1− 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐻𝐻𝑡𝑡/𝜂𝜂))/𝐻𝐻   (2) 

where the last term is present only for �̄�𝜎 > 𝜎𝜎𝑦𝑦. 
Comparison between experimental results and numerical simulations. The yarn Y0 
experimental results in terms of force, for the monotonic and cyclic tests, have to be expressed in 
terms of stress in order to be compared with results obtained by the 6-parameter model using the 
same strain history. The force values are divided by a nominal cross-section area A of yarn Y0, 
setting A = 0.17 mm² according to a microscopic measurement reported in [5]. 

A parameter identification is conducted in order to obtain a best fit with the yarn Y0 
experimental behaviour under different load conditions (monotonic, cyclic and creep), always at 
20°C and 65% humidity. The chosen values for the model parameters are: 𝐸𝐸 = 12 GPa, 𝐸𝐸�  = 4.5 
GPa, 𝜂𝜂� = 5 ∙ 104 GPa∙s, H = 3.2 GPa, 𝜂𝜂 = 3.5 GPa∙s, 𝜎𝜎𝑦𝑦 = 90 MPa. Figure 6 (b) shows the 
comparison between monotonic experimental results at different strain rates (continuous lines) and 
the numerical results obtained using the model (dotted lines). The latter is able to replicate the 
influence of different velocities, producing a reasonable agreement with the tests. 

(a) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 6: (a) 6-parameter model; (b) comparison between experimental and numerical results for 

yarn Y0 under monotonic load at different strain rates (20°C, humid). 
Figure 7 (a) compares the model and the experimental response to a given cyclic strain history 

(strain rate of 0.003 1/s) and shows fairly good agreement between the two curves. Figure 7 (b) 
shows the comparison between the creep test response in terms of strain and the model response 
based on Eq. 2, with the same set of parameters specified above.  
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Fig. 7: Comparison between experimental data and results obtained with the 6-parameter model 

for yarn Y0 (at 20°C in humid conditions) for (a) cyclic load and (b) creep test. 
Summary 
In the present contribution, the elasto-viscoplastic behaviour of greige rayon yarns and cords was 
discussed on the basis of several experimental tests under monotonic and cyclic loading and under 
creep conditions. It was shown that the behaviour of untwisted rayon yarns can be fairly well 
represented by a 6-parameter viscoelastic-viscoplastic model. Current research is focusing on how 
to couple the fibre material behaviour and the geometrical effects due to the twisted structure of 
yarns and cords. With reference to such effects, it is worth noting that recent investigations using 
microtomography techniques [6] have led to a better understanding of fibre trajectories and of their 
evolution in twisted cords under tension. 
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Abstract. This work deals with the limit analysis of structures through the lower-bound theorem, 
using dislocations based finite elements and eigenstress modelling. The lower bound approach is 
based on the knowledge of the self-equilibrated stresses that constitutes the basis of the domain 
where the optimal solution should be searched. A twofold strategy can be used to get self-
equilibrated stresses, i.e., eigenstresses. The first one pursues the calculation of the self-
equilibrated stress through the numerical approximation of the differential equilibrium equation in 
homogeneous form through an a posteriori discretization that used polynomial representation of 
finite degree. The second one consists of Finite Element implementation of the self-equilibrated 
stress calculation by discontinuous finite elements based on Volterra's dislocations theory. Both 
the formulations are written in terms of the strain and precisely in terms of the strain nodal 
displacement parameters. Consequently, it is possible to formulate an iterative procedure starting 
from the knowledge of the dislocation at the incoming collapse, in Melan’s residual sense, and 
calculate the structural ductility requirement. Several numerical examples are presented to confirm 
the method's feasibility. 
Introduction 
The application of limit analysis and plasticity to structural safety concerns a wide range of 
engineering fields. Starting from the pioneer works of Prager, Drucker, and Greenberg's [1,2] and 
Massonnet and Save [3,4] that address the plastic response of structures introducing the collapse 
calculation for one-dimensional beams assembly as the main topic the matter has been formalized 
in the mathematical treatise of Hill [5], a two-fold approach is the way the limit analysis has been 
applied. The first, the kinematic method, consists of finding the collapse load as the load infimum 
among that in equilibrium with the stress linked to a compatible collapse mechanism. The second, 
the static approach, is based on the research of the supremum of the load in equilibrium with an 
admissible stress state that is a combination of self-equilibrated stress with the particular solution 
of the elastic equilibrium equation to the applied loads. An extensive chapter in the limit analysis 
is devoted to the mechanics of masonry structures following the work of Heyman [6], who extends 
the primary approach of limit analysis to the not tensile resistant materials (NTRM) modeling 
masonry. The limit analysis, and in a more general sense the plasticity modeling, is highly required 
when one must interpret the results of monitoring campaign since the structures during their life 
generally undergo permanent strain and cracks [7,8]. In the field of the biomechanics, the limit 
equilibrium is used as a primary tool to assess the fracture risk of prosthesis implants and relative 
optimization strategies as reported in [9,10,11]. 
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The main topic of the limit analysis when addressed using the lower-bound approach is to define 
the field of the self-equilibrated stress that constitute the kernel of the equilibrium operator. The 
way the self-equilibrated stress is obtained characterizes the work here presented. Namely, a first 
strategy is based on mixed numerical-analytical solution of the equilibrium differential equations. 
The procedure evaluates the collapse load multiplier for masonry domes and vaults [12,13] and 
concrete caps. The results from the proposed formulation showed a good agreement with the 
experiments reported in [14]and with calculation presented in [15] that uses a kinematic approach 
based on the energy balance about crack lines which constitutes a typical pattern of collapse for 
plates and slender domes under radial load [16].  
Alternatively, one can resolve the self-equilibrated stress, and consequently the domain within one 
must define the admissible stress state, with reference to finite element discretization of the model. 
The second procedure relates the permanent strain modeled as Volterra’s dislocation to nodal 
parameters analogous to finite element nodal displacement. The formulated displacement base 
FEM gives the linear operator that relates the self-equilibrated stress domain to nodal parameters 
and boundary displacements. The dimensions of the self-equilibrated stress domain is the rank of 
the linear operator that in the case of truss and frames structures coincide with the redundancy 
degree of the structure. 
Semi analytical method (SAM) 
The first procedure consists of the search of the collapse multiplier through a mixed numerical and 
analytical procedure. The equilibrium equation for vaults and domes is solved through an 
optimization constrained problem. We have used a generalized stress formulation; hence the stress 
has been described through the internal forces, N, T, and M that are the resultant components, 
axial, and shear forces respectively, and the resultant bending moment of the stress acting on the 
section. Where the subscript { }1,2 refers to the meridian or parallel cross section of the structure. 

𝑑𝑑(𝑁𝑁1𝑟𝑟)
𝑑𝑑𝑑𝑑

− 𝑁𝑁2𝑅𝑅1 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 − 𝑇𝑇1𝑟𝑟 = −𝑋𝑋 𝑅𝑅1𝑟𝑟 

𝑁𝑁1𝑟𝑟 + 𝑁𝑁2𝑅𝑅1 𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑 +
𝑑𝑑(𝑇𝑇1𝑟𝑟)
𝑑𝑑𝑑𝑑

 = 𝑍𝑍 𝑅𝑅1𝑟𝑟

𝑑𝑑(𝑀𝑀1𝑟𝑟)
𝑑𝑑𝑑𝑑

 −𝑀𝑀2𝑅𝑅1 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 − 𝑇𝑇1 𝑅𝑅1𝑟𝑟 = 0 

 

 
 
(1) 

The set of equilibrium equation is solved numerically starting from a set of shape function and 
collocating the equation at the discrete colatitude angle 𝑑𝑑𝑗𝑗  .  
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(2) 

The limit multiplier of prescribed load paths, either monotonically increasing or randomly 
variable, is obtained by maximizing the static multiplier of loads under the constraint that the sum 
of elastic response, plus any self-equilibrated time-independent stress solution, belongs to the 
admissible domain. Hence it results that the optimization program has the load multiplier as 
objective function and the parameters c as design variables. The optimization constraints are the 
linear inequalities representing the limit domain in terms of c. The elastic solution under the actual 
loads must be obtained from the equilibrium equation in any way. Namely, if closed form solution 
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exists one can use it or can be obtained employing FEM analysis. The vectors 𝑁𝑁𝑖𝑖𝑒𝑒 ,𝑀𝑀𝑖𝑖
𝑒𝑒 collected 

the effective generalized stress. Collocating the equations at discrete angles, i.e., at a finite number 
of 𝑑𝑑𝑗𝑗  with 𝑗𝑗 ∈  {1, … … ,𝑚𝑚}, where m was the number of points along the meridian curve, one gets 
the desired solution. Finally, the optimization program, has the following discretized form: 

sup
𝐜𝐜

k �k ∈ ℝ+:�
h(Ni

r + kNi
e) + α(Mi

r + kMi
e) < βh

h(Ni
r + kNi

e) − α(Mi
r + kMi

e) < βh
(Ni

r + kNi
e) < β

�

j

 
 

(3) 

Where 𝛽𝛽 accounts for the presence of tensile resistance 𝜎𝜎0 such that axial limit stress is 𝑁𝑁0 =  𝜎𝜎0ℎ 
following the material constitutive properties. 
Discontinuous finite element procedure (DFEP) 
An alternative procedure uses finite elements in a discontinuous form to write the discrete operator 
that relates the set of self-equilibrated stress in the structure to discrete nodal displacement-like 
parameters. The approach is devoted to relating the permanent strain equivalent to Volterra’s 
dislocation to nodal parameters. Moreover, the permanent strain and the corresponding self-
equilibrated stress can be represented in terms of constraints displacements too. The representation 
can be assumed as a span of the eigenstress space. It can be seen that the span is not independent 
and that the base of the eigenstress is a proper subset of the parameters manifold.  

In conclusion, any equilibrated stress under prescribed load can be calculated as the sum of the 
elastic response plus self-equilibrated stress, depending on the application of the linear operator 𝑉𝑉 
that maps the nodal dislocation parameter to the eigenstress.  

The load collapse multiplier results as the 'sup' of the load multiplier in the constrained 
optimization program 

𝑐𝑐𝛼𝛼 = sup𝑘𝑘|𝑓𝑓(𝑘𝑘σ∗ + Vδ) ≤ 0,𝛼𝛼 = �𝑐𝑐𝑑𝑑   shakedown
𝑐𝑐   collapse  

 

(4) 

where σ∗ is the stress in the structure calculated as being indefinitely elastic at any time during 
the load path, δ is the nodal dislocation parameter vector. 
Results 
Slender concrete caps have been analyzed following the SAM procedure and compared with 
experimental results obtained by [14,17] are reported in the following Fig.1 and Fig.2. 

 

 

Figure 1 Thrust Surface and limit domain 
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Figure 1. Result comparison among experimental results (Gent), analytical solution (UNSW) 

and proposed method (SAM) for different speciement 𝑲𝑲𝒊𝒊 

The DFEP has been applied to two-dimensional and three-dimensional examples. The first 
represent simple approximation of the Prestwood bridge Figure.3, whose collapse has been 
experimented in [18]. 

 

 

Figure 3 Bridge load condition 

 

In Tab.1 the results for each mesh sizing are reported. The value of experimental load multiplier, 
in the destructive test conducted by Page is 228 KN. 

 

Table 1 Load Multiplier values for each mesh size 

 
The 3D example has modeled the plastic behavior of the cross section of a femur [9], modeled 

as a hollow cylinder, Fig.4, , after a hip prosthesis implant.The limit load multiplier has been 
compared with Ansys nonlinear analysis solution. 

 
Table 2 Result comparison of femur limit load 

Ansys Nonlinear solution DFEP solution 
13.64 MPa 12.86 Mpa 

 

80
90

100
110
120
130
140
150
160

K4 K6 K7 K9 K33 K36 K38 KN12 KN15 KN19 KN24 KN26 KN27 KN28 KN29 KN30 KN31 KN32 KN33 KN34 KN35 KN36 KN37

Gent vs UNSW vs SAM

Gent UNSW SAM

Case Element number along X Element number along Y Load Multiplier 
1 18 5 701 
2 36 5 423 
3 72 5 312 
4 72 10 258 
5 88 12 233 
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Figure 4 Approximation of the femur to a cave cylinder and elastic solution of the generic 
section (blue, undeformed shape/ red, deformed shape) 

Both the examples confirm the accuracy of the procedure. 
Conclusions 
Two procedures have been set up. The first one, SAM, starts with the analytical solution of 
spherical domes to calculate any self-equilibrated stress. Moreover, a finite element elastic solution 
is obtained from the actual loads and was used as the purely elastic solution introduced into Melan's 
theorem. The analytical solution of the homogeneous equation of spherical domes is used to model 
the eigenstress of parabolical, conic, and slender domes through an approximate interpolation of 
the parabola with a sphere. The approximation allowed us to use the analytical solution to different 
non-spheric geometries. The proposed results were presented in terms of thrust lines. The results 
have been compared with numerical results obtained through commercial software of numerical 
analysis and experimental results. The thrust lines confirmed that the analyzed domes are safe 
under the applied loads or confirmed the collapse load multiplier under prescribed loads. The 
proposed method allowed us to calculate the safety factor under prescribed load patterns and assess 
the safety of the prescribed load level. Both presented strategies have shown the feasibility of the 
methods. 
In second one, DFEP, the problem's schematization does not depend on its size.  

The advantages of the procedure are manifold. First, the method allows the implementation of 
the load conditions, and the value of the collapse multiplier is computed without necessarily 
following the load path. Furthermore, being a FEM-based procedure, it can be borrowed from 
other commercial computing platforms for numerical analysis. 

It should be noted that the DFEP procedure is structured in the deformation space. This fact has 
to be intended as a passage to an optimization problem in the displacement field, having chosen 
both the basic parameters of the self-stresses and the compatibility domain of the stresses in the 
displacement space. Therefore, in the proposed solution strategy, it is possible to control a 
posteriori the demand for structural ductility, which is essential for permanent deformations to 
unfold up to the desired load level without affecting the results obtained with a fragile local 
collapse. 
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Abstract. The detection of potentially damaged elements in planar truss structures is a challenging 
task. Among the different methods proposed in literature, one promising procedure exploits the 
modal strains of the structure that are calculated from the flexibility matrix, which is, in turn, 
estimated from the lowest frequencies and corresponding modes of vibration. The benefit of this 
approach stems from the possibility of using a reduced number of mode shapes, usually available 
from the dynamic monitoring of the structure to perform the damage detection. In this work, a 
novel damage detection index based on modal strains is proposed, and its reliability in detecting 
stiffness reduction in elements of a planar truss is tested numerically. 
Introduction 
Damage detection is a key information for monitoring the status of structures and infrastructures. 
In the last decades, several procedures aimed at detecting structural damages and/or anomalies to 
prevent the degradation and avoid the collapse of the structures have been proposed. To reach this 
goal, a meaningful part of the available research literature makes use of the structure dynamic 
response. In fact, when a damage occurs, the reduction of the stiffness yields a change in the 
structural dynamic characteristics. Hence, vibration-based techniques able to detect the variation 
of such features are widely used to monitor the structural health.  

Among others, the first proposed numerical strategies exploited the variation of natural 
frequencies and mode shapes to identify the presence of anomalies [1]. Although effective in 
identify the presence of damages, these methods suffer from the presence of noise which can 
conceal the variation of natural frequencies induced by damages. Hence, more sophisticated 
techniques were later proposed to locate structural damages, based, for example, on the use of 
modal strain energy, residual force vector, mode shape curvature and flexibility matrix [2,3,4]. 
Methods exploiting flexibility matrix allow to evaluate changes in the structural dynamic features 
using only the lowest eigenfrequencies and mode shapes [5]. This feature represents a great 
advantage for practical health monitoring where it is typically difficult to measure and estimate 
the highest modes of vibrations. 

In this context, Montazer and Seyedpoor [6] recently proposed a damage index, called strain 
change based on flexibility index (SCBFI), which exploits the variation in strains computed from 
the flexibility matrix. The proposed index is proved to be particularly effective in locating the 
damage in truss structures.  

In this paper, we stem from their approach to propose an alternative index based on the singular 
value decomposition of the difference between the strain matrix of the damaged and healthy 
structure. Following this approach, we can evaluate the bars which mostly contribute to the 
variation of strain in the damaged truss. The proposed index is tested numerically on a truss 
structure.  
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Damage index 
Let us consider a generic planar truss, composed by N nodes, connected with e bar elements. The 
number of degrees of freedom of the structure is equal to 𝑛𝑛 =  2𝑁𝑁 − 𝑐𝑐, with c being the number 
of constrained DOFs. 
The modal matrix 𝚽𝚽 is composed by 𝚽𝚽𝑖𝑖 mass-normalized mode shapes. The flexibility matrix 𝐟𝐟 of 
the structure can be approximated as, [5]: 

 

 
𝐟𝐟 ≈�

1
𝜔𝜔𝑖𝑖
2 𝚽𝚽𝑖𝑖𝚽𝚽𝑖𝑖

T
𝑚𝑚

𝑖𝑖=1

 (1) 

 

where 𝜔𝜔𝑖𝑖 is the 𝑖𝑖-th circular frequency and m is the number of considered modes. Given the 
inverse proportion between flexibility matrix and the square of the circular frequencies, the 
expression in Eq. (1) rapidly converges to the exact value as the number of considered frequencies 
increases. Therefore, an accurate approximation of the flexibility matrix can be obtained using the 
lowest m modes of vibration. 

We remind that the 𝑖𝑖-th column of the flexibility matrix collects a vector of nodal displacements 
corresponding to a unitary force applied in the related 𝑖𝑖-th degree of freedom. Hence, we can 
compute the strain matrix SM, composed by 𝑗𝑗-th element strain values 𝜖𝜖𝑗𝑗𝑖𝑖 caused by a unitary 
force applied to the 𝑖𝑖-th DOF: 

 
 𝜖𝜖𝑗𝑗𝑖𝑖 = 𝐑𝐑𝑗𝑗𝐮𝐮𝑗𝑗𝑖𝑖 (2) 

 
where 𝐑𝐑𝑗𝑗 is the topological vector of the element 𝑗𝑗 and 𝐮𝐮𝑗𝑗𝑖𝑖 is the 1 × 4 nodal displacement vector 
of j-th bar, associated with the 𝑖𝑖-th column of flexibility matrix. 
 
As well known, the presence of one or more damaged bars in a truss produces a reduction in the 
structural stiffness and, in turn, an increase of flexibility and strain. For this reason, it is possible 
to evaluate and compare the strain matrix SM for both the healthy and for the damaged structure, 
hereinafter labelled as 𝐒𝐒𝐌𝐌H and  𝐒𝐒𝐌𝐌D, respectively. 

From the strain matrices, we compute the matrix collecting the strain variation between 
damaged and healthy structures as: 

 
 𝚫𝚫𝐒𝐒𝐌𝐌 = 𝐒𝐒𝐌𝐌D − 𝐒𝐒𝐌𝐌H (3) 

 
At this stage, we assume that only the damaged elements contribute significantly to the variation 

of the modal strain. Following this assumption, we propose to identify such damaged elements by 
performing a singular value decomposition (SVD) of the matrix 𝚫𝚫𝐒𝐒𝐌𝐌: 
 
 𝚫𝚫𝐒𝐒𝐌𝐌 = 𝐔𝐔𝐒𝐒𝐔𝐔 (4) 

 
where U is a 𝑒𝑒 × 𝑒𝑒 matrix collecting the left-singular vectors of 𝚫𝚫𝐒𝐒𝐌𝐌, S is a 𝑒𝑒 × 𝑛𝑛 rectangular 

diagonal matrix whose diagonal entries are the singular values 𝑠𝑠𝑖𝑖 of 𝚫𝚫𝐒𝐒𝐌𝐌 and V is a 𝑛𝑛 × 𝑛𝑛 matrix 
collecting the right-singular vectors of 𝚫𝚫𝐒𝐒𝐌𝐌. We remark that the norm of the matrix 𝚫𝚫𝐒𝐒𝐌𝐌 can be 
approximated by exploiting only the first 𝑣𝑣 ≪ 𝑒𝑒 singular values and vectors: 
 
 
‖𝚫𝚫𝐒𝐒𝐌𝐌‖2 ≈�𝐔𝐔𝑖𝑖𝑠𝑠𝑖𝑖2𝐔𝐔𝑖𝑖∗

𝑣𝑣

𝑖𝑖=1

 (5) 

 

where * indicate the complex conjugate.  
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In particular, the first singular value and the related left-singular vector provides the largest 
contribution to the strain difference 𝚫𝚫𝐒𝐒𝐌𝐌. Hence, we utilize the first left-singular vector 𝐔𝐔1 to 
define the damage index indicated as SVD1:  
 

 𝐒𝐒𝐔𝐔𝐒𝐒1 = |𝐔𝐔1| (6) 
 

being | . | the absolute value. Similarly, taking into consideration both the first and the second 
singular values and the corresponding left-singular vectors, we can compute a second damage 
index defined as the weighted sum of the two lowest singular vectors, 𝐔𝐔1 and 𝐔𝐔2, of the 𝚫𝚫𝐒𝐒𝐌𝐌 
matrix multiplied by the corresponding singular values, 𝑠𝑠1 and 𝑠𝑠2, as follows: 
 

 𝐒𝐒𝐔𝐔𝐒𝐒2 = 𝑠𝑠1|𝐔𝐔1| + 𝑠𝑠2|𝐔𝐔2| (7) 
 

In the next section, the proposed indexes SVD1 and SVD2 are applied to detect and locate the 
presence of damages in a two-dimensional planar truss and their reliability in finding damage is 
compared.  
Numerical results  

Single damage scenario. For the numerical investigation, we consider the planar truss shown 
in Fig. 1, which was previously used in literature as a numerical benchmark for other damage 
identification methods [7]. The truss is organized in 6 square bays, for an overall of e = 31 bars 
and 𝑛𝑛 = 25 degrees of freedom. Bars are made of aluminium, with an elastic modulus of 70 GPa 
and a density equal to 2770 kg/m3. 

 

 
Fig. 1. Planar truss composed of 31 bars and 6 square bays. 

 

The natural frequencies and mode shapes of the truss are computed using a standard Finite Element 
code where each element is modelled as linear elastic truss element. The damage in the bars is 
simulated reducing the element stiffness, namely by decreasing the Young’s modulus. 
 

To evaluate the capabilities and robustness of the proposed damage index, we have tested 
several configurations of single damaged bars. Our aim is to locate the presence of damage along 
the truss for increasing damage intensities. To this purpose, we computed natural frequencies and 
mode shapes of the truss structure considering 5 different levels of damage in each bar, with a 
damage intensity varying between 10% and 90%. 

Additionally, we polluted each damaged mode shape components 𝜑𝜑𝑚𝑚𝑛𝑛D , related to the  
m-th mode of vibration and n-th DOF, considering a given level of noise 𝑝𝑝. This noise aims at 
replicating the inherent variability induced by environmental and operational conditions of the 
structure in the field. The components 𝜑𝜑𝑚𝑚𝑛𝑛D  utilized to build the flexibility matrix are thus obtained 
as the mean of 200 random polluted 𝜑𝜑�𝑚𝑚𝑛𝑛 as follows: 

 

 𝜑𝜑�𝑚𝑚𝑛𝑛 = 𝜑𝜑𝑚𝑚𝑛𝑛(1 + 𝑝𝑝 ⋅ rand) (8) 
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where p is the intensity of a uniformly distributed random noise rand in the interval [-1;1]. In 
the described analysis, we considered noise value p between 0% (without noise) and 3%. For the 
approximation of flexibility matrix, Eq. 1, we used the first m = 4 mode shapes. 
 

Table 1. Number of correct identifications over 100 attempts in single damage scenarios using 
SVD1 with noise p = 1%. 

 
 

Table 2. Number of correct identifications over 100 attempts in single damage scenarios using 
SVD2 with noise p = 1%. 

 
 

Table 1 collects the number of correctly identified damage scenarios using the index SVD1, while 
Table 2 shows the same results obtained exploiting SVD2. Each column of the tables represents a 
different damaged bar of the truss and each row an increasing level of damage. Note that for each 
damage level and bar, we performed 100 simulations and damage identifications. The reader can 
appreciate that even with the presence of noise, the results with the proposed indexes are robust, 
since the greatest part of the damage cases are correctly identified by the algorithm. 
 

Table 3. Number of correct identifications over 100 attempts in single damage scenarios using 
SVD1 with noise p = 3%. 

 
 

Table 4. Number of correct identifications over 100 attempts in single damage scenarios using 
SVD2 with noise p = 3%. 

 
 

In particular, to ease the interpretation of the tables, we report with a green background all the 
scenarios with a damage identification success rate greater than 85%.  

Table 3 and Table 4 report the number of correct identifications with a level of noise p equal to 
3%. As expected, using both SVD1 and SVD2 the success rate decreases as the level of noise 
increases and as the damage intensity decreases. However, the missed identified bars correspond 
to the lowest level of damage (10% reduction in the elastic modulus) and, likely, less harmful for 
the structure. We remark that the indexes SVD1 and SVD2 have similar results in terms of success 
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rate in the analysed single damage scenarios, showing that the second singular value contributes 
marginally to the reconstruction of the strain matrix in Eq. (5). 

 
Fig. 2. a) SVD1 and b) SVD2 graphs with a damage of 30% in bar 10 and noise level p of 3%. 

 

As an example, we report in Fig. 2 the value of the damage indices as computed from a single 
simulation of a damage scenario corresponding to a reduction of 30% in the elastic modulus of bar 
10, with a noise level p equal to 3%. The indexes are normalized with respect to their maximum 
value. The reader can appreciate how the proposed damage indexes successfully identify the 
damaged bar, as highlighted by the peaks in the graphs.  

 
Double damage scenario. Motivated by the satisfactory performance of the proposed indexes, 

we investigated the capabilities of the identification algorithm against damage scenarios with 
multiple damaged bars. In particular, we considered a stiffness reduction of 50% in bar 16 and of 
30% in bar 5. In Fig. 3 and Fig. 4 a comparison between the indexes SVD1 and SVD2 as obtained 
for the considered damage scenario with noise level p = 1% and p = 3%, respectively, is shown. 

 
Fig. 3. a) SVD1 and b) SVD2 graphs with an elastic modulus reduction of 50% in bar 16 and 

damage of 30% in bar 5, polluted by a noise p equal to 1%. 
 

 
Fig. 4. a) SVD1 and b) SVD2 graphs with an elastic modulus reduction of 50% in bar 16 and 

damage of 30% in bar 5, polluted by a noise p equal to 3%. 
 
Outputs in Fig. 3 and Fig. 4 show that the addition of the second singular value, as considered 

in SVD2 index, is beneficial in the multiple case scenario, as indicated by the peaks in Fig. 3b and 
Fig. 4b, considering both a level of noise p of 1% and of 3%. In fact, while the SVD1 still succeeds 
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in locating properly the damaged bars with noise equal to 1%, Fig. 3a, it shows some limitations 
in the scenario with 3% of noise, where extra peaks are found by the damage index, Fig. 4a.  

 

Finally, we remark that the proposed index cannot quantify the damage extent, namely there is 
no direct correlation between the value of the damage index and the intensity of the damage. 
Conclusions 
In this paper, we proposed a novel damage index which exploits the variation in modal strains to 
detect damages in truss structures. The index is based on the Singular Value Decomposition of the 
variation strain matrix 𝚫𝚫𝐒𝐒𝐌𝐌 between the healthy and damaged structure. The performance and 
reliability of the method in detecting the damaged elements were numerically tested on a 31 bars 
planar truss considering several single damage scenarios, even in presence of noise polluting the 
structures modal characteristics. As expected, the identification success rate increases as the 
damage extent increases and decreases with higher noise level. The proposed index is applied with 
promising results also to a double case scenario. Future research efforts will be devoted to extend 
the proposed algorithm to quantify the damage extent.  
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Abstract. In the recent past, the authors proposed a new steel device devoted to representing an 
innovative moment resisting connection for steel frame elements called LRPD (Limited Resistance 
Plastic Device). It is a steel element characterized by symmetry with respect to three orthogonal 
barycentric planes and constituted by a sequence of three portions with abrupt cross section 
changes, each of one identifies a steel element of suitably designed geometry. LRPD possesses the 
following characterizing features: any elastic flexural stiffness variation with respect to the original 
selected member must be avoided; the bending moment resistance must be an appropriate reduced 
percentage of the original beam bending resistance; any local instability phenomenon must be 
avoided ensuring a full plastic deformation field. In previous papers the deep description of the 
geometrical and mechanical features of the device and the optimal design formulation are reported. 
In the present paper a first stage of experimental campaign on the mechanical behaviour of LRPD 
is presented. Specifically, the pure bending behaviour of LRPD is investigated by performing the 
four-point bending test. The test is performed monotonically until the selected ultimate plastic 
bending moment acts on the specimen. The mechanical response of LRPD, both in terms of 
deflections as well as of axial strains is evaluated by means of suitably positioned displacement 
and strain gauges. The experimental test is performed on LRPD designed for HEB240 cross section 
beams. The obtained results confirm the expected performance of LRPD constituting a 
fundamental step for the subsequent experimental steps mainly constituted by cyclic tests. 
Introduction 
The analysis and the design of the connections of steel structures is of particular interest in both 
the scientific and technical fields especially after the 1994 Northridge and 1995 Kobe earthquakes 
(see e.g. [1-4]). Two main types of connections are available: the rigid connections (also called 
moment connections) and the simple ones (also called shear connections). Among the moment 
connections, to avoid the brittle rupture of the connection, the most adopted approach proposes a 
reduction of the end sections of the frame beams, implementing the so-called “dog-bone” profiles, 
by cutting portions of the flanges of a I-beam profile (see e.g. [5-7]). The main drawbacks of this 
approach are that it is usable only with I-beam section elements and, furthermore, that the flanges 
cutting involves a reduction both in stiffness and strength of the treated element. 

In the recent past, the authors proposed a new moment resisting connection for steel frame 
elements, called LRPD (Limited Resistance Plastic Device) [8-15]. Mainly, LRPD is thought as a 
steel device replacing a part of the structural elements with the aim to obtain a connection between 
structural members with preset mechanical and kinematical behaviour. The detailed description of 
the geometrical description of LRPD can be found in [15], while its leading features are those of 
the same elastic flexural stiffness as the original selected member, to possess a bending moment 
resistance reduced with respect to that of the original beam, to avoid any local instability 
phenomenon. In many papers [8-15] authors proposed different optimal design for LRPD as well 
performed a lot of numerical analyses to verify the LRPD behaviour and the related computational 
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aspects. In the present paper a first step of experimental campaign on the mechanical behaviour of 
LRPD is presented by performing the four-point bending test to apply a pure bending moment 
without shear force in central zone of the specimen. The test is performed monotonically until the 
selected ultimate plastic bending moment acts on the specimen. The mechanical response of 
LRPD, both in terms of deflections as well as of axial strains is evaluated by suitably positioned 
displacement and strain gauges. The test is performed on LRPD designed for HEB240 beams. The 
obtained results confirm the expected performance of LRPD constituting a fundamental step for 
the subsequent experimental steps mainly constituted by cyclic tests and by a deep analysis of 
mechanical behavior of LRPD also adopting full-field contactless analysis method as Electronic 
Speckle Pattern Interferometry (ESPI) [17-19], to obtain highly accurate strain full-field. 
Experimental investigations 
Aim of the experimental investigations is the check of the bending behaviour of the LRPD by 
performing a four-point bending test on a suitable specimen. To this goal the first step has been to 
optimally design an LRPD following [3,4] to be adopted with a HEB240 profile and with an 
ultimate bending reduction equal to 0.67. The next step has been to design the specimen avoiding 
welding along the cross section which constitute a possible weakness. The final choice has been 
that of realizing a specimen simply by extending on both sides the flanges and the web of the 
LRPD to reach the desired length of the specimen. The experimental investigations have been 
performed on the specimen sketched in Fig. 1 where the corresponding main geometric 
characteristics and the location of displacement measuring point are also reported. 

 a) 

b) 
Fig. 1 – Sketch of the specimen under investigation: a) lateral view; b) upper view 

 
The specimen is constituted by three different parts, two corresponding to the flanges (equal 

each other) and the other one for the web. Each part has been derived by a S275 steel slab, shaped 
following the results of the optimal design reported in [15] with an assigned ultimate bending 
moment equal to 0.67 of the corresponding one of HEB240 (dimensions in Fig. 1). The overall 
assembly has been obtained by factory welding the single parts and it has been performed by 
Tecnozinco s.r.l., whose contribution is gratefully acknowledged. The mechanical characterization 
of the material constituted the slab has been performed by tensile tests on suitable specimens 
following [15] and the results are reported in Table 1. Assuming the geometrical characteristics of 
the specimen, the mean value of 𝑓𝑓𝑦𝑦, the consequent ultimate bending moment of LRPD is equal to 
241.8 kNm corresponding to a load of 306 kN. The experimental setup is sketched in Fig. 2 
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Table 1 – Results of the mechanical characterization of the material 

 

 
Fig. 2 – Sketch of the experimental setup 

 
The experimental setup is constituted by a hydraulic jack (payload = 1 MN), driven by a 

ENERPAC pump; the acting load is measured by a CLF-1 class 1 AEP load cell (payload = 1 MN) 
connected to AEP MP-10 digital indicator, and the load is set on the specimen by means of a rigid 
beam and two steel semi-cylinders. Two steel cylinders are suitably positioned at the extreme of 
the specimen to obtain the simply supported scheme. The deflection is measured at three different 
locations (corresponding to the beginning, the middle section and the end section of the LRPD) by 
means of Mitutoyo DIGIMATIC Digital indicator (25 mm stroke) and two other indicators have 
been positioned in correspondence of the supports of the specimen. The strain acting on the LRPD 
has been measured by seven different HBM K-CLY-41/120 strain gages (6 mm length), arranged 
as sketched in Fig. 3, and connected to HBM MGCPlus. All the measurement values have been 
collected by a suitable virtual instrument developed in LabView 2020 environment. 

a) b) c) 
Fig. 3 – Arrangement of the strain gages: a) upper flange; b) web; c) lower flange. 

Numerical model 
The experimental test of the specimen described in the foregoing section has been analyzed by 
means of a suitable FEM model developed in ABAQUS environment and sketched in Fig. 4. The 
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adopted mesh is equal to 4 mm, the mechanical model of the material is that of elastic perfectly 
plastic one with mechanical characteristics equal to that reported in Table 1 (i.e. two different 
materials have been adopted) while an elastic material with E 1000 times greater than that of the 
steel has been adopted for the support and loading cylinders. The support cylinders have been fully 
constrained (encastre condition), friction (0.125) has been assumed between the specimen and 
support and loading cylinders. The acting load is a concentrated one applied on the reference point 
for each loading cylinder, the reference points are rigidly linked to the surface of the cylinders. 

 
Fig. 4 – FE model of the experimental test in ABAQUS environment. 

 
Results 
The experimental results, in terms of axial stress σx evaluated from the axial strains εx at the 
locations indicated in Fig. 3, compared with those arising from the numerical analysis are reported 
in Fig. 5a. The kinematic behaviour of LRPD is evaluated defining as parameter Δ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑣𝑣3 −
mean(𝑣𝑣2; 𝑣𝑣4) (being 𝑣𝑣2, 𝑣𝑣3 and 𝑣𝑣4 the vertical displacement of DI1, DI2 and DI3 in Fig. 1a). In 
Fig. 5b the experimental Δ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is reported and compared with those arised from the numerical 
analysis and the theoretical one. 

An examination of Fig. 5a confirms the expected mechanical behaviour of LRPD. The first 
points which undergo to yield are those corresponding to SG01, SG06 and SG07; the next points 
are SG02 and SG05, while the last points are SG03 and SG04. Finally, the numerical results are 
in well agreement with the experimental ones. The results of Fig. 5b confirm that the kinematic 
behaviour of LRPD is the expected one, being the overall behaviour practically coincident with 
the theoretical ones of the HEB240. 
Conclusions 
In the paper the experimental characterization of new moment resisting steel connections recently 
proposed by the authors and called LRPD has been proposed. The experimental results, both in 
terms of axial stress, axial strain and displacement confirm that the device behaves as expected 
following the constraints imposed in the optimal design. The experimental champaign will be 
enriched and completed soon studying other devices designed for different commercial profile. 
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a) 

b) 
Fig. 5 – Experimental results compared with the numerical ones a) σx vs Ftot; b) ∆LRPD vs Ftot. 
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Abstract. The paper proposes the use of innovative devices devoted to the brittle collapse 
protection of welded steel sections, typically represented by the end beam cross-sections in framed 
structures. Reference is made to I-shaped cross-sections. At first, limiting to the case of plane 
stress, the relevant elastic domain is defined in the 𝑁𝑁,𝑇𝑇,𝑀𝑀 space; then a plane frame equipped 
with the proposed devices and subjected to seismic load condition is studied, ensuring that the 
generalized stresses at the welded sections be within the relevant elastic domain. 
Introduction 
As it is well known, in the design of framed steel structures, special attention must be paid to the 
end beam sections connected to the columns. These cross-sections are usually welded to steel 
plates bolted to the flange columns. The welding can produce a modification of the material crystal 
lattice and, consequently, the transition from a ductile behaviour to a brittle one. Therefore, it is 
cautious to make suitable elastic check for the welded cross-sections adopting appropriate safety 
factors to avoid undesired brittle collapse. 

A recommended strategy consists of limiting the stresses acting on the welded cross-sections 
by making use of special innovative devices [1-8] for beam-column connection, able to preserve 
the node integrity without modifying the elastic behaviour. As widely reported in [7-8], the 
proposed devices possess the property of suitably reducing the generalized stress conditions at the 
beam extreme maintaining unaltered the elastic bending stiffness. This latter feature makes the 
device different from the usual adopted ones available for structural designer [9-13] and approved 
by international codes (see e.g. [14-15]). In the present paper, referring to classical I-shaped 
profiles, the elastic domain of the relevant cross-sections is firstly defined, described in a suitable 
analytic form and represented in the 𝑁𝑁,𝑇𝑇,𝑀𝑀 space. Then the improved optimal design problem is 
proposed and utilized for a simple plane frame, confirming the full reliability of the procedure and 
the goodness of the new optimal design formulation. 

𝑵𝑵,𝑻𝑻,𝑴𝑴 elastic domain of a I-shaped cross-section 
Referring to a typical I-shaped cross-section in the plane 𝑦𝑦, 𝑧𝑧 of the principal axes of inertia (with 
𝑦𝑦 the greater inertia axis), the limit elastic axial force, shear force and pure bending moment have 
the form, respectively, 
 

𝑁𝑁𝐸𝐸 = 𝐴𝐴𝜎𝜎𝑏𝑏;     𝑇𝑇𝐸𝐸 = 𝜎𝜎𝑏𝑏𝐼𝐼𝑦𝑦𝑎𝑎
2𝑆𝑆𝑦𝑦′ (𝐺𝐺);     𝑀𝑀

𝐸𝐸 = 𝑊𝑊𝑦𝑦
𝐸𝐸𝜎𝜎𝑏𝑏  (1) 

 
with 𝐴𝐴 cross-section area, 𝜎𝜎𝑏𝑏 expected limit brittle stress evaluated as a fraction of the relevant 
material yield stress, 𝐼𝐼𝑦𝑦 cross-section moment of inertia with respect to the 𝑦𝑦 axis, 𝑎𝑎 cross-section 
web thickness, 𝑆𝑆𝑦𝑦′ (𝐺𝐺) statical moment of half cross-section with respect to the 𝑦𝑦 axis, 𝑊𝑊𝑦𝑦

𝐸𝐸 cross-
section elastic resistance modulus with respect to the 𝑦𝑦 axis. In defining 𝑇𝑇𝐸𝐸, 𝜏𝜏𝑏𝑏 = 𝜎𝜎𝑏𝑏 2⁄  has been 
assumed, being 𝜏𝜏𝑏𝑏 the chosen shear limit stress. 
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According with the Tresca yield criterion, the elastic domain boundary on the first quarter of 
the 𝑁𝑁,𝑀𝑀 plane is defined by the function 
 

𝑁𝑁
𝐴𝐴

+ 𝑀𝑀
𝑊𝑊𝑦𝑦

𝐸𝐸 = 𝜎𝜎𝑏𝑏  (2) 
 
holding for 0 ≤ 𝑁𝑁 ≤ 𝑁𝑁𝐸𝐸  e 0 ≤ 𝑀𝑀 ≤ 𝑀𝑀𝐸𝐸 . On the other quarters the boundary can be defined 
imposing symmetry with respect to the 𝑁𝑁 and 𝑀𝑀 axes (Fig. 1a). 

The elastic domain boundary on the first quarter of the 𝑁𝑁,𝑇𝑇 plane is defined by the function: 
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𝐼𝐼𝑦𝑦𝑎𝑎
�
2

= 𝜎𝜎𝑏𝑏2 (3) 
 
holding for 0 ≤ 𝑁𝑁 ≤ 𝑁𝑁𝐸𝐸  and 0 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐸𝐸. On the other quarters the boundary can be defined 
imposing symmetry with respect to the 𝑁𝑁 and 𝑇𝑇 axes (Fig. 1b). 

The elastic domain boundary on the first quarter of 𝑇𝑇,𝑀𝑀 plane is defined by combining the 
function (flange maximum stress value): 
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holding for 0 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐸𝐸 and 0 ≤ 𝑀𝑀 ≤ 𝑀𝑀𝐸𝐸 , and the discrete set of couples of values of shear and 
bending moment obtained by the solution to the minimum problem (web maximum stress value): 
 
     min

(𝑧𝑧)
𝑀𝑀                                  subjected to 
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for a prefixed discrete set of values of 𝑇𝑇 �0 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐸𝐸�. On the other quarters the boundary can be 
defined imposing symmetry with respect to the 𝑇𝑇 and 𝑀𝑀 axes (Fig. 1c). 

The elastic domain boundary surface on the first octant of 𝑁𝑁,𝑇𝑇,𝑀𝑀 space is defined by 
combining the function (flange maximum stress value): 
 

�𝑁𝑁
𝐴𝐴

+ 𝑀𝑀
𝑊𝑊𝑦𝑦

𝐸𝐸�
2

+ 4 �𝑇𝑇𝑆𝑆𝑦𝑦
′ (𝐸𝐸)

𝐼𝐼𝑦𝑦𝑒𝑒
�
2

= 𝜎𝜎𝑏𝑏2  (6) 
 
which provides a discrete set of functions 𝑁𝑁,𝑀𝑀 in correspondence to an analogous discrete set of 
values of 𝑇𝑇 �0 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐸𝐸�, and the discrete set of values of axial force, shear force and bending 
moment obtained by the solution to the minimum problem (web maximum stress value): 
 

min
(𝑧𝑧)

𝑇𝑇                                          subjected to 

�𝑁𝑁
𝐴𝐴

+ 𝑀𝑀
𝐼𝐼𝑦𝑦
𝑧𝑧�

2
+ 4 �𝑇𝑇𝑆𝑆𝑦𝑦

′ (𝑧𝑧)

𝐼𝐼𝑦𝑦𝑎𝑎
�
2
≥ 𝜎𝜎𝑏𝑏2  (7) 

0 ≤ 𝑧𝑧 ≤ �
ℎ
2
− 𝑒𝑒� 

 

for a prefixed discrete set of couples of values of 𝑁𝑁 and 𝑀𝑀, with 0 ≤ 𝑁𝑁 ≤ 𝑁𝑁𝐸𝐸  and 0 ≤ 𝑀𝑀 ≤ 𝑀𝑀𝐸𝐸 .  
The domain boundary is completed by symmetry with respect the coordinate planes (Fig. 1d). 
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a) b) 

c) d) 
Fig. 1 – HEB240 profile (S235) elastic domain: a) 𝑁𝑁,𝑀𝑀 plane; b) 𝑁𝑁,𝑇𝑇 plane; c) 𝑀𝑀,𝑇𝑇 plane; d) 

𝑁𝑁,𝑀𝑀,𝑇𝑇 space. 
Application 
Let us consider the plane frame sketched in Fig. 2. 

 
Fig. 2 – Steel plane frame: a) geometry and load condition; b) position of the LRPD. 

 
The material constituting the frame is a steel S275 grade (𝐸𝐸 = 210.000 MPa). The geometrical 

data are: 𝐿𝐿1 = 4 m; 𝐿𝐿2 = 5 m; 𝐻𝐻1 = 4 m; 𝐻𝐻2 = 3 m. The distributed load 𝑝𝑝 = 45 kN/m is the 
sum of 𝐺𝐺1 = 18 kN/m (dead load), 𝐺𝐺2 = 12 kN/m (permanent loads) and 𝑄𝑄𝑘𝑘 = 15 kN/m 
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(variable load). Beams 1 and 3 are constituted by HEA220 profiles, beams 2 and 4 are constituted 
by HEA260 profiles. The columns are constituted by HEB340 profiles. 

At first, a modal dynamic analysis has been developed for the structure with behaviour factor 
𝑞𝑞 = 4, verifying the compliance of the ductile response of the element structure with the 
considered Italian code. Then the same analysis has been developed with behaviour factor 𝑞𝑞 = 1. 
In this last case it has been verified, as expected, that the beam element extremes suffer load 
conditions above the related elastic domain. In Table I are reported the generalized stress values 
(𝑁𝑁,𝑇𝑇,𝑀𝑀) in correspondence of all the beam element extremes and the related elastic limit bending 
moment value 𝑀𝑀𝑑𝑑 for the assigned couple of 𝑁𝑁 and 𝑇𝑇 considering 𝜎𝜎𝑏𝑏 = 0.9 𝜎𝜎0. 
 
Table I. Generalized stress response and limit bending moments for the beam end cross-section. 

Beam internal forces 
  1 i 1 j 2 i 2 j 3 i 3 j 4 i 4 j 
N 67.321 39.657 45.332 60.18 47.037 53.793 64.156 76.68 

T 127.624 135.362 164.046 157.34 120.449 135.151 165.671 153.829 

M 15,211.25 15,618.51 22,889.04 22,459.2 13,644.86 14,437.84 20,676.48 19,864.96 

Md 10,672.07 10,939.92 17,911.30 18,306.07 11,661.63 10,359.52 17,691.75 18,270.61 

 
The values 𝑁𝑁𝛼𝛼𝑘𝑘,𝑇𝑇𝛼𝛼𝑘𝑘 and 𝑀𝑀𝛼𝛼𝑘𝑘

𝑑𝑑  for 𝛼𝛼 = 1,2,3,4 and 𝑘𝑘 = 1,2 have been utilized for designing the 
LRPD devices (for the specific geometry details see [1-8]). Imposing, as usual, for the internal 
portion length ℓ𝑖𝑖 = 0.5ℎ, with ℎ indicating the height of the relevant cross-section, the optimal 
design problem results (see [7-8]) are listed in the Table II. 
 

Table II. Optimal design results. 

LRPD Optimal dimensions 

 1 i 1 j 2 i 2 j 3 i 3 j 4 i 4 j 
h* 18.0887 18.0725 21.8816 21.984 18.4181 17.5866 21.8009 22.0183 

tf,o 2.9113 2.9275 3.1184 3.016 2.5819 3.4134 3.1991 2.9817 

tf,i 1.1 1.1 1.25 1.25 1.1 1.1 1.25 1.25 

ℓo 15.8804 15.4395 16.1619 14.8654 11.6727 19.5643 17.2592 14.4467 

bi 10.3949 10.595 13.7983 14.5868 12.7731 8.9274 13.1891 14.8587 

 
The considered frames were both studied by performing a non-linear dynamic analysis 

subjected to an assigned seismic time history compatible with the response spectrum (Fig. 3). 
In Fig. 4 the bending moment response function related to the extremes of beam elements 2 and 

3 is plotted where the dashed lines represent the limit bending moment imposed to avoid any 
undesired brittle behaviour. As it is possible to observe, the original frame exhibits a generalized 
stress response that in many instants is higher than the prescribed assigned limit value, resulting 
above the elastic domain previously defined. Whereas, as it was expected, the frame equipped with 
the suitably designed devices, exhibits a generalized stress response substantially brittle safe. The 
rare instants in which the prescribed limit is exceeded are due to the evident difference between 
the spectral analysis and compatible seismic time history and they can be accepted from a practical 
point of view or avoided by imposing more stringent brittle safety factor. 
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Fig. 3 – Accelerogram applied to the studied frames. 

 

a)  b) 

c) d) 
Fig. 4 – Bending moment response evaluated at the extremes of beams 2 and 3. 

Conclusions 
In the present paper, a special strategy devoted of limit the generalized stresses acting on the 
welded cross-sections of a frame structure by making use of some innovative devices for beam-
column connections, able to preserve the node integrity without modifying the elastic behaviour, 
is proposed. 

The computational procedure consists of evaluating the limit elastic bending moment on the 
relevant cross-sections complying the reference 𝑁𝑁,𝑇𝑇,𝑀𝑀 domain and designing the LRPD devices 
for the assigned limit stress values able to prevent brittle behaviour as a percentage of elastic limit 
stress suitably selected depending on the welding methodology. The performed numerical 
applications, related to a simple plane frame, confirm the effectiveness of the proposed strategy. 
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Abstract. Beamlike structures are commonly studied via 1D beam models, which are more 
efficient than 3D finite element methods, but do not permit accurate predictions of 3D stresses in 
non-prismatic cases. Despite the progress made in their modeling, either via direct 1D approaches 
or dimensional reductions from 3D formulations, the accurate analytical prediction of stresses and 
strains in beamlike yet 3D elements, with non-uniform properties both in terms of materials and 
cross-section shape, subject to large displacements, is an open problem. This work presents a 
model for such elements that is particularly suitable for efficient numerical implementations and 
that allows accurate analytical predictions of stresses and strains. A paradigmatic example shows 
the importance of non-trivial stress terms that are absent in prismatic homogeneous elements and 
the inadequacy of usual beam models and stepped-beam approaches when dealing with predictions 
of stresses and strains in non-prismatic inhomogeneous cases. 
Introduction 
The analytical prediction of stresses and strains in non-prismatic beamlike elements is very 
challenging. In the study of helicopter rotor blades, for instance, one needs to properly account for 
non-trivial couplings among bending, torsion, and traction associated with the cross-sectional pre-
twist [1-3]. In addition to this, further complexities are present in wind turbine blades, which are 
also tapered [4-5]. Not to mention the complexities associated with large displacements and 
complex material properties. However, analytical predictions of stresses and strains are not simple 
even in prismatic homogenous isotropic cases. A paradigmatic example is represented by the 
classical Saint-Venant’s problem [6-7], which is often addressed via approximated methods 
because of the difficulty to find closed-form solutions and the need for application-oriented 
formulas for cases of engineering interest. Jourawski’s formula is one such application-oriented 
solutions [8], but it holds only for linear elastic prismatic beams whose material is homogeneous 
and isotropic, and provides erroneous predictions in non-prismatic cases [3,9,10]. 

Following Jourawski’s method, several scholars have proposed formulas for shear stresses in 
tapered beams, e.g., Bleich [11], Pugsley and Weatherhead [12], Krahula [13], Bertolini et al. [14], 
Balduzzi et al. [10]. A review about critical issues and deficiencies of current engineering methods 
when dealing with tapered beams can be found in the works of Paglietti and Carta [9], Balduzzi et 
al. [10], and Migliaccio et al. [15]. Literature works usually address tapered beams undergoing 
small displacements, assume Navier’s formula for the cross-sectional normal stresses, and derive 
formulas for the corresponding shear stresses by the static equilibrium of a beam slice in its 
reference (undeformed) state. Migliaccio’s works [5,15,16] do not rely on such assumptions, 
account for the effects of large displacements, and is the basis of the present study. 

Here, after introducing a mechanical model tailored to non-prismatic inhomogeneous beams 
susceptible to large deflections, an analytical method is proposed to accurately predict their stress 
and strain fields. Finally, the inadequacy of usual beam models when dealing with predictions of 
stresses and strains in the considered elements is discussed. 
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Mechanical model 
The present beamlike body is a set of deformable plane figures (cross-sections) attached at a 
deformable line (center-line). For convenience, cross-sections in the reference state are orthogonal 
to the center-line. Changes from the reference state to the actual (deformed) state may take place 
with center-line large displacements and small strains, while cross-sections may undergo warping 
displacements, in and out of plane, which produce small deformation. See Figure 1. 
 

 
Figure 1: Schematic reference (left) and actual (right) states of non-prismatic beamlike element. 

Using summation convention, with Latin (Greek) indices taking values on 1, 2, 3 (2, 3), the 
positions of the body points in the reference state, RB, and in the actual state, RA, are written as 

 0 1 1

0 1 1 1

( ) ( ) ( ) ( ),
( , ) ( , ) ( ) ( , ) ( , ) ( , ),

B i B i

A i A i k i k

z z x z z
z t z t x z z t w z t z t

α α

α α

= +

= + +

R R b
R R a a

 (1) 

where R0B and R0A identify the center-line points in the reference and actual states with respect to 
a fixed Cartesian frame X,Y,Z; bi=bi(s) is the local triad of orthogonal unit vectors in the reference 
state; b1 is tangent to the reference center-line of arc-length s; ai=ai(s,t) is the image bi in the current 
state and generally depends on the arc-length s and time t; xα identify the cross-section points; wi 
are warping displacements; finally, zi are time-independent variables, with z1=s and zα spanning a 
two-dimensional domain mapping the positions of the cross-section points. In this work, xi=Λijzj, 
Λ11=1, Λ22=Λ2(z1), Λ33=Λ3(z1), and coefficients Λij with i≠j identically vanish. 

The body strain state is described via the Green-Lagrange strain tensor E and the vector fields 
0A 0B

T ′ ′= −γ T R R  and T
A B= −k T k k , where kB and kA are curvature vectors in the reference and 

actual states, i i= ⊗T a b , ⊗  is tensor product, and prime denotes s-derivative. Specifically, for 
small strain and warping fields, E is written as in [16], i.e., 2E = TT

 H+HT
 T˗2I, where H is the 

derivative of RA with respect to RB (deformation gradient) and I is the identity tensor. 
The body stress state is described via the second (symmetric) Piola-Kirchhoff stress tensor 

ij i jS= ⊗S b b , which is given in terms of ij i jE= ⊗E b b via a linear elastic constitutive model, 

 
1 (1 )(1 2 )

Y vY tr
v v v

= +
+ + −

S E E I , (2) 

where Y and ν are Young’s modulus and Poisson’s ratio, respectively. For completeness, it is useful 
introducing also the Cauchy stress tensor, ij i jC= ⊗C a a , which is related to S via the deformation 
gradient H and is associated with the stress in the body actual state [3,16]. 

Body stresses and strains can be obtained as solutions of balance equations (partial differential 
equations with boundary conditions) derivable from the principle of virtual power. To this aim, we 
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introduce the external power functional Πe (to describe the interactions between the body and the 
external environment), and the internal power functional Πi (to describe the interactions among 
the body parts), as follows 

 ,e iV V V

d
dt∂

Π = ⋅ + ⋅ Π = Φ∫ ∫ ∫b v p v , (3) 

where b represents body loads per unit body reference volume V, p denotes surface actions per 
unit area of the boundary ∂V, v is the time rate of the actual position of the body points, and the 
strain energy density Φ=S∙E/2 is half the scalar product of S and E. Balance equations are finally 
obtainable by enforcing that for any velocity field attainable by the body its interactions with the 
external environment and among its parts are such that the total power vanishes (i.e., Πe=Πi) at 
any value of the evolution parameter t. 

Following [16], and studying inhomogeneous beams with tapered, pre-twisted cross-sections 
and external actions (as in a Saint-Venant’s beam) applied only at the end cross-sections, we write 
the cross-sectional strains, E11, Eα1, in the form 
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 (4) 

where E11 and Eα1 are normal and shear strains in the cross-sections, γ1 is center-line extension, 
kα and k1 are bending and torsion curvatures, kB1 is pre-twist function, Λα are taper functions, 
comma denotes xi-derivate, and the scalar fields e1, e2, e3 are solutions of the PDEs problem 
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 (5) 

In (5), Σ and ∂Σ are cross-sectional domain and its boundary, nα are components of the outward 
unit normal on ∂Σ, ΛY is the ratio between the material Young’s modulus Y at a generic s and its 
reference value at s=0, and coefficients d(·) and g(·) are defined as follows 
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 (6) 

Equations (4)-(6) show that the cross-sectional strains Ei1 explicitly depend on the geometric 
and material characteristics of the body (Λα, kB1, ΛY) and can be expressed as linear combinations 
of the 1D strains γ1 and ki and their s-derivative. This result is interesting as it allows us to consider 
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the individual effect of each 1D strain by solving PDEs whose solution only depends on the shape 
of the cross-sectional domain Σ. Such PDEs admit closed-form solutions only in a few cases (e.g., 
[3,16]), but can always be solved numerically. However, apart from directly determining the scalar 
fields ei and the relevant strains and stresses, we can obtain analytical information on these latter 
without explicitly solving the PDEs (5)-(6), as is discussed in the following section. 
Analytical results 
Equations (4)-(6), together with (2), can be used to derive a closed-form expression of the flow of 
shear stress through the cross-sectional chords of non-prismatic inhomogeneous beams. To show 
this, let us consider the generic cross-section in Figure 2 (left): the boundary of the dashed domain 
Σq is oriented counter-clockwise and is composed of internal lines ∂Σi and external lines ∂Σe, whose 
outward normal n and tangent t have components nα and tα, respectively. 

 

 
Figure 2: Generic reference cross-section of a beamlike solid (left) and rectangular shape 

(right). 
 

The cross-sectional shear flow q through the internal lines ∂Σi is defined via the line integral 
 1

i

q S nα α
∂Σ

= ∫ , (7) 

and, by using (2), (4)-(6), and integration methods based on Green’s formulas, takes the form 
 2 2 3 3 2 2 3 3 1 1q YS k YS k YZ k YZ k YZ γ′ ′= − + − + + , (8) 
where coefficients Sα and Zi are defined by the following surface and line integrals 
 2 3 3 2,

q q

S x S x
Σ Σ

= =∫ ∫ , (9) 
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 (10) 

Equations (8)-(10) show the explicit dependence of the shear flow q on the body geometric and 
material characteristics (taper functions Λα, pre-twist function kB1, material function ΛY). Note that 
coefficients Sα are classical area moments and are present also in prismatic cases. On the contrary, 
coefficients Zi account for the effects of taper, pre-twist, and material inhomogeneity, which are 
absent in prismatic homogeneous cases and are unpredictable via usual linear theories of prismatic 
homogenous beams. Specifically, the shear formula (8) is a generalization of results derivable from 
the classical Saint-Venant’s theory (such as Jourawski’s formula), as well as of formulas presented 
in recent works [5,15]. Moreover, it is worth noting that if the s-derivative of the material and taper 
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functions vanish, together with the pre-twist function (i.e., in the prismatic homogenous case), the 
cross-sectional shear flow q will depend only on the s-derivative of the bending curvatures kα via 
the area moments Sα. Furthermore, if the actual and reference states of the body can be considered 
almost coincident for equilibrium purposes (small displacements), the s-derivative of the bending 
curvatures kα turn out to be proportional to the transverse shear forces calculated in the reference 
state of the body and equation (8) reduces exactly to the classical Jourawski’s solution [8]. 

The shear formula (8) can be used for analytical predictions of shear stresses in thin-walled 
non-prismatic beams with spanwise variable material properties in the same way as Jourawski’s 
formula is used in prismatic homogenous cases. We show this via a paradigmatic example in which 
the cross-sectional shape is rectangular, as in the original Jourawski’s work [8], but its dimensions 
are varied along the beam length, together with the material properties. 
Variable dimensions and material properties: a paradigmatic example. 
Let us consider a straight beam with rectangular cross-sections, which are tapered from the root to 
the tip according to the taper functions Λ2=Λ3=Λ(s). Let us assume that the material properties can 
vary as well: specifically, the Young’s modulus is given in the form Y(s)=Y0ΛY(s), where Y0 is the 
Young’s modulus at the root section (clearly, for constant material properties ΛY(s)=1). 

To illustrate the analytical procedure for predicting stresses and strains in elements of this kind, 
let us consider the case in which this beam is fixed at the root (s=0) and is bent within the plane 
x1-x3 by a tip load applied in the same plane. In such case, coefficients S2, Z2, Z1 are 
 2 2 2 2 1 1

2 2 3 3 2 2 3 3 1 2 3( ), ( 3 ) , 2S h x h Z h x h Z h x− −′ ′= − = − Λ Λ = Λ Λ , (11) 

and the cross-sectional shear flow, from (8) and (11), turns out to be expressible in the form 

 
2 2 2 2 2 2
3 3 3 3 3 3

2 2 3 1 2
2

3
2 2 2 2

Y

Y

x h x h x hq k k x k
h Y

γ
′ ′− − −ΛΛ′= − − − − Λ Λ 

, (12) 

where 2h2(s), 2h3(s) are the dimensions of the rectangular cross-section in Figure 2 (right) at the 
axial coordinate s, and q/(2h2) represents the mean shear stress orthogonal to the chord AB. 

As is apparent, equation (12) extends the well-known Jourawski’s solution [8]: the mean shear 
stress over a chord parallel to the cross-section width 2h2 consists of a first Jourawski-like term 
(proportional to the s-derivative of the bending curvature k2), plus additional terms proportional to 
the s-derivative of taper and material functions, which are needed to accurately predict the shear 
stresses in non-prismatic inhomogeneous cases, as is also confirmed by numerical analyses for the 
present beam shape (not reported here for brevity), as well as from the analyses performed on other 
beam shapes in recent works (e.g., [3,5,15,16]). 
Conclusions 
Non-prismatic inhomogeneous beams undergoing large displacements are characterized by stress 
distributions that can be quite different from those predictable by linear theories of prismatic 
homogeneous beams. The approach proposed in this work allows accurate analytical predictions 
of stresses and strains in such elements. 

In a paradigmatic example, we have shown the importance of geometric and material functions 
that produce non-trivial stress distributions, which are unpredictable via usual beam models and 
which confirm the inadequacy of stepped-beam approaches when dealing with predictions of 
stresses and strains in non-prismatic inhomogeneous cases. These results are also corroborated by 
several numerical analyses, some of which are reported in recent works by the author. 

The results of this paper focus on the cross-sectional out-of-plane deformations and the relevant 
stress fields. Investigations about the in-plane deformations and the associated stress fields, as well 
as analytical studies about the influence of other important parameters (e.g., an initial curvature of 
the beam), will be addressed in subsequent extended works. 
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Abstract. Long-span suspended bridges rely upon networks of tensed cables that carry the weight 
of the deck. The networks of cables are generally connected to a number of vertical towers (pylons) 
that transfer the forces to the foundations as in the case of cable-stayed bridge. Their structural 
behaviour is highly influenced by the pretension forces on account of the redundancy of the 
structure. Several methods have been proposed for determining pretension the forces in the cables, 
such as Load-Balance Method, Iterative Unit Load Method, Force Equilibrium Method, Zero 
Displacement Method. The present study aims to investigate the influence of geometrical non-
linearities on the optimization of the design.  To this end, the Force Equilibrium Method is here 
extended and compared to the use of a Finite Element commercial package, since this is the 
standard method in everyday engineering practice. The comparison between the Force Equilibrium 
Method and FEM results shows that the first method, in spite of its simplicity, is able to provide a 
reasonable and reliable alternative to the more complex non-linear FE approaches. 
Introduction 
One of the fundamental problems with cable-sustained bridges is related to the determination of 
initial cable forces and loading sequence, which are needed to reach the correct geometrical 
configuration [1-2]. An optimal cable stress control allows for the stress and strain of the whole 
structure to be controlled both during and after the construction phase. Despite the fact that various 
approaches have been proposed and analysed, the whole problem still lacks concrete definition. 
There are no analytical frameworks to determine the stressing sequences necessary to obtain a 
predetermined final design configuration but a number of iterative algorithms that allow for the 
progressive adjustment of cable forces during the pre-construction phase have been proposed, 
some by the present authors, which can apply to both proportional and non-proportional loading 
[3-6]. Obviuosly, the cable tightening operations involve technological, structural, and economic 
problems.  

The simple procedure proposed here is an original solution to the problem of cable pretension 
in cable-stayed structures. Unlike other methods, it makes reference to sensitivity analysis to 
identify the optimal configuration of stresses. More than a design tool, it can be seen as a structural 
behaviour optimization method that allows to determine the values of initial cable forces in order 
to give the structure a certain state of stress under prescribed loads.  

Actually the illustrated method is an extension of the Influence Matrix method, already 
employed for other types of structures and suspended bridges [7-10]. In the present case it is 
applied to a suspension system consisting of a main cable and secondary hangers. 
The proposed procedure 
The procedure is based on a preliminary analysis of the structure subjected to external loads. By 
means of a sensitivity analysis, in which the stiffness of the load-bearing elements are changed, an 
optimal distribution of stress is identified, such as the bending moment in the deck. 
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The chosen optimal configuration constitutes the target solution to be attained by pre-tensioning 
the cables.  

The proposed procedure relies upon the application of the Influence Matrix Method in order to 
attain a chosen optimum configuration previously identified by means of a suitable sensitivity 
analysis.  

The novelty here with respect to [9] is that the geometry of the structure is updated step by step 
until the final configuration is reached. The optimization procedure is thus applied to each step. At 
each pre-tension step the influence matrix is updated according to the actual geometry of the 
structure. 

Once the single step has been solved, the new geometric configuration of the structure is set. A 
new influence matrix is constructed on the updated configuration, the optimum solution is 
identified and the pre-tension stresses to be applied to each cable are calculated. The procedure is 
considered concluded when the variation of the pretension efforts from one step to another 
becomes negligible.  
A worked example 
In order to illustrate the procedure, a very simple system made of a main cable, three secondary 
cables, and a beam is taken into consideration, see Fig.1. The loading is applied to the horizontal 
beam and represents the self-weight load of the structure. 

The sensitivity analysis showed that for this example reference can be made to a Low-stiffness 
deck (LSD) - High-stiffness cables model. Actually, the system can be considered as made of two 
macro systems, i.e. the suspension system and the loaded beam. 

 

 
 

Fig.1. Geometry [m] and loads [daN].  Fig.2. Point numbering. 
 

In absence of any pre-tensioning of the cables, the bending moment diagram shown in Fig.2 is 
found. Fig.3 shows the diagram of the bending moment following the application of the first pre-
stress loading in the cables and Figs. 4 and 5 the resulting optimised bending moment diagram and 
the deformed configuration at the end of the first step. 
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Fig.3. Bending moment diagram in absence of any cable pre-stress. 
 

 
Fig.4. Bending moment diagram due to the first pre-stress step application. 

 
Rather obviously, the configuration of the structure changes at the end of the first step, thus 

triggering a geometric non-linearity in the problem. Therefore, the optimization procedure needs 
to be repeated for the displaced structure. 

By applying the optimization procedure iteratively, for each step a new influence matrix is 
calculated and updated pre-tension loads are found. 

The optimization goal can be considered attained when the configuration differences between 
two subsequent steps become negligible.  

 

 
 

Fig.5. Optimized bending moment (first step). 
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Fig.6. Deformed configuration after the first step optimization. 

 
Rather intuitively, points 11 and 12 move outwards on account of the pretensions applied to the 

cables and elements (2-11-7) and (4-12-8) tend to align following the pre-tensioning. Overall, 
points 11 and 12 tend to line up with points 2-7 and 4-8. For a similar reason point 6 tends to move 
upwards. In the shift table, already in the first step, this phenomenon is found. 

In the following steps, a new matrix of influence on the deformed configuration is defined and 
the forces to be applied to the cables in order to optimize the status of stress on the beam are 
calculated iteratively. 
Discussion of results 
The iterations were carried on until the configuration differences between two subsequent steps 
became close to zero. In the case at hand six steps were required in order to attain the final 
configuration of the structure. Figs. 6 and 7 show the evolution of the configuration of the structure 
along with the optimization steps and the initial and final ones, respectively. 

With reference to Fig.8, which shows the point numbering, Table 1 collects the absolute and 
incremental displacements of the point at each step. It appears evident that after a few iterations, 
the configuration of the structure stabilises quite abruptly. This fact is typical of structures 
involving cables and is discussed in details in [11]. The plots relative to the displacements of points 
6, 11 and 12 are shown in Figs. 8 and 9. 

 

 
 

Fig.7. Deformed configuration evolution from step 0 to step 6. 
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Table 1. Point displacements [cm] vs. steps: absolute (left) and incremental (right). 
 

Step 3 6 11 12 
0 0 0 0 0 
1 0,09 9,47 15,35 -15,35 
2 0,36 15,02 18,95 -18,95 
3 0,52 0,04 6,45 -6,45 
4 0,64 12,12 31,49 -31,49 
5 0,61 0,41 6,16 -6,16 
6 0,85 0,68 6,22 -6,22 

 
 

 
 

Fig.8. Displacement point n.6 [cm] from step 0 to step 6. 
 

 
 

Fig.9. Displacement points n.11 and 12 [cm] from step 0 to step 6. 
 

 
Fig.10. Different pretension between linear and non-linear optimization. 

Step 3 6 11 12 
0 0 0 0 0 
1 0,09 9,47 15,35 -15,35 
2 0,27 5,55 3,60 -3,60 
3 0,16 -14,98 -12,50 12,50 
4 0,12 12,08 25,04 -25,04 
5 -0,03 -11,71 -25,34 25,34 
6 0,24 0,27 0,06 -0,06 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 169-174  https://doi.org/10.21741/9781644902431-28 

 

 
174 

Conclusions 
The proposed procedure is concerned with the application of the Influence Matrix Method to a 
simple suspended bridge scheme under large displacements. The iterative application of the 
method, taking into account the geometric non-linearity, allows to calculate quite easily the 
optimal pre-stress in the cables loading in order to minimise the bending moment in the lower 
deck. The procedure seems susceptible to be extended to real examples of suspension bridges with 
reasonable computational effort. 

It is worth pointing out that, with respect to the linear optimization procedure, as the one 
performed at step 1, the main cable at the end of the process results tensioned on average by about 
10% less than in the linear procedure. The side hangers, on the other hand, show a pretension 
increment of 29%, while the central hanger results less pretensioned than in the linear procedure. 
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Abstract. Vertical vibrations on agricultural tractors, due to soil irregularities, represent a major 
cause of diseases of agricultural operators. The control of noise and vibration on the operator is of 
interest to the (Italian) National Institute for Insurance against Accidents at Work (INAIL). A 
prototype of an active suspension system of the operator seat has been developed in the laboratories 
of INAIL. The prototype can be configured with hydraulic or pneumatic actuation. This paper 
focuses on the pneumatic solution powered by a proportional pressure control electro-valve. Since 
several proportional pressure control valves are commercially available, three of them have been 
experimentally tested to determine the most suitable one for control purposes. Numerical modeling 
of the three valves has been carried out and described. Experimental tests on the selected valves 
allow for identifying the main dynamic parameters of the numerical models, providing a reliable 
simulator to be adopted for the development and optimization of the control system. The 
performances of the valves are compared and discussed. 
Introduction 
A major cause of diseases of agricultural operators is represented by the vertical vibration exposure 
on agricultural tractors due to soil irregularities. The effects of the whole-body vibrations on 
operators of industrial and agricultural machines are extensively investigated in [1]. To reduce the 
vibrations that are transmitted to the operator, the cabin and the seat are generally provided with a 
suspension system that can exploit either passive, semi-active, or active solutions.  

The first ones, typically mechanical or pneumatic [2], allow for an attenuation of the vibrations 
beyond a given cut-off frequency. Better performances are guaranteed by the semi-active systems 
that adjust the damping coefficient according to the soil irregularities [3]. Active solutions provide 
the best performances by the adoption of an actuation system generally based on either hydraulic, 
electromagnetic, or electromechanical technology [4]. 

The (Italian) National Institute for Insurance against Accidents at Work (INAIL) is interested 
in active vibration control (AVC) and active noise control (ANC) technology to reduce the 
vibration and noise exposure of operators and founded several research programs in the last years. 
A laboratory prototype of an active suspension system for the operator seat is developed. It can 
employ either hydraulic or pneumatic actuation. 

The present study is focused on the pneumatic actuation made of a double-effect pneumatic 
cylinder powered by a proportional pressure control electro-valve. The attitude control system 
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generates the command signal for the electro-valve according to the soil irregularities. This kind 
of valve converts an electrical input signal into an output pressure. 

In this work, the pneumatic actuation is evaluated for adoption in an active control system. This 
technology is, in fact, very versatile and is widely used for its cheapness, cleanness, and high 
power-to-weight ratio. In fact, it allows for force control, variable stiffness actuation (VSA) [5], 
position control in several industrial sectors [6], and also for non-traditional applications such as 
deformable pneumatic soft actuators [7, 8]. 

To properly develop an active control system, the dynamic properties of the main components 
of the system must be known, including that of the electro-valve. Among all the commercially 
available valves, three have been experimentally tested. The dynamic parameters of each valve are 
experimentally identified, and performance comparisons of the valves are reported and discussed 
to find the most suitable one for control purposes. Starting from the identified dynamic parameters, 
numerical modeling of each valve is carried out. The models provide a reliable simulator of the 
dynamics of the valves to be included in a more complex model of the whole active suspension 
system for the development and optimization of its control system. 
The prototype of the seat suspension  
The prototype of the seat suspension is made of the actuation system placed on a vibrating plate. 
As shown in Fig. 1, the actuation system is mounted over the vibrating plate (1), and it is composed 
of the pneumatic actuator (2), the sliders (3), the suspended body (4), a set of springs (5), a couple 
of electro-valves (6), a linear position transducer and a couple of accelerometers.  
 

 
Fig. 1: Prototype of the seat suspension 

The actuator (ISO 21287 double-acting, bore 80 mm, stroke 70 mm) is mounted along the 
vertical axis. The upper end of the rod is bolted to the suspended body and ensures its motion. The 
proportional pressure control valves are directly connected to the chambers of the cylinder. The 
outlet pressure of the valves must ensure the motion of the piston (rod) according to the soil 
irregularities. The dynamics of the suspended body is affected by the external disturbances in terms 
of platform vibrations and by the dynamics of the electro-valves. 
Experimental activity 
Three commercial pneumatic proportional pressure control valves are adopted and tested: 
- Festo VPPN-6F-L-1-F-0L6H-A4N-S1 (hereinafter called Valve 1); 
- MetalWork Regtronic 1/4” (hereinafter called Valve 2); 
- SMC ITV2050-31F2BL3 (hereinafter called Valve 3)  
The working principle of the three valves is the same: a pilot stage, made of two modulating pilot 
solenoid valves, ensures the pressure adjustment in a pilot chamber. Inside it, the pressure acts on 
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the upper surface of a diaphragm connected to the air supply valve: changes in pressure cause the 
opening/closing adjustment of this valve, with a consequent adjustment of the outlet pressure.  

Valve 1 provides multiple control loops instead of the conventional direct-acting controls. 
Although the outlet pressure is proportional to an input command current, which ranges from 4 to 
20 mA, the valve is commanded by an equivalent tension command, which ranges from 1 to 5 
Vdc. This valve can work according to three functional response modes (fast, universal and precise 
control behavior): in the present activity, the valve is set to the fast control behavior mode. No 
pressure full-scale adjustment is possible.  

Valve 2 can work according to three functional modes: in the present activity, the fast regulation 
mode is set. In this case, the pressure full-scale can be adjusted.  

Valve 3 can work in one only functional mode. No pressure full-scale adjustment is possible. 
Regardless of the type, the dynamic behavior of these kinds of valves can be described, with a 

good approximation, by the following second-order equation [9]: 
2 22out n out n out n in vp p p V kζ ω ω ω+ ⋅ ⋅ ⋅ + ⋅ = ⋅ ⋅    (1) 

where pout is the outlet pressure from the valve (measured in bar), Vin is the input command 
signal (measured in V), kv is the static gain (measured in bar/V), and ζ and ωn are the damping 
ratio and the natural frequency, respectively.  

All the valves are tested in the pressure range 0.0 - 6.0 bar. The kv value of each valve is 
identified in specific experimental tests where Vin is increased in quasi-static conditions from 0.0 
to 6.0 bar. The dynamic parameters ζ and ωn of each valve are identified by imposing an offset 
sine wave Vin with three different amplitudes and the same offset at different frequencies. The 
corresponding pressure amplitudes are 1.80 bar, 1.20 bar, and 0.60 bar, representing 20-80%, 30-
70%, and 40-60% of the outlet pressure range, respectively. The corresponding offset pressure is 
3.0 bar. For a given amplitude, tests are carried out at different frequencies in the range starting 
from 0.1 Hz up to a frequency that does not provide any variation of the outlet pressure.  

A signal generator (GW Instek AFG-2125) is used for Vin. A data acquisition system (made of 
a USB NI6001 DAQ-board and software developed in the NI LabView environment) is adopted 
to acquire Vin, converted into the corresponding pressure set-point, and the outlet pressure pout. The 
sampling frequency is set to 1 kHz.  

Fig. 2 shows the input pressure set-point and the associated output at the frequency 0.5 Hz. At 
the considered frequency, each valve exhibits a proper distortion pattern of the outlet pressure. In 
particular, Valve 1 exhibits a more visible distortion in the rising part of the curve. Such a behavior 
could be due to the multiple control loops performed by the valve controller. Valve 2 exhibits a 
high difference between the rising and falling parts of the curve. This might be due to the 
pneumatic resistances in the two airflow directions being very different. Valve 3 exhibits some 
distortions after the stationary points of the curve. 

The magnitude and the phase shift of the outlet pressure with respect to the set-point, are 
achieved using the following criterion: at a given frequency, according to the nonlinear least-
squares method, each of the two curves is described by an offset sine expressed by the equation: 

( ) sin(2 )y t A B f tπ ϕ= + ⋅ ⋅ +  (2) 

where A is the identified offset value of the input/output (i/o) signal (in bar), B is the identified 
amplitude of the signal (in bar), f is the frequency of the input signal (in Hz), t is the time (in s), 
and φ is the identified phase of the signal. Hence, for each frequency value, the magnitude |Bo/Bi| 
and the phase shift φf = φo – φi are computed. The whole procedure and the associated intermediate 
results are detailed in [10].  
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Fig. 2: Example of experimental input and output signals of the electro-valves 
 

 
The identified magnitude and phase shift are gathered in Fig. 3, for the three valves. The 

identified kv, ζ, and ωn for each valve are reported in Table 1 together with the main characteristics. 
The identification aims to approximate the magnitude and the phase shift for the three amplitude 
values, representing a linear approximation of the non-linear behavior of the valves. Up to 5 Hz, 
Valve 1 behaves linearly and experimental data for different amplitudes provide the same values 
of magnitude and phase shift. On the contrary, for higher frequencies, different values are obtained. 
The high attenuation that is observed on the response of Valve 2 at 0.5 Hz (see Fig. 2) is confirmed 
by its magnitude plot. Valve 3 shows a non-linear behavior throughout the considered frequency 
range. In particular, also at low frequency, the experimental frequency response is amplitude-
dependent. 
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Valve 1 Valve 2 Valve 3 

  

 

   

Fig. 3: Magnitude and phase of the three valves responses 
 

Table 1 – Main characteristics of the tested proportional electro-valves 

Valve Pout range [bar] Vin range [Vdc] kv [bar/V] ζ ωn [rad/s]  
1 0.00 – 6.0  1 – 5  1.43 0.85 45 
2 0.05 – 6.0  0 – 10  0.60 3.5 6.28 
3 0.05 – 9.0  0 – 10  0.90 0.8 23 

 

Numerical modeling and experimental validation 
To validate the model of the valves, experimental data are compared in Fig. 4 to numerical results 
obtained by imposing on the model the same experimental offset sine Vin. The model of Valve 1 
fits the experimental data with a good approximation at 7 Hz and at the highest amplitude 
condition. As previously noted, the model of Valve 2 is not able to retrace the experimental data 
because the adopted model does not consider the nonlinear behavior of the valve, which produces 
a different offset of the response with respect to the expected one, in addition to different behavior 
with rising and falling pressures. Finally, also the model of Valve 3 does not properly retrace the 
experimental: some slight nonlinearities occur. 

 
Valve 1 at 7 Hz Valve 2 at 0.5 Hz Valve 3 at 4Hz 

   

 Fig. 4: Comparison between experimental and numerical output pressures of the three valves  
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Conclusions 
In this paper, three commercial proportional pressure control pneumatic electrovalves are 
experimentally tested to identify their dynamic properties and to evaluate their use in a pneumatic 
vibration control system. The tests performed on the selected electrovalves allowed to identify the 
resonance frequencies and the damping factors of the second-order system adopted to model the 
valve behavior. However, for two of the three electrovalves, significant nonlinearities are present 
that introduce a relevant distortion in the pressure response of the valve, limiting their use for a 
control application. Although the model of Valve 1 fits the experimental data with a good 
approximation up to 7 Hz, the attenuation of the response can be considered suitable for control 
purposes only below 2 Hz. 
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Abstract. Ball screws are mechanism to convert the rotational into linear motion and viceversa 
and are widespread in a variety of different sectors. A detailed high-fidelity dynamic mathematical 
model of such component is paramount in several fields and, in particular, in the definition of a 
PHM system for flight control EMAs in order to increase their reliability. In fact they can be used 
as a virtual test bench on which inject artificial defects and study their effect on specific indicators. 
This paper presents a MBD model of a single-nut ball screw with internal recirculation able of 
describing the full dynamic of each internal component allowing a more in-depth understanding 
of the system behavior and poses the basis for PHM-oriented analyses on different degradations. 
Introduction 
During last decades, a trend towards more electric aircraft has arisen. Several efforts have been 
made to replace currently wide-spread electro-hydraulic actuators with electro-mechanical ones 
(EMAs) for primary flight controls. However, the principal drawback is the increased jamming 
probability which makes this technology not suitable for safety critical applications in its base 
configuration. To overcome this issue a possible solution is to use a simple architecture EMA 
equipped with an efficient prognostic and health management system (PHM). To train this PHM 
algorithm and to understand the correlation between different parameters and the performance 
deterioration, a high-fidelity dynamic model is paramount: in fact it can be used as a virtual test 
rig on which inject artificial defects to study the system under nominal and degraded conditions 
and to extract meaningful features correlated with faults’ extent, in a cost-effective way.  

According to literature FMECAs, the ball screw is the most critical subcomponent of an EMA. 
For this reason, this component is the focus of the current research. The ball screw is the last and 
key component of the EMA’s mechanical transmission, converting the rotational motion coming 
from the electric motor into a linear displacement. This component can reach extremely high 
efficiencies replacing the sliding with rolling friction. Its comprehension is essential to avoid 
performance degradations and catastrophic failures, such as jamming. However, experimental 
analyses to understand the internal behavior are fairly difficult because of its closed nature; 
therefore, several theoretical studies analyzed the system from different perspectives, such as 
internal kinematics [1,2], no-load drag torque [3,4] and recirculating units degradation [5,6]. 

Hitherto, most of the models used a quasi-static approach describing the motion of the element 
in steady state conditions. Unfortunately, these models are not suitable for PHM. To fill this gap, 
the authors developed a set of dynamic models with increasing complexity and realism in order to 
be used for analyses with different levels of required details. A unidimensional lumped parameter 
dynamic model was first created. Being the ball screw mainly a 3D mechanism, a MBD model 
was developed in Simscape Multibody environment [7] taking into account the full dynamic of 
each subcomponent as well as their mutual interactions through a dedicated contact model 
considering grease lubrication [8]. Several degradation model were inserted and investigated [9]. 
However, no recirculating channel model was present, hence the capability of the MSC ADAMS 
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software to handle contacts between arbitrary-shaped bodies was exploited analyzing a ball screw 
with a simple end-cap type axial recirculation [10].  

Differently from [10], an internal recirculation type with three liner circuits is considered in this 
work, representing a novel contribution in the modelling of recirculation, usually disregarded in 
literature studies. This paper presents a detailed three-dimensional multibody dynamic model of a 
ball screw with the aim to understand the underlying dynamic of internal elements and to make a 
further step towards a model-based PHM for this mechanism. The MBD model can accurately 
describe the kinematics and dynamics of each element within the mechanism and allows to 
understand the complex interaction between the gothic arch helical grooves and the spheres under 
time-variant speed and external loads. The spheres are restrained between the grooves only by the 
Hertzian contact with the grooves, while the motion is transmitted by friction. Each sphere can 
freely move within the grooves, creating either backlash or multiple contact points with variable 
contact angles. The capabilities of such model are presented by evaluating the overall performance 
and internal component motion. The considered ball screw refer to the one mounted on the 
experimental test bench which is being built in the laboratories of Politecnico di Torino [11,12] 
with the aim of validating the results of the current and previous models and getting more in-deep 
insights for prognostic purposes. The proposed model poses the basis for a complete understanding 
of the internal dynamics of the mechanism considering also the internal recirculating system.  
Model definition 
The developed model has been developed in the MSC ADAMS environments to exploit its general 
shape body contact feature. The ball screw under study has an only rotating screw shaft and a only 
translating not preloaded single nut, on which an external force is applied axially as disturbance. 
The motion is imposed to the screw shaft as speed law.  

Geometry tessellation. The complex geometry of the screw shaft and nut bodies have initially 
been simplified by removing al the non-necessary features: the simpler the geometry, the less point 
are necessary for its accurate discretization, the faster the simulation. The resulting geometry, 
imported into ADAMS, is triangular tessellated using the RAPID algorithm in order to speed up 
the contact detection during dynamic simulation. 

Contact detection. After a contact occurs, the contact point location is calculated. The solver 
computes the intersection volume, which may be single or, in general, multiple depending on the 
specific condition. Assuming an uniform density of the material, the centroid of the intersection 
volume is obtained, having the same center of mass of the intersection volume. This point 
represents the contact point, while the penetration depth, used as a penalization parameter to 
enforce the contact constraint, is calculated as the distance between the two points of each 
tessellated surface closest to the intersection volume centroid. 

Normal contact model. The ADAMS solver contains a contact predictor that estimates the onset 
of contacts and modifies the integration time step accordingly. Theoretically, contacting bodies 
does not compenetrate. This can be usually obtained introducing a penalty regularization 
considering the penetration as a deformation of the bodies and enforcing the contact constraint 
with a reaction force, which can be calculated as the sum of an elastic and damping contributions 
where a smooth activation function modulates the damping contribution (of the order of 1 Ns/mm) 
with respect to the penetration itself, avoiding contact discontinuities due to non-null approaching 
speeds. The contact stiffness constant is calculated a priori from the knowledge of the geometry 
and exact curvature radii [13], and assuming a theoretical contact angle usually close to 45° [14], 
according to the explicit non-recursive method for Hertzian contacts proposed in [15]. 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 183-188  https://doi.org/10.21741/9781644902431-30 

 

 
185 

Friction model. Once the contact point location is defined and the outward normal are identified, 
the normal and slip velocity can be easily obtained. The first is the previously cited approaching 
speed �̇�𝑔, while the second is the key parameter to calculate the tangential friction forces. ADAMS 
does not consider rolling friction resistance, but it only takes into account sliding and spin friction. 
There is no contact stiction in ADAMS, but a little amount of sliding speed is always required 
between the bodies in order to create a friction force: this is to ensure a zero force condition for 
the case of perfect adherence and to avoid numerical instabilities given by the abrupt transition 
between negative and positive speed values. Figure 1 depicts the coefficient of friction function 
versus the sliding speed: static and dynamic COF values and the relative threshold speeds must be 
chosen by the user to adapt the curve to the punctual problem. The shape of the COF function 
represents a lubricated contact with various lubricating regimes In this paper, the static and  
dynamic COFs have been set respectively to 𝜇𝜇𝑠𝑠 = 0.11 (𝑣𝑣𝑠𝑠 = 0.1 mm/s) and 𝜇𝜇𝑑𝑑 = 0.06 (𝑣𝑣𝑑𝑑 =
0.15 mm/s). The spin friction torque is applied to react to a relative angular speed about the contact 
normal axis and is calculated assuming an equivalent circular contact area. 

Constraints. No ideal joints are imposed. Each rotation or translation to be constrained generate 
a reaction force/torque proportional to the constraint violation through an elastic-damping element, 
that has been constructed such that to allow also the presence of a little amount of backlash, 
considered null in the current paper. Two elastic joints have been imposed at the two extremities 
of the screw shaft to reflect the structural implementation of the experimental test bench which 
will be used to validate the current model [11,12]. 
Simulation results 
This section presents the preliminary results of a first dynamic simulation of the presented model 
(Fig. 2), applied to a ball screw with a nominal diameter of 16 mm and lead 5 mm with internal 
recirculation. The three recirculating inserts are evenly spaced by 120° circumferentially.  

Compliant joints have been considered for both the screw shaft and the nut. For the latter, only 
the rotational motion around the ball screw symmetry axis is constrained with an elasto-damping 
joint, while all the other rotations are not constrained. All the results will be presented referring to 
a fixed coordinate system, located on the ball screw symmetry axis and coincident with the lower 
face of the screw shaft, with the 𝑧𝑧 axis correspondent to the ball screw symmetry axis. 

The simulation has been performed imposing to the screw shaft a smooth speed step of 
−500 rpm from 0.15 s to 0.25 s while applying an axial external force as disturbance on the nut 
in the negative direction of the 𝑧𝑧 axis, opposing to its imposed speed. Figure 3 depicts the nut 
linear speed and that of the screw shaft reported in the linear domain through the transmission 
ratio. Figure 4 shows the external force and the torque required on the screw shaft to realize the 

Figure 1 – Coefficient of friction model 
versus sliding speed. 

Figure 2 – ADAMS ball screw model with 
internal recirculating inserts. 
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imposed motion profile. It can be seen that when the external force is applied, though the screw 
shaft is steady, the nut slightly move because of the elastic deformations in the sphere/groove 
contacts. Furthermore, the presence of internal backlash is visible in the very beginning of the 
simulation on Fig. 3: in fact the initial configuration of the various bodies assumes the spheres and 
the nut in the nominal positions but, as the simulation starts, the gravity makes the system to reach 

Figure 7 – Contact force between the nut 
and the  analyzed sphere. 

Figure 8 – Revolutional speed of the 
selected sphere. 

Figure 5 – Mechanical efficiency. Figure 6 – Speed of the centre of mass of the 
selected sphere. 

Figure 3 – Linear speed of the nut and screw 
h f  

Figure 4 – External force on the nut and 
torque on the screw shaft. 
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a settle position. The motor torque rises to the level required to contrast the external force and after 
shows a little increment necessary to compensate the internal friction and guarantee the required 
motion. The system shows a realistic mechanical efficiency value of ≈ 93% (Fig. 5), typical of 
such mechanisms.  

In order to clearly present the results, only the signals of one of the spheres are shown. Figure 
6 illustrates the speed components of its center of mass. It is worth to be highlighted that the speeds 
of the spheres assume a sinusoidal shape when engaged in bearing load between the grooves while 
they varies when the spheres enters the recirculation. It can be seen around 0.3 s in the area 
between the two vertical dashed lines. A similar behavior is observable in Fig. 8, in which the 
revolution speed of the sphere with respect to the screw shaft around the ball screw axis is shown. 
The dashed lines represents the ideal revolution speed calculated according to [2]. When the sphere 
enters the recirculation, this speed sensibly decreases because its revolving motion is slowed down 
by the necessity of pass over the thread head to come back to the beginning of its motion path. 

As observable in Fig. 3, because of the lack of other nut constraints but the anti-rotation around 
the symmetry axis combined with the slight asymmetry of the mass distribution and the presence 
of backlash, the nut oscillates and, hence, this reflects on the magnitude of the contact forces with 
the spheres. Figure 7 shows the contact force with the nut of the selected sphere. The contact forces 
originate with the application of the external force, remain steady until the motion starts and falls 
to near zero into the recirculation channel. The asymmetry of the nut causes a slight tilt of the nut, 
hence not every sphere bears the same load fraction. However, the mean value corresponds to the 
expected theoretical one [2]. The nut oscillation reflects also in the torque signal and finally in the 
mechanical efficiency. Because of the contact conditions, the spheres does not enter the 
recirculating inserts simultaneously on each recirculating circuit and this contribute to generate 
vibrations and nut oscillations.  
Conclusions 
A multibody dynamic model of a ball screw is presented in this paper. The innovation of such a 
model is the possibility to dynamically simulate the recirculation inserts analyzing the motion of 
the spheres within them, allowing the accuracy of the system to be sensibly increased. Firstly the 
model configuration is explained and finally the results of a preliminary simulation are presented. 
Further work includes the study of the friction increase in one or multiple recirculating circuits up 
to jamming, and the investigation on the effect of extraneous particles between the spheres. Last 
but not least, the experimental validation of the present model is scheduled as soon as the test 
bench will be fully functional. The current ball screw modeling is one of the activities included in 
the broader framework of PHM of electromechanical actuators ongoing within the authors’ 
research group. 
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Abstract. This paper presents a theoretical study on the dynamic performance of an aerostatic pad 
with an internal pressure control. The trend of the dynamic stiffness and damping over the 
frequency domain is analysed. 
Introduction 
Thanks to their zero friction, cleanness and infinite life, aerostatic pads are widely used in high-
precision applications, e.g., machine tools, measuring machines and power board testing [1]. 
However, due to the compressibility of the lubricant, aerostatic bearings are characterized by 
relative low stiffness and poor damping. Much effort has been done in order to compensate for 
these drawbacks. A suitable selection and optimization of the feeding system of air pads is a 
common solution that makes it possible to obtain limited performance improvements. Several 
authors investigated to what extent the dimension, location and number of orifices affect aerostatic 
pad performance [2]. Compound restrictors, i.e., machining shallow grooves on the active surface 
of the pad, increase load capacity and stiffness but significantly reduce the bearing damping [3, 4]. 
The use of porous surfaces [5] is another solution that lead to performance improvement but it 
presents critical issues related to the choice of material that should have both suitable porosity and 
impact toughness. 

Passive and active compensation methods makes it possible to significantly increase the static 
and dynamic performance of aerostatic bearings. In passive compensation methods bearings are 
integrated with devices that exploit only the energy associated with the supply pressure, e.g., 
pneumatic regulating valves and compliant elements. Conversely, actively compensated bearings 
are integrated with elements such as sensors, controllers and actuators that require external sources 
of energy to function. Active bearings have excellent static and dynamic performance [6–8] but 
the solutions are quite expensive. By contrast passive compensation solutions, notwithstanding 
their lower dynamics and effectiveness, represent an acceptable and cheap alternative to be 
integrated into current industrial applications [9]. In order to simplify the setting of the passive 
compensation, in work [10] the control signal and the supply pressure of the regulating valve are 
not dependent; the static behavior of the controlled pad is theoretically and experimentally 
analysed. 

In this work the dynamic behavior of the system presented in [10] is theoretically analysed, 
evaluating the stiffness and damping of the air gap as the frequency of a sinusoidal load applied to 
the bearing varies. The numerical study is carried out by using a suitable lumped parameter model. 
The compensated air pad 
Figure 1 shows the geometry of the aerostatic pad considered in this numerical investigation. It 
has a rectangular base of 110x50 mm2 and presents four supply holes with a diameter 𝑑𝑑𝑝𝑝 = 0.5 
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mm which are located in the middle of a grooved rectangular supply line of dimensions 80x30 
mm2. These grooves have a triangular cross-section of depth ℎ𝑔𝑔=60 μm and base 𝑤𝑤𝑔𝑔=0.3 mm.  

 

  

Fig. 1. The geometry of the aerostatic pad. 
 
Figure 2a shows the scheme of the differential diaphragm valve that has been integrated with 

the aerostatic pad. The nozzle (1) has a diameter 𝑑𝑑𝑛𝑛= 0.5 mm and it is located in the chamber (2) 
that along with the chamber (3) is supplied with a constant supply pressure 𝑝𝑝𝑠𝑠. The other chambers 
(3) and (4) are supplied with a feedback 𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and a reference 𝑃𝑃𝑅𝑅𝐹𝐹𝑅𝑅 pressures and they are 
separated through diaphragms (5 and 6) with different dimensions. The feedback pressure depends 
on the operating conditions of the pad (supply pressure and air gap height) and it is measured by 
means of back-pressure hole of diameter 𝑑𝑑3=0.25 mm that is located on the active surface of the 
pad. The air flow supplied to the pad depends on the position of the shutter (7) that in turn depends 
on the difference between the feedback and supply pressure along with the diaphragm stiffnesses 
𝑘𝑘𝑣𝑣. 

 

 
a 

 
 
 
b 

Fig. 2. a) scheme of the differential diaphragm valve. b) functional scheme of the control 
system. 

 
Figure 2b shows a scheme useful to clarify the functioning of the system. Once the pressure  𝑃𝑃𝑆𝑆 

and 𝑃𝑃𝑅𝑅𝐹𝐹𝑅𝑅 and the initial nozzle-shutter distance 𝑥𝑥𝑣𝑣 are defined, the valve suitably regulates the air 
flow supplied to the pad depending on the applied load 𝐹𝐹. When the load increases, the pressures 
𝑃𝑃𝑔𝑔𝐹𝐹𝑝𝑝 and 𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 increase too producing a downward displacement of the shutter and in turn an 
increase of the air flow supplied to the pad. Consequently, the increase of the air flow produces an 
increase of the air gap height ℎ that partially or completely compensated for the load variation. 
Conversely, the opposite holds in the presence of load reductions.  
The numerical model 
The considered compensated pad is modelled through a lumped parameter model consisting of 
pneumatic capacitances and resistances. Figure 3 shows the pneumatic model of the system. 
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Fig. 3. Pneumatic model of the control system. 
 
The nozzle and the air gap height are modelled through the variable pneumatic resistances 𝑅𝑅1 

and 𝑅𝑅4, whereas the supply and back pressure hole of the pad are modelled through the constant 
resistances, 𝑅𝑅2 and 𝑅𝑅3 respectively. The air gap pressure (𝑃𝑃𝑔𝑔𝐹𝐹𝑝𝑝) distribution is considered uniform 
within the rectangle defined by the grooves (a x b) and linear in the region outside it. 𝑉𝑉1, and 𝑉𝑉3 
are the volumes related to the ducts of the valve and the pad, whereas 𝑉𝑉2 = 𝑎𝑎𝑎𝑎ℎ+𝑉𝑉𝑔𝑔 is the sum of 
the air gap and groove volume. The nozzle-shutter distance 𝑥𝑥𝑣𝑣 is defined on the basis of the 
following equation: 

 

�
𝑥𝑥𝑣𝑣 = 𝑥𝑥𝐹𝐹𝑏𝑏−𝑝𝑝𝐹𝐹𝑠𝑠𝑠𝑠                                         𝑥𝑥𝑣𝑣 ≤ 𝑥𝑥𝐹𝐹𝑏𝑏−𝑝𝑝𝐹𝐹𝑠𝑠𝑠𝑠 

𝑥𝑥𝑣𝑣 = 𝑥𝑥0 + 𝐴𝐴𝑣𝑣
�𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑃𝑃𝑅𝑅𝑓𝑓𝑓𝑓�

𝐹𝐹𝑣𝑣
             𝑥𝑥𝑣𝑣 > 𝑥𝑥𝐹𝐹𝑏𝑏−𝑝𝑝𝐹𝐹𝑠𝑠𝑠𝑠

                                                               (1) 

 
where 𝑥𝑥𝐹𝐹𝑏𝑏−𝑝𝑝𝐹𝐹𝑠𝑠𝑠𝑠  is a threshold takes into account the air leakages experienced when the shutter 

is in contact with the nozzle (40 𝜇𝜇m); 𝑥𝑥0 is the initial distance between the nozzle and the shutter 
it is defined when 𝑃𝑃𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑃𝑃𝑅𝑅𝐹𝐹𝑅𝑅 are equal. 𝐴𝐴𝑣𝑣 is the effective area of the valve diaphragms 
where the feedback and reference pressure are applied. The air mass flow rates passing through 
the resistances 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3 are modelled through the ISO formula 6358:   

 

𝐺𝐺𝑖𝑖 = 𝐾𝐾𝑇𝑇 𝑐𝑐𝑑𝑑𝑖𝑖  0.685
√𝑅𝑅 𝑇𝑇  

𝐴𝐴𝑖𝑖𝑃𝑃𝑢𝑢𝑝𝑝 �1 − �
𝑃𝑃𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑
𝑃𝑃𝑢𝑢𝑢𝑢

−𝐹𝐹𝑓𝑓

1−𝐹𝐹𝑓𝑓
�
2

                                                                                                              (2) 

 
 where 𝐾𝐾𝑇𝑇 is the square root of the ratio between the valve (293 K) and the reference 

absolute temperatures (273 K). 𝐴𝐴𝑖𝑖, 𝑐𝑐𝑑𝑑𝑖𝑖, 𝑃𝑃𝑢𝑢𝑝𝑝 and 𝑃𝑃𝐹𝐹𝑑𝑑𝑑𝑑𝑛𝑛are the annular area, discharge coefficient 
and the upstream and downstream pressures of the ith lumped resistance (𝑖𝑖 = 1, 2, 3); 𝑎𝑎𝐹𝐹=0.528 is 
the theoretical critical pressure ratio assuming an isentropic expansion. The discharge coefficients 
are assumed to be functions of the Reynolds’ Number 𝑅𝑅𝑅𝑅𝑖𝑖 related to the flow of each resistance: 

 
𝑐𝑐𝑑𝑑𝑖𝑖 =  1.05(1 − 0.3 𝑅𝑅−0.005 𝑅𝑅𝐹𝐹𝑖𝑖) 
 (3) 
𝑅𝑅𝑅𝑅1 = 𝐺𝐺1

𝜋𝜋𝜇𝜇𝐹𝐹1
 ;   𝑅𝑅𝑅𝑅2 = 𝐺𝐺2 ℎ

𝜇𝜇𝐴𝐴2
 ;   𝑅𝑅𝑅𝑅3 = 𝐺𝐺3

𝜋𝜋𝜇𝜇𝐹𝐹3
 ;  𝐴𝐴2 = 𝜋𝜋𝑑𝑑𝑝𝑝ℎ + 𝑤𝑤𝑔𝑔ℎ𝑔𝑔 ;  𝑑𝑑1 = 𝑑𝑑𝑛𝑛   

 
Where µ = 18.89 ∙ 10−6 Pa s is the dynamic air viscosity. The mass flow rates 𝐺𝐺4 exhausted from 
the air gap under isothermal conditions is:  
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𝐺𝐺4 =  1

6𝜇𝜇𝑅𝑅𝑇𝑇
� 𝐹𝐹
𝐴𝐴−𝐹𝐹

+ 𝐹𝐹
𝐵𝐵−𝐹𝐹

�  �𝑃𝑃𝑔𝑔𝐹𝐹𝑝𝑝2 − 𝑃𝑃𝐹𝐹2� ℎ3                                                                                    (4) 
 

Where 𝑅𝑅,𝑇𝑇 are the constant of gas (𝑅𝑅 = 287.1 J/(kg K)) and the absolute ambient temperature 
(𝑇𝑇 = 293 K). The pad’s dimensions A, B, a, b are shown in figure 1. 𝑃𝑃𝐹𝐹  is the ambient pressure, 
𝑃𝑃𝑔𝑔𝐹𝐹𝑝𝑝 is the equivalent uniform pressure expressed by an empirical formula adopted for this air pad 
geometry [11]:  

 
𝑃𝑃𝑔𝑔𝐹𝐹𝑝𝑝 = 𝐿𝐿 (ℎ,𝑃𝑃2) = �1 − 0.02�

5 
ℎ�� ∙ (𝑃𝑃2 − 𝑃𝑃𝐹𝐹) + 𝑃𝑃𝐹𝐹                 (5) 

 
where h is expressed in μm. The load capacity of the pad is computed by integration of the pressure 
distribution on its area: 
 
𝐹𝐹𝑝𝑝 = �𝑎𝑎𝑎𝑎 + 𝐴𝐴𝐴𝐴 + (𝐴𝐴𝐹𝐹+𝐹𝐹𝐵𝐵)

2
 � �𝑃𝑃𝑔𝑔𝑓𝑓𝑢𝑢−𝑃𝑃𝑓𝑓�

3
                (6) 

 
The continuity equations related to the incoming and outgoing mass flow rates for each volume 
𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3 and to the corresponding pressures 𝑃𝑃1, 𝑃𝑃𝑔𝑔𝐹𝐹𝑝𝑝,  𝑃𝑃𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 are: 
 
𝐺𝐺1 − 4𝐺𝐺2 =

𝑉𝑉1
𝑅𝑅𝑇𝑇

𝑑𝑑𝑃𝑃1
𝑑𝑑𝑑𝑑

 

 

   (7) 4𝐺𝐺2 − 𝐺𝐺4 − 𝐺𝐺3 =
𝑃𝑃𝑔𝑔𝐹𝐹𝑝𝑝𝑎𝑎𝑎𝑎
𝑅𝑅𝑇𝑇

 
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

+
𝑉𝑉2
𝑅𝑅𝑇𝑇

𝑑𝑑𝑃𝑃𝑔𝑔𝐹𝐹𝑝𝑝
𝑑𝑑𝑑𝑑

 
 

𝐺𝐺3 =
𝑉𝑉3
𝑅𝑅𝑇𝑇

𝑑𝑑𝑃𝑃𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑑𝑑𝑑𝑑

 
 
The equilibrium equation of the pad (considered as a single degree of freedom system) is: 

 
𝐹𝐹 − F𝑃𝑃 + 𝑀𝑀 d2ℎ

𝐹𝐹𝑡𝑡2
= 0                 (8) 

 
where F is the vertical external load applied to the pad and M the mass related to the supported 

payload (F=Mg). 
 

Numerical results and Discussion 
At the supply pressure 𝑃𝑃𝑆𝑆 =  0.5 MPa the regulation parameters of the valve are identified with 
the numerical model: 𝑥𝑥0= 55 µm, 𝑃𝑃𝑅𝑅𝐹𝐹𝑅𝑅 = 𝑃𝑃𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  0.37  MPa. In this way, the compensation 
works in a range of air gap near to h = 9.5 µm. The static behavior of the compensated air pad has 
been widely discussed in [10].   

To determine the dynamic parameters 𝐾𝐾 and 𝑐𝑐 of the air bearing a sinusoidal load F of amplitude 
∆𝐹𝐹 and frequency 𝑓𝑓 is imposed around the initial point of static equilibrium. By applying a small 
amplitude load (∆𝐹𝐹 is about 1% of the initial static load) it is possible to define with good accuracy 
the dynamic parameters of the air bearing at each air gap height. With the imposed sinusoidal load 
the air gap ℎ is calculated and plotted as a function of the time; the amplitude ∆ℎ and the time 
delay ∆𝑑𝑑  between the input signal F and the output signal ℎ are therefore determined in stationary 
conditions. The pressure force of the air gap is the sum of the elastic component due to the stiffness 
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of the air gap and the viscous component due to the damping of the air gap. Considering all the 
acting forces as rotating vectors on a complex plane, the equilibrium of the forces decomposed in 
the direction of the elastic force and in the direction of the viscous force allows to obtain the values 
of 𝐾𝐾 and 𝑐𝑐 as a function of the frequency, according to the equations (9): 

 
𝐾𝐾(ω) = ∆𝐹𝐹

∆ℎ
cos(φ) + 𝑀𝑀ω2 ;      𝑐𝑐(ω) = ∆𝐹𝐹

 ∆ℎ
 sin(φ)

ω
                                                                                      (9) 

 
Where  ω = 2π 𝑓𝑓 is the angular frequency, φ =  ω ∆𝑑𝑑 is the phase lag between the input and the 

output signals. 
Figure 4 shows the trend of the dynamic stiffness K and the damping c over a frequency range 

from 0 to 30 Hz and considering initial static conditions near to h = 9.5 µm. 
At low frequency, stiffness and damping of the air gap are much higher than those obtainable 

without the valve and they quickly reduce as ω increases. Outside the overcompensation zone, the 
stiffness is always positive, otherwise it can be positive or negative as a function of ω. Further 
studies will be involved to analyze the dynamic stability of the system, as already made for the 
solution studied in [12]. 

 
Fig. 4. Stiffness K, damping c and phase delay φ of the compensated air pad: numerical results.  

𝑃𝑃𝑆𝑆 =  0.5 MPa,  𝑘𝑘𝑣𝑣 = 50 𝑁𝑁/𝑚𝑚𝑚𝑚,  𝑑𝑑𝑣𝑣 =  0.5 mm, 𝑑𝑑𝑃𝑃 = 0.5 𝑚𝑚𝑚𝑚.    
Conclusions 
This paper presents a preliminary investigation on the dynamic performance of an aerostatic pad 
with internal pressure control. The dynamic performance of the compensated air pad dramatically 
decreases as the frequency increases due to the presence of the valve. For frequencies below about 
40 Hz the phase lag is negative, which means the presence of the valve makes the displacement of 
the air pad in advance with respect to the applied external force. The results indicate that this 
compensation method represents an efficient and cost-effective method for low frequency air pad 
applications. Further studies will be aimed to compare numerical and experimental results and to 
analyze the stability of the proposed control system. 
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Abstract. Thanks to their low friction, aerostatic pads are currently used in many high precision 
applications. However, due to the air compressibility, aerostatic bearings suffer from relatively 
low stiffness and damping. Active and passive compensation methods represent a valuable solution 
to reduce these limitations. This paper presents a novel prototype of a diaphragm valve for 
passively compensated aerostatic pads. The proposed valve was obtained through the 
improvements of a previous prototype. The main goal of this new design of the valve was to 
improve the reliability, repeatability and accuracy of regulation. The novel prototype is modelled 
through the same lumped parameter model that was used for the previous prototype. The 
preliminary experimental results demonstrate the efficiency and effectiveness of the proposed 
valve. 
Introduction 
Because their zero friction, aerostatic pads are widely used in applications where high precision of 
positioning is required, e.g., machine tools and measuring machines [1,2]. However, this kind of 
bearings are characterized by low relative stiffness and they suffer from low damping due to the 
air compressibility. In this regard, different solutions have been proposed to improve aerostatic 
pad performance. In the attempt of reducing these limitations different kinds of feeding system 
were studied and experimented, e.g., multiples supply holes with different size, number and 
location [3], porous inserts or surfaces [4,5] and compound restrictors [6–8]. However, a suitable 
choice and design of the feeding system of aerostatic pads can lead only to limited performance 
improvement. Conversely, active and passive compensation methods make it possible to 
significantly improve both static and dynamic performance [9,10]. Passive compensation methods 
use components which require only the energy associated with the supply pressure of the bearing, 
e.g., pneumatic valves and compliant elements. By contrast, actively compensated bearings exploit 
elements that require external sources of energy to function, e.g., sensors, controllers and actuators. 
Although their high performance [11–13], active compensation solutions are still too expensive 
and thus result to be unsuitable for industrial applications. Notwithstanding their lower bandwidth, 
passive compensation solutions represent a cheaper alternative. This paper presents a novel 
prototype of passively compensated pad. This passive compensation solution consists in the 
integration of commercial pad and a custom-built diaphragm valve whose design is an improved 
version of that described in [14,15]. The novel prototype is modelled through the same lumped 
parameter model that was used for the previous prototype.  
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The Prototype 
Figure 1a and 1b show a cross section of the designed diaphragm valve and the aerostatic pad. 

  

 

 

(a) Air pad. (b) Diaphragm valve. 
Figure 1: The proposed prototype.  

  
The diaphragm valve is composed of three main parts: an upper crossbeam, a central body and 

a lower cap. The chamber of the valve is located at the interface between the central body and the 
lower cap. The lower surface of the chamber consists of a membrane that is clamped between the 
central body and the lower cup thanks to the presence of an elastomeric o-ring. The chamber of 
the valve is supplied through a moving nozzle. The relative position from the nozzle and the 
membrane can be manually regulated through a micrometer. A coil spring is compressed between 
the nozzle and the central body to guarantee the presence of a restoring force when the nozzle must 
be moved upwards. The main goal of the novel design was to modify the mechanism to regulate 
the initial nozzle-membrane distance, i.e., when the system is not pressurized, since the accuracy, 
repeatability and reliability of the system is strictly related to this aspect. The air pad has 
rectangular base of 60x30 mm2 (𝐴𝐴𝐴𝐴𝐴𝐴) and four orifices with a diameter of 1 mm (𝑑𝑑𝑝𝑝). Each 
restrictor is located in the middle of each side of a grooved rectangular supply line with a base of 
45 mm (𝑎𝑎) and a width of 20 mm (𝑏𝑏). The grooves present a triangular cross-section with a base 
of 0.2 mm (𝑤𝑤𝑔𝑔) and a height of 0.06 mm (ℎ𝑔𝑔). 

 
Numerical Model  
The system is modelled through lumped pneumatic resistances and capacitances (see Figure 2).  
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Figure 2: Pneumatic scheme of the prototype. 
 

Starting from the upstream, the volume of the valve 𝑉𝑉1is supplied with a constant pressure 𝑃𝑃𝑠𝑠 
through the nozzle. The value of the air mass flow rate 𝐺𝐺1 supplied by the nozzle (R1) depends on 
the initial position of the nozzle and its diameter 𝑑𝑑𝑛𝑛, the deflection of the membrane1 𝐴𝐴 and its 
stiffness 𝑘𝑘𝑚𝑚, the supply pressure 𝑃𝑃𝑠𝑠 and the pressure inside the valve chamber 𝑃𝑃1. The air mass 
flow rate passing through the nozzle of the valve 𝐺𝐺1 and the supply holes of the pad 𝐺𝐺2 are 
computed by means of the ISO formula 6358 [16] as follows: 

  

𝐺𝐺𝑖𝑖 =  𝐶𝐶𝑖𝑖𝑃𝑃𝑠𝑠 �1 − �

𝑃𝑃𝑑𝑑,𝑖𝑖
𝑃𝑃𝑢𝑢𝑝𝑝,𝑖𝑖

− 0.5283

1 − 0.5283
�

2

 𝑖𝑖 = 1, 2.  

𝐶𝐶1 = 1.05(1 − 0.3 𝑒𝑒−0.005 𝑅𝑅𝑅𝑅1) 
0.685
√𝑅𝑅 𝑇𝑇  

𝜋𝜋 𝑑𝑑𝑛𝑛 𝐴𝐴; 𝑅𝑅𝑒𝑒1 =
𝐺𝐺1 
𝜋𝜋𝜋𝜋𝑑𝑑𝑛𝑛
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4
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𝐶𝐶2 = 1.05(1 − 0.3 𝑒𝑒−0.005 𝑅𝑅𝑅𝑅2) 
0.685
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where, 𝑃𝑃𝑢𝑢𝑝𝑝 and 𝑃𝑃𝑑𝑑 are the upstream and downstream pressure. 𝐶𝐶1 and 𝐶𝐶2 are the pneumatic 

conductance related to the valve nozzle and the pad supply holes. 𝐺𝐺3 is the mass flow rate 
exhausted through the air gap (R3) and it computed through Equation 2, where, 𝑃𝑃0 is the mean 
constant pressure inside the area of the grooved rectangular supply line that is obtained from the 
pressure downstream the supply holes of the pad 𝑃𝑃2 through the semi-empirical formula of 
Equation 3 [8] (that in Figure 2 corresponds to the function L) [14]. 𝑅𝑅, 𝑇𝑇 and 𝜋𝜋 are the gas constant 
temperature and dynamic viscosity of the air. 𝑅𝑅𝑒𝑒1 and 𝑅𝑅𝑒𝑒2 are the Reynolds numbers related to 
the air flow passing through the nozzle of the valve and the supply holes of the pad. 

  

 
1 That is a function of the membrane geometry: its diameter 𝑑𝑑𝑚𝑚 . 
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𝐺𝐺3 =  
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The load carrying capacity of the pad 𝐹𝐹𝑝𝑝 is computed through Equation 4 by assuming that the 

surface of the pad is perfectly smooth and that the pressure distribution outside the rectangular 
area surrounded by the grooves is linear. 
  

𝐹𝐹𝑝𝑝 = �𝑎𝑎𝑏𝑏 + 𝐴𝐴𝐴𝐴 +
(𝐴𝐴𝑏𝑏 + 𝑎𝑎𝐴𝐴)

2
 �

(𝑃𝑃0 − 𝑃𝑃𝑎𝑎)
3

 (4) 

  
The dynamic equations of the model (Equations 5) that are necessary to compute the pressures 

(𝑃𝑃1 and 𝑃𝑃0) along with the air gap height of the pad (ℎ) are the continuity equations applied to 
volumes 𝑉𝑉1 and 𝑉𝑉0 and the equilibrium equation of the pad respectively: 
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  (5) 
𝐹𝐹𝑅𝑅𝑒𝑒𝑒𝑒 = 𝐹𝐹𝑝𝑝 −𝑀𝑀ℎ̈  

  
These equations are discretized by the Euler explicit method. 

Numerical and Experimental Results 
As it can be seen from Figures 3 the numerical model was experimentally validated through static 
characterizations. Moreover, the equations of the lumped model were exploited to implement a 
numerical design procedure in order to define the valve parameters that optimize the system 
performance around a specific air gap height hdes. To verify the accuracy and reliability of the 
proposed design procedure, it was used to compute the optimal operating parameters of the valve 
for an air gap height of 21 μm. 

  

 

 

(a) Load Capacity (b) Air consumption 
Figure 3: Experimental and numerical static feature of the prototype. 
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Figures 3 also reports the numerical curves that corresponds to operating air gap height 𝒉𝒉𝒅𝒅𝒅𝒅𝒅𝒅 of 
14 and 18 μm. Eventually, the stability of the prototype was experimentally verified around the 
operating air gap value (hdes=21 μm) through the application of a negative step force of about 20 
N (see Figure 4).  
 

 

Figure 5: Step force test results (ℎ𝑑𝑑𝑅𝑅𝑠𝑠=21 𝜋𝜋𝜇𝜇) 

 
Step force test demonstrates the stability of the proposed prototype and even quasi-static infinite 

stiffness around the considered operating air gap height (hdes= 21 μm). 

Conclusions 
This paper presented a novel prototype of a passively compensated aerostatic pad consisting in the 
integration of a commercial pad and custom-built diaphragm valve. Compared to a previous 
solution, the new valve design was thought to obtain a simpler mechanical structure and higher 
repeatability. The repeatability was assessed by the fact that, conversely to the previous prototype, 
the initial position of the nozzle does not change after many experimental test repetitions. 
Moreover, the novel valve prototypes was built by exploiting a design algorithm (similar to those 
presented in [15]) based on the equation of the lumped parameter model of the system [14]. The 
static characterization of the prototype makes it possible to verify the accuracy of the lumped 
model and the proposed design algorithm. Step force tests were used to verify the stability of the 
system. Other than verifying the stability, step force tests demonstrated that the system is 
characterized by quasi-static infinite stiffness around the considered operating air gap height.  
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Abstract. The characterization of flexible joints of robotic underactuated fingers allows the 
investigation of the finger flexion trajectories using a tendon-driven actuation. In this paper, the 
characterization of TPU 3D printed joints used in underactuated robotic fingers, is experimentally 
and numerically performed. Since the mechanical properties of 3D printed materials are uncertain, 
this research helps to define the characteristics of robotic fingers in terms of stiffness. The role of 
the stiffness for the control of fingers’ trajectories is fundamental and the obtained results are very 
useful for improving the method to track a certain predefined trajectory. Experimental and 
theoretical results evaluate the stiffness as a function of the infill density percentage of the material. 
Introduction 
In the last years, a novel generation of underactuated compliant hands is growing in the robotics 
community [1]. In these soft hands the simplification of actuation and control is central [2-7], as 
well as the reduction of the degrees of actuation with respect to the degrees of freedom (DoFs) and 
the intrinsic passive compliance at joint level. Underactuated compliant hands can be implemented 
using deformable materials that can be processed with Additive Manufacturing (AM) [8, 9]. 
Adding deformable elements allows the storage of elastic energy avoiding tendon slackness, 
passive compliance, the distribution of forces over a large contact area avoiding grasped object 
damage. Shape adaptation increases the grasp performance by compensating the uncertainties and 
stabilizing the grasp [10]. Soft grippers are commonly prototyped using different materials, e.g., 
elastomeric materials whose mechanical properties often present anisotropic, inhomogeneous, and 
nonlinear behaviours [11, 12]. Some recent development further exploits Interpenetrating Phase 
Composites [13] and topology optimization techniques for obtaining a multimaterial-like 
behaviour varying the 3D printing infill density [14, 15]. A proper mechanical characterisation is 
very important to predict the dynamic behaviour of the soft robotic component [16]. This work is 
focused on the mechanical characterisation of compliant joints of robotic modular fingers, 
providing methods and results that can be exploited in the design of new soft hands, improving 
dexterity [17]. A possible way to design a desired fingertip trajectory or a specific performance is 
to opportunely tune the stiffness of the compliant joints. For this purpose, this paper presents the 
characterization of a flexible joint for modular robotic fingers in terms of variation of stiffness 
depending on the density of the material, represented by the infill rate of the 3D printing process. 
Joint characterization 
Soft-rigid robotic fingers are modular structures composed of rigid or semi-rigid phalanges and 
soft flexible joints which reproduce the articulation function (Fig. 1(a)) [3, 8, 9, 18]. This work is 
focused on the analysis of the mechanical properties of flexible joints made in TPU (thermoplastic 
polyurethane, Ninjaflex Semiflex 85A, Lulzbot, USA) and rigid parts made in PLA (Polylactic 
Acid, ecoPLA, niceshops GmbH, Austria) by 3D printing techniques using a FDM (fused 
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deposition modeling) 3D printer (Lulzbot TAZ 5, Lulzbot, USA). A TPU joint sample is 
represented in Fig. 1(b, c).  

 

Fig. 1 – Modular finger: (a) assembly; (b) joint dimensions; (c) 3D printed joint 
The objective of the joint characterization was to study the stiffness of the flexible component 

for different values of density. In fact, the stiffness of the deformable passive joint affects the 
trajectory of the fingers subjected to a tendon-driven actuation and thus the effectiveness of the 
grasping. For this purpose, both experimental and numerical analyses were performed. The 
experimental part of the work was based on the realization of 15 TPU joints with five different 
infill percentages. The stiffness was measured by using a digital force-displacement gauge. The 
numerical approach implied the use of FEM (finite element modelling) software. As the finger is 
composed of rigid modules and the length of the joint is comparable with the length of the rigid 
modules, the deflection is moderate and the problem can be modelled considering the theory of 
beams [19-20]. Analytical and experimental results can be compared to create a simple and 
validated numerical tool to design this kind of flexible joints with specific stiffnesses. 
Experimental characterization  
The experimental characterization of stiffness was performed for 15 joint samples with the same 
geometrical dimensions and five different infill percentages (20, 30, 40, 50 and 60%), in groups 
of 3 samples. A 3D printed rigid constraint made in PLA was used as support for the TPU samples, 
which were mounted between this rigid support and a finger phalanx (Fig. 2(a)). The phalanx was 
subjected to a vertical load by a flat tip to simulate the behavior of the joint during the flexion of 
the finger.  For each flexion test the force-displacement curve was obtained and the stiffness value 
was extracted accordingly in two significative displacement ranges: [0 – 0.8 mm] and [0 – 4 mm]. 
In fact, a 2-grade polynomial approximation of the force-displacement curves demonstrates that 
the curve has an approximately parabolic trend with a quasi-linear increase in the first interval 0 – 
0.8 mm. The maximum displacement was fixed at 4 mm as after this value the finger phalanx 
collides with the support. 
Numerical analysis 

The FEM analysis was performed analyzing the joint behavior when it is subjected to a static 
stress. A 3D CAD (Computer Aided Design) model of two simplified phalanges connected by a 
TPU joint was drawn and discretized and loads and constraints were applied as represented in Fig. 
2(b).  

Different simulations were performed by varying the infill conditions with the aim of observing 
the force required to obtain a fixed displacement. The stiffness and the force evaluated are 
compared to the experimental force-displacement curve. The TPU characteristics were extracted 
by the datasheets according with the infill percentages and a linear elastic model was used to study 
the deformations. Simulations were performed in displacement control, in large displacement 
hypothesis. In particular, the simulations results were compared to the following loads: 7.4, 13.7, 
15.0, 16.9, 18.3 N. These values represent the mean values of the maximum loads measured during 
the experiments for the TPU joints with infill percentage equal to 20, 30, 40, 50 and 60 %.  
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Fig. 2 – Experimental layout (a); 3D CAD model for FEM and load configuration (b). 
Results 
The mean force-displacement curves obtained by experiments are represented in Fig. 3. The fitting 
curves obtained by 2-grade polynomial approximation are also represented. The deformation map 
resulting by the simulations is reported in Fig. 4: setting the prescribed displacement as a boundary 
condition, the resulting plot is the same for all the infill percentages. Tab. 1 reports all the stiffness 
results obtained by experimental tests. The parameter Kmean represents the mean value of the 
stiffness. The force applied in the numerical analysis to allow the maximum displacement and the 
stiffness are reported in Tab. 2. Fig. 5 shows the comparison of numerical and experimental results.  
Discussion 
Results show that all the curves present similar shapes, with different load/deformation values. All 
the curves are characterized by a steep, almost linear part at the beginning (displacements 0-0.8 
mm). In the 20% infill case, due to the higher flexibility, also in the first part of the curve a less 
stiff, nonlinear behavior is evident. For all the samples, a linear load/deformation behavior can be 
considered only for limited displacement values, and this is an important aspect that must be 
considered for the applications of these components as flexible joints of soft robotic fingers, which 
frequently undergo large deformations. This aspect must be considered both in the mechanical 
design phase and in the control system implementation. 

 

Fig. 3 – Mean force-displacement curves of the TPU joint with different infill percentages 
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Tab. 1 – Stiffness experimental results 
  Stiffness [N/mm] 
Infill percentage Displacement range Sample 1 Sample 2 Sample 3 Kmean 
20% 0 – 0.8 mm 3.19  3.39  2.19  2,92 

0 – 4 mm  2.39  1.55  1.59  1,84 
30% 0 – 0.8 mm 7.06  7.87  7.68  7,53 

0 – 4 mm  3.25  3.50  3.54  3,43 
40% 0 – 0.8 mm 8.00  9.23  8.10  8,44 

0 – 4 mm  3.56  4.02  3.73  3,77 
50% 0 – 0.8 mm 9.05  7.10  9.13  8,43 

0 – 4 mm  4.24  4.00  4.43  4,22 
60% 0 – 0.8 mm 6.57  10.78  9.25  8,87 

0 – 4 mm  4.06  6.97  4.69  4,57 

 
Fig. 4 – FEM results (a); Comparison between FEM and experimental behavior (b). 

Tab. 2 – Stiffness numerical results 

Infill percentage Force measured at 
4mm [N] K [N/mm] 

20% 7.07 1.77 
30% 13.33 3.33 
40% 14.26 3.56 
50% 15.95 3.99 
60% 17.35 4.34 

 
Fig. 5 – Comparison of experimental and numerical results 

As expected, joints with higher infill densities present higher stiffness, but the infill density vs 
stiffness relationship is not linear: for lower infill percentages (20-30%) the stiffness sensitivity 
with respect to infill is much higher than for higher percentages. One can observe that all the 
samples show a higher stiffness in the linear elasticity interval with respect to the entire force-
displacement curve. As the infill percentage affects the mechanical properties and consequently 
the joint behavior, it is necessary to find a compromise between desired mechanical properties, 3D 
printing time and material amounts. This suggests that it is not recommended to produce joints 
with too low (20%) or too high (>>60%) infill percentages to allow a correct joint work and a 
sustainable production process. Fig. 5 shows a correspondence between experimental and 
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numerical outcomes. Differences between theoretical and experimental stiffnesses are more 
evident when the infill percentage increases.  This discrepancy can be justified by the use of a 
linear elasticity model for the FEM analysis. For higher infill percentages the linear elasticity 
model is no more able to precisely approximate the joint deformation. 
Conclusions 
The results of the study show the relevant impact of manufacturing parameters, and in particular 
the infill density percentage, on the overall flexural stiffness of flexible joints for soft modular 
robotic fingers. The results show a relationship between load and displacement in flexible joints. 
Such behavior was both experimentally and numerically validated, and results will contribute at 
defining a more reliable characterization of deformable components of soft robotic hands. Future 
works can be focused on the improvement of the approximation of deformations through FEM 
simulations, introducing a comparison between different hyperelastic material models, also 
considering viscoelasticity and anisotropy. Furthermore, different load conditions and specimen 
shapes will be evaluated for experimental and numerical characterization. These models can be 
obtained from the force-displacement curves, to evaluate the behavior of the TPU joint. 
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Abstract. In recent years, the increasingly growing overcrowding of urban environments and the 
resulting road traffic congestion have pushed toward the search for alternative mobility solutions, 
among which there are novel Urban Air Mobility (UAM) technologies. The UAM, together with 
the development of electric actuation systems, would allow decongesting the streets by exploiting 
the sky using electric Vertical Take-Off and Landing (eVTOL) aircrafts. Urban air mobility 
vehicles are primarily based on fully electrical flight control systems with rotary output. Since 
such technology is relatively new and unproven, Prognostic and Health Management (PHM) 
algorithms, able to continuously monitor the health status of such systems, are of particular 
interest. The diffusion of these systems strongly depends on the general confidence of possible 
customers. The present paper proposes a preliminary study on the effects of the kinematic error of 
a Strain Wave Gear (SWG), the most used reducer for this kind of applications, on the behaviour 
of an Electro-Mechanical Actuator (EMA) used as a flight control actuator for an eVTOL aircraft. 
The simulation results show how the unavoidable kinematic error affects the EMA performances 
and how its presence can be detected and quantified in strain wave gears. 
Introduction 
Overcrowded cities and road traffic congestion, together with their problems related to 
environmental and noise pollution, have pushed the search for alternative mobility solutions. A 
possible solution to this problem is the Urban Air Mobility. This term refers to the use of urban 
airspace for intracity passenger transportation, package delivery, healthcare applications, and 
emergency services. Since environmental pollution in cities is one of the main issues of our time, 
UAM converged to all-electric aircrafts with compact Electro-Mechanical Actuators (cEMAs) 
with rotary output for both lift devices and flight controls. 

Fatal accidents and low reliability were the main obstacles to previous UAM development. For 
this reason, and for the fact that this technology is still relatively new, the application of Prognostic 
and Health Management  logics to this system may be a valuable and efficient solution [1]. 
Nevertheless, the design of novel PHM routines requires a significant amount of data 
representative of both nominal and off-nominal health conditions. This information can come from 
historical series, laboratory tests, or simulation campaigns. Although the first two options are 
usually preferable, they are often not feasible for newly developed systems and require a 
significant amount of time and monetary investment. Within this framework, researchers often 
rely on High-Fidelity (HF) models to generate datasets required to train PHM algorithms. In 
traditional EMAs, a lot of work has been done with this aim for what concerns electrical [2] and 
mechanical components [3,4] as well as flight control connections [5]. 

One of the possible actuation and control systems for UAM applications consists of a fault-
tolerant brushless DC motor, a Strain Wave Gear, control and power electronics, and sensors. 
Despite traditional flight commands, the actuator presents a rotative output and not a linear one 
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[3]. In this kind of application, the use of SWGs is mainly justified by the need for a high 
transmission ratio (τ) within a small volume. This solution also presents several advantages over 
traditional gearboxes like very low backlash, good precision, and excellent repeatability. For these 
reasons, it is commonly used in robotics [6] and aerospace [7] in which compactness and high 
precision are fundamental. As highlighted in [8], strain wave gears are subjected to peculiar fault 
and failure modes that must be taken into account for a proper design and implementation of such 
technology. 

Through a first-approximation multibody model [9], the present paper describes a preliminary 
representation of the dynamics of a strain wave gear in an EMA for eVTOL flight control systems. 
With the aim of providing the basis for the definition of future PHM algorithms, the kinematic 
error, modelled according to a physics-based approach [10], has also been considered in the 
simulation environment to study its influence on the performance of a flight control actuator. 
Dynamic Model of an EMA for eVTOL Aircraft 
Even though eVTOL aircrafts are based on a specific design [11], they are very similar in almost 
all their configurations from an actuation point of view. In this paper, the actuator analyzed is the 
one that allows obtaining a vectoring of the thrust device to change from take-off to cruise 
configuration. The specific aim of the present model is to study the effect of the kinematic error of 
the strain wave gear. For this reason, all the components of the EMA, except the gearbox, are 
represented using simplified models. The three main elements of the model are the Electric Motor 
(EM) and its control logic, the strain wave gear, and the sensors. As in the real system, the only 
input to the model is the position set value required by the flight control computer. All the other 
quantities (i.e., motor voltage and current, angular velocity, and torque) are internally calculated 
according to the classic EMA scheme [12]. 

Electric Motor. To build a high-fidelity model of a mechanical system, all its components must 
be properly modelled. However, since this would lead to high simulation times, simplifications 
have been adopted. Within this framework, in the present research, a model of a DC brushless 
motor has been implemented. 

Strain Wave Gear. To describe the kinematic and the dynamic behaviour of the SWG, an 
equivalent model is exploited. This model is a good compromise between the need for high-fidelity 
representation and limited simulation time. The proposed model is based on the work done in [9], 
in which, the interactions among the three main components of the SWG were analysed. 

This approach allows describing the cyclic deformation of the flexspline caused by the motion 
of the Wave Generator (WG) and the interaction during the meshing between the flexspline (FS) 
and circular spline (CS) teeth. The operating mode of a SWG can be dual, depending on which 
element, between the FS and the CS, is locked. In the present paper, the FS is fixed, while the CS 
is connected to the output shaft. 

Differently from [9], the mechanical transmission between the electric motor shaft and the WG 
and between the CS and the position transducer have been considered. In so doing, it is possible 
to obtain a three degree-of-freedom model distinguishing the three inertias, one for each main 
component of the SWG. 

In Figure 1.a a schematic representation of the equivalent model is reported. The physical and 
geometric parameters associated with it are the primitive equivalent radius (rg), the wave generator 
angular position (θWG), the circular spline angular position (θCS), the teeth pressure angle (αt), 
the elliptical cam equivalent angle (αn = arctan � 1

τ∗tan(αt)
�), the stiffness (Kb) and the viscous 

damping coefficient (cb) of the elliptical bearing, the flexspline torsional stiffness (Kt), the 
meshing stiffness between FS and CS (Km) and the pure kinematic error between input and output 
of the strain wave gear (θe). The displacements of the components that occur during the 
transmission are the radial displacement of the bearing outer race (x1), the radial displacement of 
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the FS during elliptical deformation (x2), the tangential displacement of the FS free edge caused 
by torsional deformation (y1) and the tangential displacement of the CS (y2). 

By analyzing the free-body diagrams of the single components, it is possible to obtain the 
equations (Eq. 1) describing the dynamics of the system. 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ TWG = KWG(θin − θWG) + cWG�θ̇in − θ̇WG� = TFS→WG + JWGθ̈WG

Fb = Kb�eWG,mis + x1 − x2� + cb(ėWG,mis + ẋ1 − ẋ2)

Fb −
JFSẍ2

rg2
= Fm sin(αt)

Kty1
rg2

+
ctẏ1
rg2

= −
JFSÿ1

rg2
+ Fm cos(αt)

Fm = Km(x2 sin(αt) − (y1 + y2) cos(αt)) + cm(ẋ2 − (ẏ1 + ẏ2) cos(αt))
TFS→CS − JCSθ̈CS = KCS(θCS − θout) + cCS�θ̇CS − θ̇out� = TCS

TFS→WG = Fbrg sin(αn) cos(αn)
TFS→CS = Fmrg cos(αt)

 (1) 

 
The equations were implemented in a Simulink model to obtain a description of the SWG 

dynamics. 
Kinematic error. The kinematic error is always present in SWGs, due to the FS flexibility, 

tolerances, and tooth machining errors. It is defined as: 
 

θ� =
θin
τ
− θout = (θCS + θe + Δθ) − θout = θe + Δθ (2) 

 
The term Δθ of the Eq. 2 is related to the torsional compliance, while θe is called pure kinematic 

error [13] and it depends on the kinematic structure of the SWG. The parameter eWG,mis =
θe,misrg ≅ θerg is the kinematic error caused by misalignment expressed as a radial displacement. 

The pure kinematic error contributions can be classified into a constant component, related to 
clearance, and a variable one, related to misalignment and tooth machining error [10]. In [9,14,15], 
the presence of the kinematic error is modelled by means of finite Fourier series based on 
experimental data. On the contrary, the present study aims to describe such a phenomenon from 
its root causes such as a misalignment of the wave generator due to assembly and machining 
imperfections. 

The modelling of the presence of misalignment among the three main components of the SWG 
is obtained by means of a roto-translation matrix depending on the wave generator angular 
position. In this way, it is possible to define a planar equivalent WG profile, depicted in Figure 
1.b, changing, at each instant, with the input shaft position. 

The input parameters of the kinematic error model are the eccentricity (e1 and e2) and the 
angular deviations (β� = [β1β2β3] and α� = [α1α2α3]) shown in Figure 2. 
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(a) (b) 
Figure 1  (a) Diagram of the SWG dynamic equivalent model. (b) Schematic representation of a 

misaligned strain wave gear. 
The two eccentricity values are measured, respectively, between the CS center (OCS) and the 

nominal center of the reference frame (O), and between the nominal center (O) and the WG center 
(OWG). The angular deviations are the angles between eccentricities (e1and e2) and x-axes (β1 and 
α1), between CS Z-axis and nominal Z-axis, nominal Z-axis and WG Z-axis on XOZ-plane (β2 
and α2) and between CS Z-axis and nominal Z-axis, nominal Z-axis and WG Z-axis on YOZ-plane 
(β3 and α3). By knowing these parameters, it is possible to define two rotation matrices linking 
the nominal position of the WG to its angular position in presence of misalignment. 

The obtained 3D profile of the wave generator is intersected with the plane perpendicular to the 
input shaft obtaining its equivalent planar profile. This is compared to the nominal one to get the 
radial displacement and, as a direct consequence, the kinematic error associated with it. In Figure 
3.a, a comparison of the pure kinematic error between experimental [13] and proposed model 
simulated data is reported. 

For more accurate results, proper modelling of the other kinematic error sources, such as 
clearance and tooth machining error, is necessary. 

Friction. Due to the presence of friction, a passive torque, modeled by an approximation of the 
Stribeck curve as in [12], must be subtracted to TCS, the output torque of the circular spline, to 
obtain the actual torque (T) at the output shaft of the reducer [16]. 

Sensors. Before being used to close the relative control loops, the signals of the flap surface 
angular position, the motor angular velocity and current pass-through blocks simulating the 
presence of three sensors. Zero-order transfer functions have been adopted to simulate the current 
sensors, while first and second-order ones have been implemented for the speed and the position 
sensors. In addition, to replicate a real device, noise has been added. 

 

 
Figure 2 Eccentricity and angular deviations. 
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(a)  
Figure 3 Analysis of the kinematic error model: (a) comparison of the pure kinematic error 
between experimental and simulated data and (b) angular deviation misalignment kinematic 

error. 
Simulations Results 
To study the effect of the presence of the kinematic error caused by misalignment, different 
simulations, performed by changing the input parameters (eccentricity, e1 and e2, and angular 
deviations, β� and α�), were run. 

The angular position set is a ramp with a slope such that the maximum stroke of the actuator is 
reached in 5 s. In so doing, the speed of the actuator is constant, and the torque oscillations are 
primarily linked to the control logic. The simulations are performed by analyzing the effects of 
angular deviations (β� and α�). Because the position control loop operates to minimize the relative 
error the effect of the kinematic error on the flap surface angular position is negligible. 
Nevertheless, an effect could be observed in torques, and consequentially, in current signal, as 
reported in Figure 3.b in which the presence of the kinematic error caused a noisy signal with 
several oscillations. In Figure 3.b, are reported the differences between the nominal torque and the 
one in the presence only of angular deviations. As predictable, the effect of the kinematic error 
increases together with the misalignment level. A similar effect can be found in presence of 
misalignments. 
Conclusions 
In the present paper, a preliminary study on the effects of a strain wave gear pure kinematic error 
in an electro-mechanical actuator for UAM applications was proposed. For this purpose, a 
mathematical model of the SWG and relative misalignment was developed to study and quantify 
the effects on the main signals of the EMA. 

In the analyzed case study, the results of the simulation made it possible to investigate one of 
the causes of vibrations between the components of a SWG. The presence of this error causes the 
appearance of oscillating torques which are instantaneously significantly greater than the nominal 
ones. 

In the future, the proposed model will be validated with experimental results and integrated 
with more accurate ones of the other components of the EMA to study the effects of different 
phenomena and to obtain datasets suitable for PHM purposes. 
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Abstract. MotoGP class motorcycles rely on carbon braking system to cope with their incredible 
acceleration capability and high speed. Hence, assessing the torque generated by the front discs is 
a key to improve the vehicle performance. As direct measurement of the braking torque is not 
allowed during races, its value may be estimated through a physical model, using as inputs the 
brake fluid pressure (monitored on board), the braking system geometry and the friction coefficient 
(μ). However, the results obtained with this method are highly limited by the knowledge of the 
instantaneous friction coefficient between the disc rotor and the pads. Since the value of μ is a 
highly nonlinear function of many variables (namely temperature, pressure and angular velocity 
of the disc), an analytical model appears impractical to establish. This work aims to implement an 
innovative algorithm, based on machine learning, for determining μ from the signals regularly 
available in races, to enable accurate breaking torque computation. The proposed method consists 
of two main tools. An artificial neural network (ANN) is developed to approximate the unknown 
function that relates the input variables to μ, while a Kalman filter (KF) is implemented to estimate 
the real temperature distribution on the disc surface that constitutes one of the most important 
ANN inputs. The proposed algorithm has been successfully validated with real data collected from 
extensive tests in racetracks, with a special sensor setup. 
Introduction 
This research activity is carried out in collaboration with Ducati Corse (a division of Ducati Motor 
Holding S.p.A., Bologna, Italy) and investigates new methods for estimating the braking torque 
generated by carbon brakes mounted on MotoGP class motorcycles.  

Currently, the company is able to estimate the braking torque delivered by the front brakes 
through an analytical model of the braking system. Given the pressure in the hydraulic circuit 
(available from telemetry) and the braking system geometry, such model calculates the braking 
torque assuming a constant value for the friction coefficient, μ. The selected value for μ has been 
defined on the basis of the company database and experience to fit a large portion of the breaking 
maneuvers performed in the racetracks of the MotoGP championship. However, measuring the 
braking torque during some specific racetrack tests revealed significant discrepancies between the 
real and the predicted values. Every time the operating conditions of the brake differed from the 
most common values, the constant friction coefficient approach turned out to be inaccurate for the 
calculation of the torque provided by the front brakes. Determining experimentally the 
instantaneous value of µ  through measurements performed on a test rig is too expensive and time 
consuming. Indeed this approach implies that for every new brake configuration or variant 
developed all the possible operating conditions must be covered. Therefore, the research is aimed 
at achieving a more accurate calculation of the braking torque on the front wheel by estimating the 
instantaneous μ through a machine learning (ML) algorithm.  

An essential requirement for accurately estimating the friction coefficient is reliably assessing 
the thermal dynamics of the system. Originally, the monitoring of the brake temperature was 
performed directly through the sensor present on board. However, it soon became clear that, 
besides being quite noisy, a single spot acquisition was not representative of the whole temperature 
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distribution along the disc. Therefore, a two-dimensional (2D) finite element (FE) model of the 
disc is implemented along with a Kalman filter (KF) to predict with higher accuracy and reliability 
the temperature distribution on the disc-pads contact patch [1, 2] 

The second part of the study focuses on the definition of a ML-based approach suitable for the 
disc-pad friction coefficient prediction. Some works investigated ML algorithms to estimate the 
friction coefficient of steel disc in test rig experiments [3]. To the Authors’ best knowledge, no 
studies can be found concerning carbon brakes in real operating condition. A preliminary 
investigation [4] permitted to identify Artificial Neural Networks (ANN) and Decision Trees as 
the most promising algorithms. In particular, they could provide similar accuracy, with decision 
trees appearing faster, but also more prone to overfitting. In this paper, both algorithms are further 
investigated for possibly enhancing their performance. A new ANN is trained using the k-fold 
cross validation method [5] and with new inputs that improve its prediction capabilities. In 
addition, a new decision tree is developed by using the Minimal Cost-Complexity Pruning 
technique, which is an effective way to optimize the algorithm hyperparameters, to reduce 
overfitting issues.  
Materials and Methods 
The first stage of the research is aimed at implementing the FE model in Matlab, which will 
constitute the physical model used by the Bayesian filter for the posterior optimal temperature 
estimation. To assess the performance of the proposed approach, racetrack tests were performed 
by installing on the motorcycles a multi-spot sensor able to measure the disc temperature in four 
different radial positions (Fig. 1). Such sensor (not allowed during races) was employed for 
calibration and validation of the algorithm. Indeed, the final goal is achieving an accurate estimate 
of the temperature distribution based on the onboard (single-spot) sensor measurements. 

As for the machine learning algorithms, the true friction coefficient values that represent the 
target for each input vector in the training dataset were obtained by performing specific track tests 
in which the motorcycle front wheel was equipped with a wheel torque transducer. Given the 
measured torque and the corresponding value of hydraulic pressure it is possible to calculate the 
friction coefficient values (i.e., to generate the ground truth for the network training dataset) by 
inverting the analytical model of the brake mentioned previously. 

Once the temperature distribution is correctly estimated, it can be processed by the machine 
learning algorithm that outputs the actual value of the friction coefficient. Then, the latter 
information is fed into the original analytical model of the brake that is expected to compute the 
braking torque with enhanced accuracy. 

Analytical model of the brake. Knowing the current value of the friction coefficient, the pressure 
in the hydraulic circuit measured by the sensor and the brake disc/caliper geometry, the model 
outputs the braking torque on the front wheel Tbf, by using the following expression: 

𝑇𝑇𝑏𝑏𝑏𝑏 = 2 ∙ 𝜇𝜇 ∙ 𝐹𝐹𝑛𝑛 ∙ 𝑅𝑅𝑒𝑒𝑏𝑏𝑏𝑏 ∙ 𝐾𝐾𝜇𝜇                  (1) 

where μ is the friction coefficient; Reff is the effective radial distance at which the tangential force 
(Ft =µ ⋅ Fn) is applied; the parameter Kμ is a scaling factor, which is a rational function of μ related 
to the specific caliper geometry (its exact expression cannot be provided due to non-disclosure 
agreements – NDA); the factor 2 is related to the presence of two brake discs (with two distinct 
calipers) on the front wheel; finally Fn represents the normal force applied by the pads on the disc, 
calculated as 

𝐹𝐹𝑛𝑛 = 𝐴𝐴𝑝𝑝 ∙ 𝑝𝑝 ,                   (2) 

where Ap is the total cross section of the four pistons and p is the pressure of the brake fluid. 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 213-218  https://doi.org/10.21741/9781644902431-35 

 

 
215 

It is worth noting that training ML tools to directly estimate the value of the braking torque 
(instead of µ) is not deemed convenient. Indeed, calculating the braking torque through the 
analytical model (Eq. 1) permits to assess the effects of different design parameters of the braking 
system without the need of re-training the algorithm. In fact, MotoGP teams are allowed to choose 
different brake discs and pads according to the characteristics of each track. With the proposed 
approach, a different setup can be addressed simply by adjusting the parameters of the physical 
model (in particular the effective radius and the amplification coefficient Kμ). 

2D FE model and KF. Measuring the disc temperature using the infrared sensor available on 
board is not robust enough to allow the machine learning algorithms to catch the correct 
temperature dependency of the friction coefficient. In fact, this kind of sensor detects the disc 
temperature at a fixed radial distance in the disc-pads contact patch, disregarding the temperature 
gradient and the overall thermal behavior of the disc. From the measurements performed with the 
multi-spot sensor (Fig. 1) it turned out that the heat generated by the friction with the pads is not 
always distributed uniformly along the contact patch. Conversely, the pads wear and the pressure 
distribution inside the caliper can induce local temperature peaks on the disc and very high 
temperature gradient that cannot be recorded by the single-spot sensor. 

 
Fig. 1: Schematic of 2D FE model (left – l) and multi-spot sensor setup (right – r). 

Building a thermal model of the carbon disc allows to take into account the whole temperature 
distribution on the disc hence giving a more robust information to the ML algorithms. The 
temperature on the disc evolves according to the energy transferred by convection, conduction, 
radiation and friction with the pads. In the 2D FE model implemented, temperature is a function 
of the radius, the thickness and time. As shown in Fig.1, thanks to the disc symmetry, only half of 
its thickness can be simulated, by imposing an adiabatic boundary condition in the median plane. 
Conversely, the opposite boundary represents the lateral surface of the disc in contact with the 
brake pad, hence being affected by convection, radiation and friction. The remaining two 
boundaries represent the frontal and internal surface of the disc in which only convection is 
simulated, for sake of simplicity. 

Since, during the race, the actual temperature of the disc may drift away from the simulated 
results due to many external factors (e.g., the presence of slip stream or pads wearing), running the 
FE model alone can not grant reliable results. Therefore, a KF is developed to make up for the 
approximation error introduced by the physical model. At each time step, the filter updates the 
theoretical prediction performed by the thermal model with the empirical information coming from 
the single spot sensor and outputs the a posteriori temperature estimation.  

Artificial Intelligence Algorithms. To preserve the ability to generalize to non-training data, 
hence avoiding overfitting, it is common practice to divide the dataset into training, validation and 
testing sets. However, partitioning the available data into three sets drastically reduces the number 
of samples which can be used for learning the model. Moreover, the results obtained depend on 
the particular choice for the three sets. To solve this problem the cross-validation (CV) procedure 
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is implemented. The CV approach consists in splitting the training set into k smaller sets and 
iteratively training the ML model using the data belonging to k-1 folds while the remaining part 
of the data is kept for validation. The performance of the algorithm is computed by averaging the 
values obtained for each fold. This approach can be computationally expensive, but it allows to 
assess the performance of any ML algorithm across the whole dataset without wasting data. As for 
the implemented algorithms, both the ANN and the decision tree were trained using CV technique 
dividing the dataset into 10 equally populated folds. 

The decision tree was pruned using Minimal Cost-Complexity Pruning technique (MCCP). 
MCCP involves the selective removal of certain leaves of a tree to optimize its hyperparameters 
(namely the maximum number of leaves, the minimum number of samples per leaf and the depth 
of the tree). This process is parametrized by the complexity parameter, α, that indicates a particular 
tree dimension. How α is calculated is beyond the scope of this work, but more information on the 
MCCP can be found at [6]. The more leaf nodes a tree has, the higher its complexity becomes and 
the lower the value of α. A null α corresponds to the full-size tree that is grown until the sum of 
the squared residual for each leaf is minimized (high overfitting). By increasing the value of α the 
weakest link of the original tree is pruned and a new optimal subtree is generated. This process is 
repeated until only one leaf is left, leading to a set of optimal subtrees (Fig. 2). For each of the ten 
folds the MCCP algorithm trains all these trees and tests them on the data kept for validation. As 
α increases the error on the training set grows because the less leaf nodes the tree contains (lower 
complexity) the less possibilities for fitting the training data. However, it can be observed that 
limiting the complexity of the tree may increase the accuracy on the validation set because the 
overfitting is reduced, and the algorithm generalizes better to unseen data. On the other hand, for 
high values of α the tree becomes too simple and the error on the validation set starts increasing 
again (Fig. 2). MCCP aims at selecting the simplest tree that gives the best average performance 
across the whole dataset. 

 
Fig. 2: MCCP subtrees creation (l) and qualitative trend of tree accuracy with respect to α (r). 

As for the ANN, in [4] the most promising results were provided by a four-layered network 
with two hidden layers. The first layer consisted of the input signals, while both hidden layers had 
ten neurons (each one with the hyperbolic tangent as activation function). The same network 
architecture here considered, but new inputs are introduced, which help the algorithm to identify 
the actual friction coefficient. In addition to the pressure in the hydraulic circuit, the angular speed 
of the front wheel and the average disc temperature (calculated using the 2D-FE model and the 
KF) the ML algorithms were provided also with the temperature of the brake at the beginning of 
every braking maneuver, the duration of the braking maneuver and the difference between the 
average disc temperature and the temperature measured by the infrared sensor mounted on board 
(∆T). 

The latter is introduced to take into account how a non-uniform power distribution in the disc 
affects the friction coefficient value. Figure 3 shows two braking maneuvers with similar average 
temperature on the disc and almost identical fluid brake pressure. The one at the bottom shows a 
very high temperature gradient on the disc-pad contact region while the one at the top presents 
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almost uniform temperature distribution (the single-spot temperature measurement is equal to the 
average temperature on the disc estimated by the FE model). In the first scenario the region in 
which the sensor is located is contributing the most in the generation of the braking torque. Hence, 
due to the local temperature peak, the friction coefficient is drastically lower than the other case in 
which the local temperatures are cooler and uniform. This results in a significant discrepancy 
between the breaking torque measured experimentally (black line) and the values predicted by the 
constant friction coefficient approach (dashed). Since these breaking maneuvers present similar 
pressure values and the braking system geometry is the same (Eq. 1) the braking torque estimated 
by assuming a constant µ is very similar for both cases. However, in case of a local temperature 
peak, this prediction overestimates the measured torque by more than 20%.  

 
Fig. 3: Effect of power distribution on torque estimation. 

 

Main Results 
Table 1 compares the two tested ML algorithms. Their performance is expressed in terms of 
percent variation in the root mean square error (Δ%RMSE) with respect to the constant-μ approach, 
and prediction speed (namely, computational time for predicting 104 samples). The former is 
calculated averaging the values obtained for each fold. Even though the decision tree is one order 
of magnitude faster in making new prediction, the ANN is deemed the best solution for the friction 
coefficient recognition because it almost halves the RMSE obtained with constant µ. 

The implementation of the ANN as a preliminary stage for the torque calculation allows to 
enhance the results of the analytical model of the brake whenever the friction coefficient diverge 
significantly from the reference value, particularly in case of a very aggressive braking maneuver 
or a quite gentle one. For instance, Fig. 4 clearly shows that the proposed algorithm permits to 
significantly improve the accuracy of the braking torque prediction in case of hard braking (the 
same maneuver previously reported in Fig. 3, bottom, is considered).  

Combining the thermal model of the brake and the new ANN allowed the creation of the 
colormap showed in Fig. 4, which provides a glimpse at the brake performance in many working 
conditions. The X axis is related to a synthetic coefficient that takes into account the dependency 
of µ with respect to both pressure and angular velocity while the Y axis is referred to the average 
disc temperature. Finally, the vertical axis and the color of the map indicate the values of μ. 

Table 1: performance of the tested approaches 
Algorithm Δ%RMSE  Computational time [s] 
ANN [10;10] – 42.7 % 0.40 
MCCP Tree – 17.1 % 0.02 
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Figure 4: braking torque estimation (l) and normalized μ colormap (r).  

Conclusions 
A novel method to estimate the friction coefficient of carbon brakes for racing motorcycles has 
been presented. It combines a thermal model of the brake, consisting of a Kalman filter and a two-
dimensional finite element model, with an Artificial Neural Network. The proposed method has 
been validated with a large dataset collected from an experimental campaign conducted in many 
different racetracks. The developed algorithm permitted to map the friction coefficient over most 
of the operating conditions that may be experienced over a race. 
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Abstract. The evolution towards “more electric” aircrafts has seen a decisive push in the last 
decade affecting both the propulsion components and the aircraft systems. An interesting and fast-
developing application field of electro-mechanical actuators is that of the aeronautical brakes. The 
E-LISA research project under way within the Clean Sky 2 framework has the objective of 
developing an innovative iron bird dedicated to executing tests on the landing gear of a small 
aircraft transport equipped with electro-mechanical landing gear and electrical brake. The paper 
details the process required to the definition of such iron bird, with a particular focus on the control 
system. 
Introduction 
The evolution towards “more electric” aircrafts has seen a decisive push in the last decade, due to 
growing environmental concerns and the development of new market segments, such as the flying 
taxis. Such trend affects both the propulsion components and the aircraft systems, with the latter 
seeing a progressive trend in replacing the traditional solutions based on hydraulic power with 
electrical or electro-mechanical devices. Although more attention is usually devised towards the 
flight control actuation, an interesting and fast-developing application field for electro-mechanical 
systems is that of the aeronautical brakes. Electro-mechanical brakes, or E-Brakes hereby onwards, 
would present several advantages over their hydraulic counterparts, mainly related to the 
avoidance of leakage issues and the simplification of the system architecture. The E-LISA research 
project under way within the Clean Sky 2 framework has the objective of developing an innovative 
iron bird dedicated to executing tests on the landing gear of a small aircraft transport equipped 
with electro-mechanical landing gear and electrical brake. Literature on landing gear test rig is 
rather limited and focused on the different aspects of the certification process. A test rig dedicated 
to the study of the fatigue behavior of a landing gear is reported in [1], while a hydraulic solution 
to execute the drop-test is re-ported in [2]. In [3], the authors present the implementation of a high-
dynamics force control loop to test the actuation system of a main landing gear within the M-346 
iron bird. In [4] the authors performed the experimental validation of a simulation model of a 
landing gear leg through a comparison with the results obtained with a dedicated experimental 
setup. Literature on the development of PHM systems for landing gear legs is thus far limited to 
preliminary simulation studies for the actuation system [5], or to certain components of the 
electrical brakes [6], while a preliminary comparative analysis of data-driven methods was re-
ported in [7]. The proposed iron bird is set to provide meaningful experimental data by collecting 
signals difficult to extract from the currently in-service aircraft. To this end, the E-LISA iron bird 
is able to reproduce fully comprehensive test scenarios and conditions, following the workflow 
described in [8]. The E-LISA iron bird, firstly presented in [9], aims at providing a significant 
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advancement on the current state-of-the-art by defining a new test-rig able to cover different tests 
procedures without resorting to different test-benches and acts as a technological demonstrator for 
new prognostic functionalities for the electrical brake system. The paper is organized as follows. 
At first, the test-rig architecture is introduced, while requirements are detailed and discussed. 
Hence the sizing process is presented, along with the definition of the control system. The control 
system is at first designed through the classical linear-dynamics approach and then verified against 
a high-fidelity, non-linear model. Results are finally presented, highlighting the system 
capabilities.  

 
Design Requirements and Test-Rig Architecture 
The main purposes of the proposed iron-bird are to support the testing and certification of a novel 
E-Brake system and to foster the definition of dedicated prognostic logic. The iron bird is 
organized as depicted in in Figure 1 [9]. The mechanical structure can be divided between a fixed 
part and a moving platform integral with the landing gear leg, complete with a wheel and electrical 
brake. The moving platform slides along low friction vertical guides according to the force 
provided by an electro-hydraulic servoactuator controlled through a dedicated servovalve, 
reproducing the portion of the 6 tons aircraft weight acting on one landing gear leg. A calibrated 
by-pass orifice connects the two hydraulic lines serving the actuator to improve the dynamic 
response of the force-controlled system. The test-rig behavior is continuously monitored through 
one linear variable differential transformer (LVDT) sensor measuring the hydraulic actuator travel, 
a load cell measuring the force exchanged between the actuator and the moving platform and a 
differential pressure transducer sensing the pressure drop across the two actuator’s chambers. The 
hydraulic power available for the test-rig operation is that of the facilities in which the rig will be 
installed and is limited at 207 bar. The contact between the landing gear wheel and the runway is 
represented through a runway simulator, a rotating disk, connected to a selected number of inertia 
disks, representative of the aircraft inertia, through a gearbox. A different solution, based on a 
novel hydraulic system, was considered in [10] but discarded due to cost concerns. A gearbox is 
interposed to significantly reduce the mass and the encumbrance of the flywheels, the number of 
which can be increased or decreased to scale-up or scale-down the weight of the simulated aircraft. 
The runway simulator includes the possibility to change the external coating to achieve the 
variation of the friction forces between the wheel and the runway and allow the verification of the 
anti-skid logic behavior in different operating conditions, while a sprinkler can be activated to 
reproduce the wet-runway conditions. An electric motor is used to accelerate the runway simulator 
up to the angular frequency corresponding to the aircraft horizontal speed given the diameter of 
the rotating disk. An emergency brake is installed in-line with the rotating cylinder, allowing to 
bring the full system to a complete stop in less than 60 s. The iron bird operation is managed by 
an engineering test station (ETS), which accepts the inputs from a central control unit (CCU) that 
in turn receives the commands from an operator via a user interface. The input signals are then 
sent together with rig measurements to a dedicated computer running a real-time (RT) 
representation of the aircraft dynamics during landing. Such real-time model is then used, along 
with a model of the runway and a model of the landing gear dynamics, to compute in real-time the 
load that must be applied to the test-article. The ETS also include the rig control logic, which is 
designed to manage both the position of the moving platform and the force exerted by the hydraulic  
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Figure 1. Iron bird schematics. 

 
actuator and include a safety routine check to limit the damages to the rig and to the test article in 
case of a failure of the anti-skid system during the execution of a test.  The structure of the control 
system is depicted in Figure 2, where three main modules can be identified. The Simulation 
Module involves the real-time representation of the landing dynamics, including a real-time 
representation of the aircraft dynamics [9], a runway model, which allows to describe the presence 
of periodical or localized runway irregularities, and the model of the landing gear legs, each 
modelled as a two-degrees of freedom vibrating systems, where the mechanical characteristics of 
the shock-absorber, of the tires and of the mechanical structure are provided by the industrial 
partners of the project. The control system is based on two control loops. The position control loop 
operates as a modulating element. It is based on a simple Proportional regulation which output 
does not act directly on the power lines of the block diagram, instead operating on the dynamic 
saturation defining the minimum and maximum current absorbed by the servovalve. The main, or 
basic, control loop is that used to manage the force exerted by the hydraulic actuator and is similar 
to the control systems of other demanding applications such as iron birds for flight control systems 
[11] and test rigs for actuators under PHM experimentation [12]. The final component of the 
control system is the safety module, designed to react to the eventual failure of the anti-skid.  A 
failure of such system during the test can be potentially dangerous to both the rig and the test 
article, since blocked wheels tends to rapidly fail, hence causing a direct contact under load 
between the wheel structure and the runway simulator. To avoid catastrophic damages the safety 
module commands a positive (extract) force set, quickly lowering the load on the test article and 
achieving the separation between the wheel and the runway simulator. 
 

 
Figure 2. Control system structure. 
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Figure 3. Bode diagrams for the linear dynamics model  

 
Sizing process and Control System Definition 
Given the geometrical and physical properties of each component of the loading system, it is 
possible to perform a preliminary assessment of the control system gains by considering separately 
the behavior of the force control loop and that of the position control loop. Each control loop can 
be then at first described as two linear electro-hydraulic servosystems, neglecting the presence of 
friction, the occurrence of flow-rate saturation of the servovalve and the non-infinite stiffness of 
the mechanical attachments. As shown in Figure 3, the chosen gain values ensure the system 
stability and high bandwidth. The latter however is expected to be significantly affected by the 
flowrate saturation of the servovalve and is expected to be significantly lower for high-amplitude 
force oscillations. 

To check the results of the linear model and provide a more accurate assessment of the test-rig 
performances we resolved to the definition of a high-fidelity dynamic model. The model, 
implemented in Matlab/Simulink, is representative of the whole test-rig system, including both the 
hardware and the software components, and has been already published in [9]. Such model is used 
to test the control system performances both in the frequency and in the time domain and to verify 
the test-rig response to an emergency lift of the moving platform following the occurrence of 
blocked wheel conditions. Since the role of the position control loop is limited to the descent/lift 
phase of the test procedure, the frequency analysis is limited to the force control loop. Results for 
both the closed loop analysis are provided in Figure 4 for two different cases: on the left side, the 
behavior of the system in presence of the 160 l/min defined through the design analysis is depicted,  

 
Figure 4. Closed Loop response of the force control loop with variable force amplitude 

 
while on the right-hand side results with a 38 l/min servovalve with similar flow gain made 
available for the project are presented. It is evident that the use of the 38 l/min servovalve involves 
a significant downgrade from the 160 l/min case and from the linear analysis expectations. The 
impact of the servovalve limitations on the test bench performances can be best explained looking 
at the rig capabilities of reproducing the effects of periodical runway irregularities by comparing 
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the maximum dynamic force applied by the hydraulic servo actuator against the dynamic force 
required to reproduce the effect of such pavement defects within a certain frequency range. The 
test-rig equipped with the 160 l/min servovalve is able to fully replicate the occurrence of 
periodical runway irregularities up to 8 mm deep, while the 38 l/min one is limited to just 2 mm 
oscillations of the runway pavement. The behavior of the safety system was also investigated. As 
shown in Figure 5, the force applied to the landing gear leg is cut to 0 N in 0.5 s, becoming positive 
and hence allowing the separation between the wheel and the runway simulator in less than 0.7 s. 
Please notice that this simulation was performed considering the 38 l/min servovalve, thus the 
slower option. 

 
Figure 5. Test-rig reaction to blocked wheel occurrence 

 
Conclusions  
The E-LISA iron bird has been designed with to fulfill two main purposes. To support the 
certification procedures for a new, fully electrical landing gear system and act as a technological 
demonstrator for prognostic techniques developed for a few key components. As such, the need to 
closely reproduce a wide array of possible operating conditions including the presence of runway 
irregularities was assessed as a necessary feature. These considerations apply directly to the 
definition of the test-rig control system, which involves a real-time simulation model of the aircraft 
to continuously compute the force command used by the test rig to reproduce a realistic loading 
pattern on the landing gear under analysis. The definition of a novel control scheme, based on the 
combination of a simple position control loop with an advanced force control loop was also 
required. To support the design of the iron bird and contribute to the definition of its control laws, 
a high-fidelity model of the system was prepared according to well established equations. 
Simulation results showed that the iron bird control system was stable, although its expected 
performances are currently limited with respect to the original expectations. Such limitations are 
however mainly caused by the servovalve made available for the project and can be overcome 
through the adoption of servovalves with higher flowrate performances. Further work is required 
to properly characterize the test rig, through the proper identification of the dynamic parameters 
of the simulation model, the validation of the proposed control scheme, and the experimental 
verification of the iron bird performance. 
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Abstract. Mixed assumed stress finite elements for elastic-perfectly plastic materials require the 
solution of a Closest Point Projection (CPP) involving all the element stress parameters for the 
integration of the constitutive equation. Here, a dual decomposition strategy is adopted to split the 
CPP at the element level into a series of CPPs at the integration points level and in a nonlinear 
system of equations over the element. The strategy is tested with a four nodes mixed shell finite 
element, named MISS-4, characterised by an equilibrated stress interpolation and a displacement 
field assumed only along its boundaries. The recovered elasto-plastic solution preserves all the 
advantages of MISS-4, namely it is accurate for coarse meshes in recovering the equilibrium path 
and evaluating the limit load showing a quadratic rate of convergence. 
Introduction 
Shell structures are largely used in different areas of engineering and constitute the primary 
elements of many mechanical, aerospace, marine, and civil constructions. Their nonlinear ma- 
terial behaviour plays a main role, for instance, in masonry and reinforced concrete structures [1] 
in presence of seismic actions. In such cases, and so in many others, an effective evaluation of the 
safety factor against plastic collapse [2] is of paramount importance to ensure reliable design 
choices and wise retrofitting strategies. The most frequently employed numerical approach for 
modelling shell structures is based on the Finite Element (FE) analysis. Beside more traditional 
displacement-based FEs, mixed formulations are nowadays widely employed thanks to their 
effectiveness in eliminating locking effects and improving accuracy. In mixed formulations, in 
fact, stresses or strains are assumed as independent variables together with displacements, and this 
gives the chance to design optimised FE characterised by high performance in both linear and 
nonlinear problems [3]. This, generally speaking, means low error in recovering the solution for 
coarse mesh grids, elevated rate of convergence and equivalent convergence properties for all the 
unknown fields. Recently, a wide number of mixed FE has been proposed [4]. Among these, a 
bright choice is represented by the so-called hybrid FEs where the assumed stress interpolation a-
priori satisfies the equilibrium equations. 

The family of FEs denoted with the acronym MISS (Mixed Isostatic Self Equilibrated Stresses) 
represents an interesting option among the state-of-art mixed hybrid FE [5, 6]. In particular, the 
element called MISS-4 is a quadrilateral four noded flat shell FE with 24 degrees of freedom 
(DOFs) [5]. It is developed within the Hellinger-Reissner variational formulation and is based on 
equilibrated and isostatic assumed stress fields. MISS-4 has demonstrated good performance in 
elasticity, being characterised by accurate solutions for coarse meshes, low sensitivity to mesh 
distortion, quadratic rate of converge for both displacement and stress fields. 

In addition, an enhanced variant, called MISS-4c, improves the performance of MISS-4 [7] by 
using assumed stress fields that a-priori satisfy also compatibility equations for symmetric 
composite materials. 
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Despite being widespread in linear and geometrically nonlinear problems, mixed FEs based on 
assumed stresses are not a prior choice in incremental elastoplastic analysis, even though their 
aforementioned advantages hold. The reason for this resides in the fact that the weak imposition 
of the constitutive laws should be performed at the element level and the consequent return 
mapping process results into a Closest Point Projection (CPP) of the elastic predictor over the 
multi-surfaces admissibility domain of the element. This convex optimisation problem requires 
appropriate mathematical programming methods to be solved. 

In this work we propose an alternative strategy for solving the CPP problem based on a dual 
decomposition method which splits the CPP over the element into two sub-problems. The first one 
is a series of standard CPP problems over the integration points (IP) which provide the IP stresses, 
while the second is a nonlinear system of equations over the element that recovers the assumed 
stress interpolation. The advantage of this procedure resides in the fact that the CPP problem at 
the IP level can be solved using the same strain-driven integration return map- ping schemes 
adopted by displacement-based formulations. The additional system of nonlinear equations can be 
readily solved by the Newton method. Within this strategy, it is possible to efficiently extend the 
field of application of MISS-4 FE to elasto-plastic problems, obtaining good accuracy even at 
coarse meshes thanks to the equilibrated assumed stress fields. In is worth noting that the proposed 
decomposed formulation furnishes the same discrete equations as in other works [8, 9, 10]. Further 
details on the proposed approach can be found in [11].  
Elasto-plastic FE formulation 
The FE used in this work is named MISS-4. We refer elsewhere [5, 7] for all the details on its 
formulation in the linear-elastic range. For the linear elastic problem, using a Hellinger-Reissner 
approach and the assumed displacement and generalised stresses interpolation one obtains 

� 𝒕𝒕𝑇𝑇𝝆𝝆𝑑𝑑Ω𝑒𝑒
𝐵𝐵𝑒𝑒

−
1
2

 � 𝒕𝒕𝑇𝑇𝑭𝑭𝒕𝒕𝑑𝑑Ω𝑒𝑒 − 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒
𝐵𝐵𝑒𝑒

 = 𝜷𝜷𝑒𝑒𝑇𝑇𝑸𝑸𝑒𝑒𝒅𝒅𝑒𝑒 −
1
2
𝜷𝜷𝑒𝑒𝑇𝑇𝑯𝑯𝑒𝑒𝜷𝜷𝑒𝑒 − 𝒅𝒅𝑒𝑒𝑇𝑇𝒑𝒑𝑒𝑒                                  (1)   

where 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 is the work of the element external loads pe, 𝑯𝑯𝑒𝑒 and 𝑸𝑸𝑒𝑒 are the element compliance 
and the compatibility/equilibrium matrices, 𝒕𝒕 and 𝝆𝝆 are the generalised stresses and strains, re- 
spectively, 𝜷𝜷𝑒𝑒 and 𝒅𝒅𝑒𝑒 are the stress and displacement parameters, respectively, and 𝑭𝑭 is the inverse 
of the first order shear deformation theory elasticity matrix. The key problem of an elasto-plastic 
analysis is represented by the integration of the constitutive equations. A common approach is 
based on the use of a Backward-Euler integration scheme of the incremental constitutive equations, 
where the stresses become an implicit function of the assigned strain (displacement) increment. 
For mixed FE, the weak form of the finite step constitutive relations over the element becomes 

�
𝑯𝑯𝑒𝑒�𝜷𝜷𝑒𝑒 − 𝜷𝜷𝑒𝑒

(𝑛𝑛)�+ �𝜇𝜇𝑔𝑔
𝜕𝜕𝑓𝑓𝑔𝑔
𝜕𝜕𝜷𝜷𝑒𝑒

= 𝑸𝑸𝑒𝑒Δ𝒅𝒅𝑒𝑒
𝑔𝑔

𝜇𝜇𝑔𝑔 ≥ 0,   𝑓𝑓𝑔𝑔 ≤ 0,   𝜇𝜇𝑔𝑔𝑓𝑓𝑔𝑔 = 0
                                                                                       (2) 

where we assume to test the plastic admissibility conditions in a discrete number of IP identified 
by the subscript g, 𝚫𝚫 = (⋅)(𝒏𝒏+𝟏𝟏) −  (⋅)(𝒏𝒏)  represents the difference between quantities at step 𝒏𝒏 +
𝟏𝟏 and 𝒏𝒏, 𝒇𝒇 is the yield function, and 𝝁𝝁𝒈𝒈 are the positive plastic multipliers. The superscript (+𝟏𝟏) 
is omitted to simplify the notation. 
It is easy to show that Eq. (2) are the first order conditions of the following convex optimisation 
problem 

min
𝜷𝜷𝑒𝑒

                
1
2

(𝜷𝜷𝑒𝑒 − 𝜷𝜷𝑒𝑒∗)𝑇𝑇𝑯𝑯𝑒𝑒(𝜷𝜷𝑒𝑒 − 𝜷𝜷𝑒𝑒∗)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡        𝑓𝑓𝑔𝑔 = 𝑓𝑓�𝑵𝑵𝑒𝑒𝑔𝑔𝜷𝜷𝑒𝑒� ≤ 0,   ∀𝑔𝑔
                                                                                          (3) 
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which represents a CPP of the predictor 𝜷𝜷𝑒𝑒∗ = 𝜷𝜷𝑒𝑒
(𝑛𝑛) + 𝑯𝑯𝑒𝑒

−1𝑸𝑸𝑒𝑒Δ𝒅𝒅𝑒𝑒 over the admissible domain of 
the element which, in this case, is a multi-surface yield domain. The solution of this problem 
is unique when the quantities on the initial step are known and Δ𝒅𝒅𝑒𝑒 assigned. 

Equations (2) furnish the implicit constitutive step equation we are searching for as 𝛽𝛽𝑒𝑒 =
𝜷𝜷𝑒𝑒[𝜷𝜷𝑒𝑒

(𝑛𝑛),Δ𝒅𝒅𝑒𝑒]. The internal force vector of the element, for a given Δ𝒅𝒅𝑒𝑒  and starting from a known 
state 𝜷𝜷𝑒𝑒

(𝑛𝑛), is expressed as 
𝒔𝒔𝑒𝑒[𝒅𝒅𝑒𝑒] = 𝑸𝑸𝑇𝑇𝜷𝜷𝑒𝑒�𝜷𝜷𝑒𝑒

(𝑛𝑛),Δ𝒅𝒅𝑒𝑒�                                                                                                                   (4) 
while the tangent stiffness matrix becomes 

𝑲𝑲𝑒𝑒𝑒𝑒 =
𝜕𝜕𝒔𝒔𝑒𝑒[𝒅𝒅𝑒𝑒]
𝜕𝜕𝒅𝒅𝑒𝑒

= 𝑸𝑸𝑒𝑒
𝑇𝑇𝑯𝑯𝑒𝑒𝑒𝑒

−1𝑸𝑸𝑒𝑒 , 𝑯𝑯𝑒𝑒𝑒𝑒
−1 =

𝜕𝜕𝜷𝜷𝑒𝑒
𝜕𝜕𝜼𝜼𝑒𝑒

                                                                                (5) 

And 𝜼𝜼𝑒𝑒 = 𝑸𝑸𝑒𝑒𝒅𝒅𝑒𝑒 is the generalized strain. 
The incremental elastoplastic analysis  
The equilibrium path of the structures is usually evaluated by means of a continuation method 
[11]. Starting from a known equilibrium point 𝑧𝑧0 = 𝑧𝑧(𝑛𝑛), where 𝑧𝑧 = [𝑑𝑑, 𝜆𝜆], a new state 𝑧𝑧𝑘𝑘+1 is 
obtained by solving, through a Newton iteration, the following system representing the equilibrium 
equations plus the arc-length constraint for an assigned value of Δ𝜉𝜉. 

�
𝒓𝒓[𝒅𝒅, 𝜆𝜆] = 𝒔𝒔[𝒅𝒅] − 𝜆𝜆𝒑𝒑 = 𝟎𝟎

𝑟𝑟𝜆𝜆[𝒅𝒅, 𝜆𝜆] = 𝒏𝒏𝑧𝑧𝑇𝑇𝑴𝑴𝑧𝑧(𝒛𝒛 − 𝒛𝒛0) − Δ𝜉𝜉 = 0     𝑤𝑤𝑤𝑤𝑠𝑠ℎ   Δ𝜉𝜉 = 𝒏𝒏𝑧𝑧𝑇𝑇𝑴𝑴𝑧𝑧(𝒛𝒛1 − 𝒛𝒛0),                                       (6) 

where 𝒛𝒛1 is the first predictor. The most used and effective arc-length equation is a moving 
hyperplane with 𝑴𝑴𝑧𝑧 = 𝑑𝑑𝑤𝑤𝑑𝑑𝑔𝑔(𝑴𝑴, 𝜇𝜇) a suitable metric matrix and 𝒏𝒏𝑧𝑧 = [𝒏𝒏,𝑛𝑛_𝜆𝜆] its normal vector. 
Letting 

𝑲𝑲 =
𝜕𝜕𝒔𝒔[𝒅𝒅]
𝜕𝜕𝒅𝒅

                                                                                                                                                (7) 
evaluated as assemblage of element matrices 𝑲𝑲𝑒𝑒𝑒𝑒 in Eq. (5), Newton iterations are applied to 

the extended nonlinear system of equations (6), giving a sequence of estimates 
Δ𝒛𝒛𝑗𝑗+1 = Δ𝒛𝒛𝑗𝑗 + 𝒛𝒛�̇�𝚥  𝑑𝑑𝑛𝑛𝑑𝑑  𝒛𝒛𝑗𝑗+1 = 𝒛𝒛0 + Δ𝒛𝒛𝑗𝑗   

Where the correction 𝒛𝒛�̇�𝚥 is evaluated as 

�
𝑲𝑲𝑗𝑗�̇�𝒅 −  �̇�𝜆 𝒑𝒑 − 𝒓𝒓𝑗𝑗  

𝒏𝒏𝑇𝑇𝑴𝑴�̇�𝒅 + 𝜇𝜇𝑛𝑛𝜆𝜆�̇�𝜆 = −𝑟𝑟𝜆𝜆𝑗𝑗 
 

At each iteration, the internal forces vector 𝑠𝑠𝑗𝑗, and then the residual 𝑟𝑟𝑗𝑗, is evaluated by assembling 
element quantities 𝑠𝑠𝑒𝑒

𝑗𝑗 = 𝑄𝑄𝑇𝑇𝛽𝛽𝑒𝑒[𝛽𝛽(𝑛𝑛),Δ𝑑𝑑𝑒𝑒
𝑗𝑗] with the stresses obtained using the CPP problem in Eq. 

(3). 
The solution of the Closest Point Projection scheme over the element  
The mathematical programming problem in Eq.(3) represents the main difference between mixed 
and displacement-based FE formulations. 

Herein, the CPP problem is alternatively solved by means of a dual decomposition technique. 
The dual decomposition produces a series of CPP over the IPs, as in usual displacement 
formulations, therefore simplifying the solution which can be performed using standard numerical 
tools based on the application of the Newton method. 
The dual decomposition of the CPP problem over the element  
Two kind of dual decomposition approaches are investigated, depending on the way the plastic 
admissibility is checked. In a first case, we assume to express the plastic-admissibility condition 
in terms of the generalised stresses 𝒕𝒕 
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𝑓𝑓𝑔𝑔�𝒕𝒕𝑔𝑔� = 𝑓𝑓�𝒕𝒕𝑔𝑔,𝒙𝒙𝑔𝑔� ≤ 0,   ∀𝑔𝑔                                                                                                                 (8) 
and to control it in a finite number of IPs having middle-surface coordinate 𝑥𝑥𝑔𝑔 and generalised 
stresses 𝒕𝒕𝑔𝑔 = 𝑵𝑵𝑒𝑒�𝒙𝒙𝑔𝑔�𝜷𝜷𝑒𝑒. The decomposition process is performed at the level of these midplane 
shell IPs. 

The second approach further decomposes the problem at level of material point. In this case, 
the plastic admissibility is expresses by standard yield functions in terms of the Cauchy 3D stresses 
𝝈𝝈 evaluated in a discrete number of control points distributed also in the thickness direction 
(𝒙𝒙𝑔𝑔, 𝑧𝑧𝑔𝑔𝑔𝑔) 
𝑓𝑓𝑔𝑔𝑔𝑔�𝝈𝝈𝑔𝑔𝑔𝑔� = 𝑓𝑓�𝝈𝝈𝑔𝑔𝑔𝑔,𝒙𝒙𝑔𝑔, 𝑧𝑧𝑔𝑔� ≤ 0   ∀𝑔𝑔,𝑚𝑚                                                                                           (9) 

Where 𝝈𝝈𝑔𝑔𝑔𝑔 = 𝑬𝑬[𝒛𝒛𝑔𝑔]𝑇𝑇𝑵𝑵𝑒𝑒�𝒙𝒙𝑔𝑔�𝜷𝜷𝑒𝑒 is the stress at the (𝑔𝑔,𝑚𝑚)𝐼𝐼𝐼𝐼. 

A dual decomposition scheme for the CPP problem over the element  
Assuming a numerical integration scheme to evaluate the complementary energy terms so that 
𝑠𝑠𝑔𝑔 = 𝑁𝑁𝑒𝑒𝑔𝑔𝛽𝛽𝑒𝑒 →�𝑠𝑠𝑔𝑔𝑇𝑇𝐹𝐹𝑠𝑠𝑔𝑔𝑤𝑤𝑔𝑔 = 𝛽𝛽𝑒𝑒𝑇𝑇𝐻𝐻𝑒𝑒𝛽𝛽𝑒𝑒                                                                                           (10)

𝑔𝑔

 

The minimization problem in Eq.(3) becomes 

min
𝒕𝒕𝑒𝑒

      
1
2
��𝒕𝒕𝑔𝑔 − 𝒕𝒕𝑔𝑔

(𝑛𝑛)�
𝑇𝑇
𝑭𝑭 �𝒕𝒕𝑔𝑔 − 𝒕𝒕𝑔𝑔

(𝑛𝑛)�𝑤𝑤𝑔𝑔 − 𝜷𝜷𝑒𝑒𝑇𝑇𝑸𝑸𝑒𝑒Δ𝒅𝒅𝑒𝑒
𝑔𝑔

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡  𝑓𝑓𝑔𝑔�𝑠𝑠𝑔𝑔� ≤ 0,   ∀𝑔𝑔 = 1, … ,𝑁𝑁𝑔𝑔, 𝑠𝑠𝑔𝑔 = 𝑁𝑁𝑒𝑒𝑔𝑔𝛽𝛽𝑒𝑒                             
                                   (11) 

 
where the objective function of problem in Eq.(3), since a constant with βe term is inessential, is 
rewritten as 

1
2
�𝜷𝜷𝑒𝑒 − 𝜷𝜷𝑒𝑒

(𝑛𝑛)�
𝑇𝑇
𝑯𝑯𝑒𝑒�𝜷𝜷𝑒𝑒 − 𝜷𝜷𝑒𝑒

(𝑛𝑛)� − 𝜷𝜷𝑒𝑒𝑇𝑇𝑸𝑸𝑒𝑒Δ𝒅𝒅𝑒𝑒                                                                                 (12) 
The Lagrangian associated to problem in Eq.(11), under the assumption 𝜇𝜇𝑔𝑔 ≥ 0, is 

𝐿𝐿 =
1
2
��𝒕𝒕𝑔𝑔 − 𝒕𝒕𝑔𝑔

(𝑛𝑛)�
𝑇𝑇
𝑭𝑭 �𝒕𝒕𝑔𝑔 − 𝒕𝒕𝑔𝑔

(𝑛𝑛)�𝑤𝑤𝑔𝑔 − 𝜷𝜷𝑒𝑒𝑇𝑇𝑸𝑸𝑒𝑒Δ𝒅𝒅𝑒𝑒
𝑔𝑔

+ �𝜇𝜇𝑔𝑔𝑓𝑓𝑔𝑔�𝒕𝒕𝑔𝑔�𝑤𝑤𝑔𝑔 −�Δ𝝆𝝆𝑔𝑔𝑇𝑇�𝒕𝒕𝑔𝑔 − 𝑵𝑵𝑒𝑒𝑔𝑔𝜷𝜷𝑒𝑒�𝑤𝑤𝑔𝑔         
𝑔𝑔𝑔𝑔

 

Having relaxed the element interpolation equations, the first order equations can be subdivided 
into those involving only IPs variables and those regarding elemental quantities. The firsts are 

𝜕𝜕𝜕𝜕
𝜕𝜕𝒕𝒕𝑔𝑔

→   �
𝑭𝑭 �𝒕𝒕𝑔𝑔 − 𝒕𝒕𝑔𝑔

(𝑛𝑛)�+ 𝜇𝜇𝑔𝑔
𝜕𝜕𝑓𝑓𝑔𝑔�𝒕𝒕𝑔𝑔�
𝜕𝜕𝒕𝒕𝑔𝑔

− Δ𝝆𝝆𝑔𝑔 = 𝟎𝟎 

𝜇𝜇𝑔𝑔𝑓𝑓𝑔𝑔�𝒕𝒕𝑔𝑔� = 0   𝜇𝜇𝑔𝑔 ≥ 0  𝑓𝑓𝑔𝑔�𝒕𝒕𝑔𝑔� ≤ 0
  ∀ 𝑔𝑔,                                                                (13)    

while the equations regarding elemental variables are 

𝒓𝒓𝑔𝑔 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝝆𝝆𝑔𝑔

= 𝒕𝒕𝑔𝑔 − 𝑵𝑵𝑒𝑒𝑔𝑔𝜷𝜷𝑒𝑒 = 𝟎𝟎  ∀𝑔𝑔

𝒓𝒓𝑒𝑒 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝜷𝜷𝑒𝑒

= 𝑸𝑸𝑒𝑒Δ𝒅𝒅𝑒𝑒 −  �𝑵𝑵𝑒𝑒𝑔𝑔
𝑇𝑇 Δ𝝆𝝆𝑔𝑔𝑤𝑤𝑔𝑔 = 𝟎𝟎 

𝑔𝑔

                                                                                   (14) 

A sequence of IP state determination and element state determination problems allows the 
evaluation of a plastically-admissible 𝜷𝜷𝒆𝒆 for an assigned 𝚫𝚫𝒅𝒅𝒆𝒆, as explained in [11]. 
Numerical results  
The proposed FE solution for the elasto-plastic analysis of shell structures is herein tested in a 
numerical example. The results obtained with MISS-4 are compared with those provided by the 
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commercial software Abaqus using S4 and S8r FEs. The plastic admissibility is tested using a grid 
of 2 × 2 Gauss Points GP grid over the FE mid-plane and m = 8 GP along the thickness. In all tests 
the material is elastic perfectly plastic and a von Mises yield criterion is assumed. The test regards 
a the square plate of length L. The thickness is h = L/100. Due to the symmetry of the problem, 
only a quarter of the plate is analysed. Two boundary conditions are studied, namely simply 
supported and clamped where in both cases the normal rotation to the side is constrained. A 
uniformly distributed out-of-plane load is applied, having amplitude 𝑝𝑝 = 𝜆𝜆𝑀𝑀0/(2𝐿𝐿)2, with 𝑀𝑀0 =
𝜎𝜎0𝑠𝑠2/4  and 𝜎𝜎0 is Mises stress limit. 

 
Table 1: Square plate: limit load for different models and mesh densities, clamped condition. 

 

FE m  mesh density 

    2×2 4×4 8×8 16×1
 

32×3
 MISS-4 8 44.164

 
46.146

 
46.624

 
46.215

 
45.643

 MISS-4 g

 

43.664
 

45.629
 

46.104
 

45.705
 

45.143
 Abaqus 

S4 
8 61.975

6 
54.797
1 

49.840
3 

47.267
8 

45.965
3  

The limit loads for different FE and meshes are shown in Tables 1 for the clamped case. It 
shows that MISS-4 is accurate also for the coarsest mesh. The good convergence properties of 
MISS-4 are highlighted in Fig. 1 which shows that for both the boundary conditions it gives lower 
error than Abaqus S4. 

 
Figure 1: Square plate: convergence of the limit load. 

 
References 
[1] Nicola A. Nodargi. An overview of mixed finite elements for the analysis of inelastic bidimen- 
sional structures. Arch Computat Methods. Eng., 26:1117–1151, 2019. 
https://doi.org/10.1007/s11831-018-9293-0 
[2] J. Bleyer and P. de Buhan. On the performance of non-conforming finite elements for the upper 
bound limit analysis of plates. International Journal for Numerical Methods in Engineering, 
94(3):308–330, 2013. https://doi.org/10.1002/nme.4460 
[3] G. Castellazzi and P. Krysl. A nine-node displacement-based finite element for Reissner-
Mindlin plates based on an improved formulation of the NIPE approach. Finite Elements in 
Analysis and Design, 58:31–43, 2012. https://doi.org/10.1016/j.finel.2012.04.004 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 227-232  https://doi.org/10.21741/9781644902431-37 

 

 
232 

[4] L. Leonetti and Canh V. Le. Plastic collapse analysis of Mindlin–Reissner plates using a 
composite mixed finite element. International Journal for Numerical Methods in Engineering, 
105(12):915– 935, 2016. https://doi.org/10.1002/nme.4997 
[5] A. Madeo, G. Zagari, R. Casciaro, and S. De Miranda. A mixed 4-node 3d plate element based 
on self-equilibrated isostatic stresses. International Journal of Structural Stability and Dynamics, 
15(4), 2015. https://doi.org/10.1142/S0219455414500667 
[6] Antonio Madeo, Francesco S. Liguori, Giovanni Zucco, and Stefania Fiore. An efficient 
isostatic mixed shell element for coarse mesh solution. International Journal for Numerical 
Methods in Engineering, 122:82–12, 2021. https://doi.org/10.1002/nme.6526 
[7] Francesco S. Liguori and Antonio Madeo. A corotational mixed flat shell finite element for the 
efficient geometrically nonlinear analysis of laminated composite structures. International Journal 
for Numerical Methods in Engineering, 122(17):4575–4608, 2021. 
https://doi.org/10.1002/nme.6714 
[8] R. L. Taylor, F. C. Filippou, A. Saritas, and F. Auricchio. A mixed finite element method for 
beam and frame problems. Computational Mechanics, 31(1):192–203, May 2003. 
https://doi.org/10.1007/s00466-003-0410-y 
[9] Nicola A. Nodargi and Paolo Bisegna. A novel high-performance mixed membrane finite 
element for the analysis of inelastic structures. Computers and Structures, 182:337–353, 2017. 
https://doi.org/10.1016/j.compstruc.2016.10.002 
[10] D. Magisano and G. Garcea. Fiber-based shakedown analysis of three-dimensional frames 
under multiple load combinations: Mixed finite elements and incremental-iterative solution. 
International Journal for Numerical Methods in Engineering, 121(17):3743–3767, 2020. 
https://doi.org/10.1002/nme.6380 
[11] Francesco S. Liguori, Antonio Madeo, and Giovanni Garcea. A dual decomposition of the 
closest point projection in incremental elasto-plasticity using a mixed shell finite element. 
International Journal for Numerical Methods in Engineering; 123:6243–6266, 2022. 
https://doi.org/10.1002/nme.7112 
 
 
 
 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 233-238  https://doi.org/10.21741/9781644902431-38 

 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

233 

Geometrically nonlinear thermoelastic analysis of shells: modelling, 
incremental-iterative solution and reduction technique  
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Abstract. This work presents an accurate and efficient numerical tool for geometrically nonlinear 
thermoelastic analyses of thin-walled structures. The structure is discretized by an isogeometric 
solid-shell model avoiding the parameterization of finite rotations. An efficient modeling of 
thermal strains, temperature-dependent materials and general temperature profiles is proposed. 
Then, a generalized path-following method is developed for solving the discrete equations with 
the temperature amplifier as additional unknown. Finally, a reduction technique based on Koiter 
theory is derived for a quick estimate of the nonlinear thermal buckling. 
Introduction 
Civil, aeronautical and mechanical structures can be affected by high temperature rise [1]. The 
consequent high thermally-induced stresses and degradation of the thermoelastic properties can 
lead to buckling. Both aspects can significantly influence the buckling point and the postbuckling 
response. The nonlinear systems of equations defining the structural response can be solved step-
by-step by using arc-length continuation method. In geometrically nonlinear analysis for 
mechanical loads, it has been shown that the use of a mixed formulation with independent stress 
variables makes the solution method able to withstand much larger step sizes with fewer iterations 
compared to purely displacement-based formulations [2]. It is also worth mentioning reduced order 
models based on the FEM implementation of Koiter's theory of elastic stability [3]. This work 
presents an accurate and efficient numerical tool for geometrically nonlinear thermoelastic 
analyses of thin-walled structures. The starting point is an accurate isogeometric solid-shell 
discretization without rotational DOFs. Focus is given to an efficient modelling of thermal strains, 
temperature-dependent materials and general temperature profiles based on a numerical pre-
integration through the shell thickness in a pre-processing stage. Then, a generalized path-
following method is developed for solving the discrete equations with the temperature amplifier 
as additional unknown, in order to trace the temperature-displacement nonlinear curve of the 
structure also in case of limit points and unstable paths. A consistent definition of the tangent 
operators and a mixed integration point strategy give a robust analysis with a reduced iterative 
burden, even in case of complex nonlinear behaviors where well-known simulation codes are 
outperformed or even fail. Finally, a reduction technique is derived for a quick estimate of the 
nonlinear thermal buckling point of structures with a high number of discrete degrees of freedom. 
It is a generalization of the so-called Koiter method to thermoelasticity. Numerical application are 
given to validate the proposal. 
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Solid-shell model with thermal strains and temperature-dependent material proprieties 
This section introduces the main equations of the solid-shell model [4,5] extended to thermoelastic 
nonlinear analyses. Assuming a linear through-the-thickness interpolation, the position vector 𝑿𝑿 
and the displacement field 𝒅𝒅 are expressed as 

𝑿𝑿 =  𝑿𝑿0 [ξ, η] + 2h
ζ
𝑿𝑿n[ξ, η],       𝒅𝒅 =  𝒅𝒅𝟎𝟎 [ξ, η] + 2h

ζ
𝒅𝒅𝒏𝒏 [ξ, η] ,   (1) 

with ℎ the shell thickness. The Green-Lagrange strain components are collected in vector 𝑬𝑬 =
  [𝐸𝐸11,𝐸𝐸22, 2𝐸𝐸12,𝐸𝐸33, 2𝐸𝐸23, 2𝐸𝐸13]𝑇𝑇 and linearized with respect to 𝜁𝜁 as 

𝑬𝑬 ≈  �
𝒆𝒆[ξ, η] + ζ𝝌𝝌 [ξ, η]
𝑬𝑬𝟑𝟑𝟑𝟑[ξ, η, 0] 
𝜸𝜸 [ξ, η]

�   (2) 

Generalised strains (3) presents the same format than in the Mindlin-Reissner model plus the 
thickness strain E33  but does not requires a direct parameterisation of 3D finite rotations. 
Constitutive law, thermal strains and strain energy. We assume only in-plane thermal strains: 

𝑬𝑬𝑻𝑻 = �
𝜶𝜶𝒑𝒑
0
𝟎𝟎
� 𝑻𝑻   with    𝜶𝜶𝒑𝒑 = �

α1
α2
0
�  (3) 

where 𝛼𝛼1 and 𝛼𝛼2 are the thermal expansion coefficients. The strain energy of the solid-shell 
model can be written in compact notation as 

𝜱𝜱[𝒅𝒅] ≡ 1
2

 ∫  ∫ (𝐄𝐄 − 𝐄𝐄T[T])T 𝐂𝐂[ξ, T](𝐄𝐄 − 𝐄𝐄T[ξ, T])
h
2

−h2
Ω  dζ dΩ = ∫ �𝟏𝟏

𝟐𝟐
𝜺𝜺𝑻𝑻 𝓒𝓒[T]𝜺𝜺 − 𝜺𝜺𝑻𝑻𝝈𝝈𝑻𝑻� dΩ𝜴𝜴 +

cost (4) 

Let us consider a distribution of temperature increment over the structure T[𝜉𝜉, 𝜂𝜂, 𝜁𝜁] with respect 
to the ambient value. We can assume  

T[ξ, η, ζ] = λ T� [ξ, η, ζ]    

where T� [𝜉𝜉, 𝜂𝜂, 𝜁𝜁] is the given temperature distribution and λ an amplifier factor. In case of 
temperature-dependent material properties, the elastic moduli and the thermal expansion 
coefficients depend on T. Their laws of variability can be assumed on the basis of experimental 
results or using formulas available in standards.  
From a computational point of view, it is more handy to express 𝐒𝐒T  =  𝐂𝐂[T]𝐄𝐄T[T] by means of a 
polynomial interpolation in T at some temperatures Tk, which can be rewritten as 

𝐂𝐂[λ] = ∑  λk 𝐂𝐂�k T�kn
k=0 ,          𝐒𝐒𝐓𝐓[λ] = ∑  λk 𝐒𝐒�Tk T�kn

k=0    (5) 

This choice makes it possible to express the generalised quantities of the solid-shell model 
𝓒𝓒[T] and 𝝈𝝈T as a function of 𝜆𝜆 by a numerical through-the-thickness integration carried out once 
and for all in a pre-processing stage, regardless of the complexity of T� [𝜉𝜉, 𝜂𝜂, 𝜁𝜁]. 
The isogeometric solid-shell discretisation 
The continuum solid-shell model is approximated over the shell mid-surface by using NURBS 
functions, following the approach proposed in [4,5] to which we refer for further details.  
Geometry and displacement fields are described as 

𝑿𝑿[𝜉𝜉, 𝜂𝜂, 𝜁𝜁] =  𝑵𝑵𝒅𝒅[𝜉𝜉, 𝜂𝜂, 𝜁𝜁]𝑿𝑿𝒆𝒆 ,      𝒅𝒅[ξ, η, ζ] =  𝑵𝑵𝒅𝒅[ξ, η, ζ]𝒅𝒅𝒆𝒆.   (6) 

where 𝑿𝑿𝑒𝑒 = [𝑿𝑿0𝑒𝑒 ,𝑿𝑿𝑛𝑛𝑒𝑒] and 𝒅𝒅𝒆𝒆 collects the control points. The matrix 𝑵𝑵𝒅𝒅[𝜉𝜉, 𝜂𝜂, 𝜁𝜁] collects the 
interpolation functions 
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𝑵𝑵𝒅𝒅[ξ, η, ζ] =  �𝑵𝑵[ξ, η] 2 ζ
h
𝑵𝑵[ξ, η]�   (7) 

where 𝑵𝑵[𝜉𝜉, 𝜂𝜂] are 2D NURBS functions of the middle surface coordinates only. By exploiting 
Eq.(3) we obtain the generalised strain-displacement relationship. An efficient patch-wise 
integration schemes [4,5] to avoid membrane and shear locking is adopted for numerical 
integration. In this work, we adopt cubic 𝐶𝐶2 NURBS with the integration scheme named 𝑆𝑆14 . 
The MIP arc-length continuation method for thermoelastic nonlinear analyses 
We consider a slender hyperelastic structure subject to a conservative load 𝑝𝑝 and to a temperature 
rise defined as T[𝜉𝜉, 𝜂𝜂, 𝜁𝜁] = λ T� [𝜉𝜉, 𝜂𝜂, 𝜁𝜁] . The equilibrium condition is given by the virtual work 
equation in discrete form 

𝒓𝒓[𝒖𝒖, λ] ≡  𝒔𝒔[𝒖𝒖, λ] − 𝒑𝒑 = 𝟎𝟎   (8) 

where 𝒓𝒓:ℝ𝑛𝑛+1 →  ℝ𝑛𝑛 is a nonlinear vectorial function of the vector [𝒖𝒖,𝜆𝜆] ∈ ℝ𝑛𝑛+1, collecting 
the discrete DOFs 𝒖𝒖 ∈ ℝ𝑛𝑛and the multiplier 𝜆𝜆 ∈  ℝ. Eq.(8) represents a system of n-equations and 
n+1 unknowns and defines the equilibrium path as a curve in the [𝒖𝒖, 𝜆𝜆] space. 

Letting 𝒙𝒙 =  { 𝒖𝒖,𝜆𝜆}, a new equilibrium point 𝒙𝒙k+1 is obtained starting from the previous known 
point 𝒙𝒙0 = 𝒙𝒙(k) by solving iteratively the equilibrium equations plus the arc-length constraint for 
an assigned value of Δ𝜉𝜉 

�
𝒓𝒓[𝒖𝒖, λ] ≡  𝒔𝒔[𝒖𝒖, λ] − 𝒑𝒑 = 𝟎𝟎

𝒓𝒓𝝀𝝀[𝒖𝒖, λ] ≡  𝒏𝒏𝒙𝒙𝑻𝑻𝑴𝑴𝒙𝒙(𝒙𝒙 − 𝒙𝒙𝟎𝟎) − Δξ = 𝟎𝟎           Δξ = 𝒏𝒏𝒙𝒙𝑻𝑻𝑴𝑴(𝒙𝒙𝟏𝟏 − 𝒙𝒙𝟎𝟎)    (9) 

with 𝒙𝒙1 the first predictor. The most simple arc-length equation is an adaptive hyperplane with 
𝑴𝑴𝒙𝒙 a suitable metric matrix and 𝒏𝒏𝑥𝑥 its normal vector. Introducing the following tangent operators 

𝑲𝑲 ≡  𝝏𝝏𝒔𝒔[𝒖𝒖,λ]
𝝏𝝏𝒖𝒖

         𝒔𝒔� ≡  𝝏𝝏𝒔𝒔[𝒖𝒖,λ] 
𝝏𝝏λ

 (10) 

Newton iterations can be then used to solve the extended nonlinear system of equations (9).  
As shown in [2], the Newton method convergence depends on how rapidly the iteration matrix 

changes with respect to the configuration variables 𝒖𝒖. The MIP Newton method  using 
displacements and independent stress DOFs, makes the Newton method able to withstand very 
large steps with a very small iterative effort.  

The strain energy is rewritten in a Hellinger-Reissner mixed format using a MIP strategy. The 
stress field is not interpolated, but the stresses at each integration point 𝝈𝝈𝑔𝑔 are taken directly as 
independent variables. In particular, by relaxing the constitutive law at each integration point one 
obtains the pseudo Hellinger-Reissner energy 

𝜱𝜱𝒆𝒆[𝒖𝒖𝒆𝒆, λ] = �∑ 𝝈𝝈𝒈𝒈𝑻𝑻�𝜺𝜺𝒈𝒈 − 𝓒𝓒𝒈𝒈−𝟏𝟏[λ]𝝈𝝈𝑻𝑻𝒈𝒈�𝒈𝒈 − 𝟏𝟏
𝟐𝟐
𝝈𝝈𝒈𝒈𝑻𝑻𝓒𝓒𝒈𝒈−𝟏𝟏[𝜆𝜆]𝝈𝝈𝒈𝒈�wg (11) 

Due to the local nature of the stress variables, decoupled at each IP, they can be condensed out 
when solving the linear systems and are then not involved in the global operations.  
A Koiter-inspired reduction technique 
A reduced order model (ROM) is proposed for an efficient nonlinear thermoelastic analysis of 
structure prone to buckling using a generalisation of the so-called Koiter method [3,5] to include 
thermal effects. The difficulty of this extension is due to the nonlinear dependence of the strain 
energy from the parameter 𝜆𝜆 that regulates the temperature rise. In particular, an accurate and 
coherent ROM requires the solution of an accurate 2-point linearized buckling problem in mixed 
(stress-displacement) form.  

The space of admissible configuration, following a Galerkin approach, is limited to the 
following reduced model 
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𝒖𝒖𝒅𝒅 =  𝒖𝒖𝒇𝒇[λ] + 𝒗𝒗[𝒕𝒕] +  𝟏𝟏
𝟐𝟐
𝒘𝒘[λ, 𝒕𝒕]   (12) 

where 𝒖𝒖𝑓𝑓[𝜆𝜆] = λ 𝒖𝒖�  is the solution along the initial path tangent, 𝒗𝒗[𝒕𝒕] = ∑ 𝑡𝑡𝑖𝑖�̇�𝒗𝑖𝑖𝒊𝒊  is a combination 
of buckling modes corresponding to the first 𝑚𝑚 linearized critical temperatures and 𝒘𝒘 =
∑ ∑ 𝑡𝑡𝑖𝑖𝑡𝑡𝑗𝑗𝒘𝒘𝑖𝑖𝑗𝑗 + λ𝟐𝟐𝒋𝒋𝒊𝒊 𝒘𝒘��  is the corresponding orthogonal second order correction.  

Introducing the approximation of 𝒖𝒖𝑑𝑑 in the discrete equilibrium equation using �̇�𝒗𝑖𝑖 as test 
functions according to a Ritz-Galerkin approach and expanding in Taylor series up to the 3rd order 
in 𝜆𝜆  and 𝑡𝑡𝑖𝑖, we obtain the nonlinear reduced equations 

ri[𝒕𝒕, 𝜆𝜆] =  0   i = 1⋯n   (13) 
Equations (13) are an algebraic nonlinear system of m equations in the  m+1 variables 

𝜆𝜆, 𝑡𝑡1  ⋯  𝑡𝑡𝑚𝑚 with known coefficients and can be solved using a path--following algorithm. Because 
of the small size of the system, the solution is very fast. 
Numerical results 
The performance of the proposed formulation is herein tested.  The efficiency of the MIP strategy 
is compared with a displacement-based Newton method. Additionally, comparison is made with 
the nonlinear analysis implemented in the commercial code Abaqus and shell finite element S8R. 
A linear temperature distribution  𝑇𝑇�(𝜁𝜁) = 𝑇𝑇𝑀𝑀  + 2𝜁𝜁

ℎ
𝑇𝑇𝐿𝐿 is assumed through the shell thickness. 

Additional tests are reported in [6,7].  
A simply-supported Euler beam-like structure, reported in Fig.1, is considered. The length is 

𝐿𝐿 = 103𝑚𝑚𝑚𝑚 and different values of L/h are analysed. Temperature-dependent material properties 
are considered and reported in details in [6,7,8]. The structure is subject to an initial compression 
load 𝑞𝑞 =  0.95 𝑘𝑘𝑐𝑐 , with 𝑘𝑘𝑐𝑐  = 𝜋𝜋2 ℎ3 𝐸𝐸0/(12 𝐿𝐿2). Subsequently, a temperature change is applied, 
with 𝑇𝑇𝑀𝑀  =  1 and different values of the through-the-thickness gradient 𝑇𝑇𝐿𝐿. 

 
Figure 1 Euler beam: geometry, loads and boundary conditions. 

 
It is worth noting that the structure does not exhibit any additional stress due to the temperature 

rise. Conversely, since the material properties are temperature-dependent, the temperature rise 
reduces the beam stiffness leading to buckling. Figure 2 depicts the equilibrium paths for three 
different values of 𝑇𝑇𝐿𝐿 obtained though the proposed model and Abaqus which fails to reach 
convergence beyond the bifurcation load. Interestingly, its last converged point is characterized by 
a decreasing temperature for increasing values of 𝑇𝑇𝐿𝐿. This is likely due to an approximated 
evaluation of the tangent operators for TD material properties. 

Table 1 compares the number of iterations required by Newton and MIP Newton for different 
values of L/h. The Newton method performances drastically deteriorate for increasing values of 
L/h and convergence is no longer possible starting from L/h=103. Conversely, MIP Newton is not 
influenced by the slenderness ratio. 
 

Table 1. Euler beam: steps and iterations for Newton and MIP Newton with 𝑇𝑇𝐿𝐿 = 10−4. 
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Figure 2. Euler beam: equilibrium paths for different values of the through-the-thickness 

temperature gradient and L/h=100. 
 

Furthermore, it is possible to observe that the proposed Koiter reduced formulation with just 
one mode (and relative corrective) is pretty accurate in all cases up to significant post-buckling 
deformations. 
Conclusions 
The paper presented a robust and efficient simulation tool for the nonlinear thermoelastic analysis 
of thin-walled structures. The first part of the work consisted in developing a solid-shell 
isogeometric discretisation which requires a low number of displacement DOFs for accurately 
describing the shell kinematics. Focus was given to the modelling of thermal strains and 
temperature-dependent materials within the solid-shell concept. A reduction technique based on 
the Koiter method was also proposed and applied to buckling problems. Tests on composite shells 
and thin-walled structures are available in [6,7].  
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Abstract. Drawing inspiration from the extended finite element method (X-FEM), we propose for 
two-dimensional elastic fracture problems, an extended virtual element method (X-VEM). In the 
X-VEM, we extend the standard virtual element space with the product of vector-valued virtual 
nodal shape functions and suitable enrichment fields, which reproduce the singularities of the exact 
solution. We define an extended projection operator that maps functions in the extended virtual 
element space onto a set spanned by the space of linear polynomials augmented with the 
enrichment fields. Several numerical examples are adopted to illustrate the convergence and 
accuracy of the proposed method, for both quadrilateral and general polygonal meshes. 
Introduction 
Numerical techniques for the solution of problems that admit singular or discontinuous solutions 
such as fracture propagation in solids have attracted significant attention in the last two decades. 
Among these, enriched finite element approximations based on the partition-of-unity concept [1] 
and the eXtended Finite Element Method (X-FEM) [2] have become widely popular. More 
recently, extended finite element formulations for polygonal meshes have been proposed [3] even 
though, on polygonal elements, the construction of shape functions is generally cumbersome and 
additional numerical integration issues must be carefully addressed [4]. The Virtual Element 
Method (VEM) is a stabilized Galerkin scheme proposed in [5] to solve partial differential 
equations on general polygonal meshes that overcomes many of the difficulties related to standard 
polygonal finite element formulations. The VEM can be looked at as a generalization of the Finite 
Element Method (FEM) in which the explicit knowledge of the basis functions is not needed, since 
the bilinear form and the continuous linear functional deriving from the variational formulation, 
are approximated by means of elliptic projections of the basis functions onto suitable polynomial 
spaces, which turn out to be computable from the degrees of freedom of the method. More recently, 
taking inspiration from the X-FEM, an eXtended Virtual Element Method (X-VEM) has been 
proposed in [6,7], for the scalar Laplace problem with singularities and discontinuities, and in [8] 
for fracture problems in two-dimensional linear elasticity. Here, we summarize the main finding 
related to the extended virtual element formulation for linear elastic fracture problems proposed in 
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[8], in which the displacement field exhibits both crack-tip singularities and discontinuities. An 
enriched virtual element space is constructed by resorting to an additional set of virtual basis 
functions, starting from suitably chosen vectorial enrichment fields which allow to incorporate 
additional information about the exact solution, improving numerical accuracy in the presence of 
singularities. The X-VEM for elastic fracture proves to be more flexible with respect to the X-
FEM since it is applicable to arbitrary polygonal meshes, while using a very simple one-
dimensional quadrature rule for the computation of all the integrals involved. 
Two-dimensional elasticity model 
Let us consider a linear elastic body occupying the two-dimensional domain Ω ∈ ℝ2, bounded by 
Γ  cut by a traction-free internal crack cΓ . We denote the displacement field on Ω  by u(x) and 
assume small strains and displacements. The boundary is such that u t cΓ = Γ ∪Γ ∪Γ . Prescribed 
displacements 0 ( )uCg∈ Γ  are imposed on uΓ , whereas tractions 0 ( )tCt ∈ Γ  are imposed on tΓ . 
Let 𝛔𝛔 be the Cauchy stress tensor. In the absence of body forces, equilibrium equations read 
 0 in ,σ∇⋅ = Ω   (1) 

with the natural boundary conditions 

 
on ,
on ,

t

c

σ n t
σ n 0
⋅ = Γ
⋅ = Γ

  (2) 

where n is the unit outward normal, and the essential boundary condition 
 on .uu g= Γ   (3) 

The small strain tensor ε  is related to the displacement field u by the compatibility equation 

 ( )1( ) ( ) ( ) .
2

Tε u u u= ∇ +∇   (4) 

Lastly, the isotropic linear elastic constitutive for a homogeneous material reads 
 ( ) : ( ),σ u C ε u=   (5) 

Where C  is the fourth-order elasticity tensor. 
To state the weak form of the problem we define the test function space as: 

 { }1 2
0 [ ( )] : 0 on , discontinuous on .u cU Hv v v= ∈ Ω = Γ Γ   (6) 

The weak form of the equilibrium equation reads as: Find the admissible displacement field 𝐮𝐮 
such that 

 0( , ) : ( ) : ( ) : .( )
t

a dx d b Uu v σ v ε u t v v v
Ω Γ

= = ⋅ Γ = ∀ ∈∫ ∫   (7) 

Extended virtual element formulation 
We now summarize the formulation of the extended virtual element method for fracture problems 
in two-dimensional elasticity presented in . Let { }h hΤ = Ω  be a family of decompositions of 𝛺𝛺 into 
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nonoverlapping polygonal elements 𝐸𝐸 with nonintersecting boundary E∂  , barycenter 
( , )T

E E Ex yx ≡  , area | |E  , and diameter ,supE Eh x y x y∈= − . 
Enrichment with singular fields. The main concept of the X-VEM is to enrich the standard 

virtual element space by means of independent fields carrying information about the singularities 
affecting the exact solution. For the problem at hand, we choose the enrichment fields 1/2ˆ /I I hu u=  
and 1/2ˆ /II II hu u= , where Iu and IIu  are the exact asymptotic crack-tip displacement fields for 
mode I and mode II crack opening respectively, and h the maximum elemental diameter of the 
mesh [8]. We observe that these fields satisfy equilibrium. In order to define the extended virtual 
element space, we first introduce the local virtual element space ,*( )h EV : 

 { },* ( ) ( , ) ( ) : ,h h h h T h h h
x y x yE v v E v vV v V= = ∈ =   (8) 

where 
2

( ) ( )h hE V EV  =    with ( )hV E the standard virtual element space, spanned by the scalar 

virtual basis functions { } 1
EN

i i
ϕ

=
 . Hence, the space ,*( )h EV  is generated by the linear combination 

of the basis functions { }*

1
( , ) ENT

i i i i
ϕ ϕ ϕ

=
= . Then, we define the matrices Iψ  and IIψ  as 

 
ˆ ˆ0 0

, ,
ˆ ˆ0 0

I II
x xI II

I II
y y

u u
u u

ψ ψ
   

≡ ≡   
      

  (9) 

so that the local extended virtual element space ( )h
X EV  reads as 

 ,* ,*( ) ( ) ( ) ( ).h h I h II h
X E E E EV V V Vψ ψ≡ ⊕ ⊕   (10) 

A basis of this space can be obtained as the union of the basis functions of ( )h
X EV , ,*( )I h EVψ  

and ,*( )II h EVψ . Therefore, at every enriched node the vector-valued field ( )h
Xv x  that belongs to 

the extended virtual element space ( )h
X EV  is characterized by four values and for an element 

whose nodes are all enriched, we have 4 EN  degrees of freedom. We denote the basis functions of 
( )h

X EV  by the symbol iϕ  , 1,..., 4 Ei N=  , where 

 

( ,0) for 1 2 , odd,
(0, ) for 1 2 , even,
ˆ ˆ( , ) for 1 2 3 ,

ˆ ˆ( , ) for 1 3 4 .

T
i E

T
i E

i I I T
x i y i E E

II II T
x i y i E E

i N i
i N i

u u N i N

u u N i N

ϕ

ϕ
ϕ

ϕ ϕ

ϕ ϕ

 ≤ ≤


≤ ≤
=  + ≤ ≤
 + ≤ ≤

  (11) 

Finally, the extended global virtual element space h
XV  reads: 

 ( ){ }21
|: ( ) .h h h h

X X X E X hv H v E EV V = ∈ Ω ∈ ∀ ∈Ω    (12) 

Since 4
1{ } EN

i iϕ =  are not known in the interior of the element, we construct a convenient projection 
operator that allows to compute the approximations 𝑎𝑎𝑋𝑋ℎ (⋅,⋅):𝐕𝐕𝑋𝑋ℎ(𝐸𝐸) × 𝐕𝐕𝑋𝑋ℎ(𝐸𝐸) → ℝ  and    
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𝑏𝑏𝑋𝑋ℎ(⋅):𝐕𝐕𝑋𝑋ℎ(𝐸𝐸) → ℝ  of the exact bilinear form ( , )a ⋅ ⋅   and the linear functional ( )b ⋅  appearing in 
(7). The extended virtual element formulation then reads: Find ,

h h
X X gu V∈   such that 

 ,0( , ) ( )h h h h h h h
X X X X X X Xa bu v v v V= ∀ ∈   (13) 

where the bilinear form  ( , )h
Xa ⋅ ⋅  is built element-wise as 

 ,( , ) ( , ) , ,h h h h E h h h h h
X X X X X X X X X

E
a au v u v u v V

∈Ω

= ∀ ∈∑   (14) 

and we set ( ) ( ).h h h
X X Xb v b v=  To construct a bilinear form 𝑎𝑎𝑋𝑋

ℎ,𝐸𝐸(⋅,⋅) which is computable from the 
degrees of freedom, we extend the vector-valued linear polynomial space 1( )E℘  to a subspace 

X℘  of ( )h
X EV  which includes the linear polynomials and the additional enrichment functions ˆ Iu  

and ˆ IIu . Such space is spanned by the eight linearly independent vector fields representing the 
three fundamental rigid body motions, the three independent deformation modes and the two 
enrichment fields: 

 
ˆ ˆ1 0 0

( ) span , , , , , , , .
ˆ ˆ0 1 0

I II
x x

X I II
y y

u u
E

u u
η ξ η
ξ η ξ

                ℘ =                    −                
  (15) 

We then define the extended elliptic projection operator : ( ) ( )a h
X X XE EVΠ →℘  for each 

element E, which is the solution of the following variational problem: 

 ( ) : ( ) ( ) : ( ) ( ),a h h
X X X X X X X

E E

d dx Eσ q ε v x σ q ε v qΠ = ∀ ∈℘∫ ∫   (16) 

with the additional conditions 

 
,

( ) ( ) ,

a h h
X X X

a h h
X X R X R

v v

v v

Π =

Π =
  (17) 

where ( )⋅  and ( )R⋅  represent the average translation and rotation. Then, the local extended 
bilinear form can be computed as: 

 
( ) ( )

( )

, ( , ) ( ), ( ) ( ), ( )

( ( )) : ( ( )) ( ), ( ) ,

h E h h E a h a h E h a h h a h
X X X X X X X X X X X X X X

a h a h E h a h h a h
X X X X X X X X X X X

E

a a S

d S

v w v w v v w w

σ v ε w x v v w w

≡ Π Π + −Π −Π

= Π Π + −Π −Π∫
 

 (18) 

where ( , )E
XS ⋅ ⋅  is a suitable stabilization term needed to guarantee linear consistency and 

stability of the method. According to the virtual element methodology, ( , )E
XS ⋅ ⋅  can be any 

symmetric, positive definite, continuous bilinear form defined on the kernel of the extended 
projection operator a

XΠ . In [8], we provide two possible choices of the stabilization term by 
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considering the standard dofi-dofi and D-recipe formulations in our extended setting. Such choices 
are widely accepted in the VEM literature and in some cases they were theoretically proved to be 
effective to guarantee stability. 
Numerical examples 
Patch test. We first conduct an extended patch test, addressing the enrichment with singular fields. 
The extended patch test ensures that the singular enrichment fields can be exactly reproduced using 
the X-VEM. To this aim, we consider a square elastic plate that occupies the region 2( 1,1)−  under 
plane strain conditions, with a horizontal crack of unit length that extends from ( 1,0)−  to (0,0) . 
A coarse mesh of 64 polygonal elements are considered, where all the nodes in the domain are 
enriched the near-tip displacement fields are imposed on the boundary of the domain by requiring 
that all the enriched boundary degrees of freedom are equal to 1 and all the standard boundary 
degrees of freedom are equal to 0. The relative error in strain energy for the extended patch tests 
is of the order of 1210− . 

 

 
Figure 1:  X-VEM convergence in strain energy for the mixed-mode benchmark problem with 

both topological and enrichment strategies enrichment. 
Convergence study. We investigate the convergence of the X-VEM for the problem of a 

twodimensional square plate under plain strain conditions in the presence of a horizontal crack, 
extending from the boundary to the center of the specimen. The geometry of the domain is the 
same adopted as that for the extended patch test. On the boundary of the domain, we apply the 
exact near-tip mixed mode I and mode II displacement fields, which are also employed as 
enrichment fields for the X-VEM and represent the exact solution for the problem at hand. Both 
quadrilateral and general polygonal meshes are considered. To compute the element stiffness 
matrix, we follow two different strategies: topological enrichment and geometric enrichment. In 
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the topological enrichment, we only enrich the node located at the singularity of the solution 
whereas in geometric enrichment we enrich all the nodes within a given radius from the origin. As 
in extended finite element methods, due to the presence of the singularity in the crack tip, the 
theoretical convergence rate for this problem is R = 1 that is non-optimal. As shown in Fig. 1, both 
VEM and X-VEM with topological enrichment converge in strain energy with a rate close to 1, in 
agreement with theory. It turns out that the X-VEM is insensitive to the type of mesh 
(quadrilaterals or polygons), and the results from the X-VEM are consistently more accurate than 
those from standard VEM. In order to establish if the proposed X-VEM can deliver the optimal 
convergence rate R = 2 that is predicted by theory, we enrich all nodes that are located within a 
ball of radius 0.5er =   from the origin. As shown in Fig. 1, in the case of geometric enrichment, 
the convergence rate is close to 2, which is consistent with theory. 
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Abstract. A 4-nodes flat shell Finite Element (FE) is formulated on the basis of an assumed 
interpolation of the stress and displacement fields in order to perform the elastoplastic analysis of 
reinforced concrete structures. The nonlinear material behaviour of the concrete is described 
through a confinement-sensitive plasticity constitutive model not requiring the often difficult 
calibration of several parameters but it is expressed in terms of only the uniaxial compressive 
strength of the concrete. The presence of steel reinforcement bars is accounted by defining 
additional material layers with a uniaxial von Mises elastoplastic behaviour. These different 
material responses are assembled through the shell thickness by numerical integration. 
Computational efficiency and accuracy are assessed by comparing the proposed shell strategy and 
other shell FE models by performing the step-by-step nonlinear analyses on a numerical test. 
Introduction 
In the solution of many engineering problems the nonlinear behaviour of structure due to the 
inelastic response of materials are often described using elastoplastic models which are capable to 
accurately simulate the behaviour of many kinds of engineering materials, not only metals but also 
stone-like materials and soils, [1]. Moreover, the complexity of the problem to be solved, involving 
highly nonlinear and non smooth elastoplastic constitutive equations, [2], and the need for 
application of complex design rules, for example the application of several loading conditions with 
the check of different limit states, require the adoption of robust and very efficient solution 
algorithms. 

In this work a finite element for the modelling of concrete flat shell embodying steel 
reinforcement bars is proposed. The element formulation is based on assumed stress and 
displacement field interpolations, a kind of formulation certainly enjoying the feature of providing 
high performance models as shown in [3] in the elastic field, in [4] for the analysis of slender 
structures and in [5] for 2D and 3D applications involving standard elastoplastic materials, i.e. von 
Mises-like models. The analysis of shell structures constituted by concrete, a material requiring 
more challenging elastoplastic modelling choices, in presence of steel reinforcement bars, see for 
example [7,8], constitutes a new context still not explored.  

However, the proposed formulation is very general and capable to describe layered shells 
composed by different materials. The kinematic description is based on a first order shear 
deformable shell model whose primary kinematic fields are interpolated on the basis of a four 
nodes plane element, [9], whose mixed formulation contains also the discrete representation of the 
components of generalised stresses of the shell. The control of stress history and of the related 
evolution of plastic strain is however performed at 3D-level thanks to a numerical integration along 
the thickness of the shell. In this way is possible to accommodate a layered description of the 
materials composing the shell where concrete behaviour is modelled through a confinement-
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sensitive plasticity yield surface depending on all the three stress invariants, see [10], and 
expressed in terms of only the uniaxial compressive strength of the concrete. At negligible 
computational costs the presence of steel rebars is computed by defining additional material layers 
contributing through a von Mises one-dimensional material response. It worth to observe how the 
proposed approach can be readily used for the modelling of additional material layers as in the 
case of retrofitting of existing structures. Computational efficiency and accuracy are assessed by 
comparing the proposed shell model with the solution obtained by standard displacement-based 
FEM formulations and the solutions provided by the commercial code Abaqus. 
Layer-wise shell formulation of the MISS-4 finite element 
The MISS-4 shell finite element proposed in [9] is now reformulated in order to describe the 
different layers of materials composing the shell. The MISS-4 element interpolates both stress and 
displacement fields by choosing them in order to achieve high accuracy on very coarse meshes. In 
particular, the assumed interpolation for the components of the generalised stresses are selected in 
order to a-priori satisfy the internal equilibrium equations. As a consequence, the displacement 
field needs to be interpolated only along the element boundary. All other details, the assumed 
interpolations etc., can be found in [9]. 
Shell element response 

 
Figure 1: reinforced concrete shell. 

Figure 1 shows the generic material composition of the shell finite element. In particular, it is 
made of concrete and a certain number of reinforcement layers. Each reinforcement layer, 
identified by the subscript 𝑠𝑠, has orientation α𝑠𝑠 with respect to the element local Cartesian axis 𝒆𝒆1, 
rebar area 𝐴𝐴𝑠𝑠, spacing 𝑖𝑖𝑠𝑠 and depth 𝑧𝑧𝑠𝑠 with respect to the shell mid-surface.  

As shown in Fig. 1, a discrete number of IP is considered located in position 𝒙𝒙𝑔𝑔𝑔𝑔 = �𝒙𝒙𝑔𝑔, 𝑧𝑧𝑔𝑔�, 
where 𝒙𝒙𝑔𝑔is the position of a generic IP over the mid-surface of the element and 𝑧𝑧𝑔𝑔 indicates the 
depth of the generic IP along the thickness direction. 

The vector of the generalised shell stresses at the 𝑔𝑔-th mid-surface IP is evaluated as 
 

𝒕𝒕𝑔𝑔 = 𝒕𝒕�𝒙𝒙𝑔𝑔� = � 𝑬𝑬[𝑧𝑧]𝑇𝑇
ℎ/2

−ℎ/2
𝝈𝝈�𝒙𝒙𝑔𝑔, 𝑧𝑧� 𝑑𝑑𝑧𝑧 =    �𝑬𝑬[𝑧𝑧𝑔𝑔]𝑇𝑇𝝈𝝈𝑔𝑔𝑔𝑔𝑤𝑤𝑔𝑔

𝑛𝑛𝑐𝑐

𝑔𝑔=1

+ � 𝑬𝑬[𝑧𝑧𝑠𝑠]𝑇𝑇𝝈𝝈𝑔𝑔𝑠𝑠
𝐴𝐴𝑠𝑠
𝑖𝑖𝑠𝑠

𝑛𝑛𝑐𝑐+𝑛𝑛𝑠𝑠

𝑠𝑠=𝑛𝑛𝑐𝑐+1

              (1) 

where 𝑛𝑛𝑔𝑔 is the number of concrete IPs along the thickness, 𝑛𝑛𝑠𝑠 is the number of steel layers, 
𝝈𝝈𝑔𝑔𝑔𝑔 are the concrete stresses at the 𝑐𝑐-th integration point along the thickness direction, 𝑤𝑤𝑔𝑔 is the 
corresponding weight and 𝝈𝝈𝑔𝑔𝑠𝑠 are the stresses of the 𝑠𝑠-th reinforcement layer. 

The stresses in both concrete and steel must satisfy the plastic admissibility in each IP, 
expressed by 
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 𝑓𝑓𝑚𝑚�𝝈𝝈𝑔𝑔𝑚𝑚� ≤ 0,  𝑚𝑚 = 1, … ,𝑛𝑛𝑔𝑔 + 𝑛𝑛𝑠𝑠                                                                                                   (2) 

where, with 𝑚𝑚 we identify the generic IP and 𝑓𝑓𝑚𝑚 is the related yield function. The stresses 𝝈𝝈𝑔𝑔𝑔𝑔 
and 𝝈𝝈𝑔𝑔𝑠𝑠 are independently evaluated by solving the IP state determination scheme at level of 
material point 

�
𝐹𝐹𝑚𝑚�𝝈𝝈𝑔𝑔𝑚𝑚 − 𝝈𝝈𝑔𝑔𝑚𝑚

(𝑛𝑛)� + μ𝑔𝑔𝑚𝑚
∂𝑓𝑓𝑚𝑚�𝝈𝝈𝑔𝑔𝑚𝑚�
∂𝝈𝝈𝑔𝑔𝑚𝑚

− Δ𝜺𝜺𝑔𝑔𝑚𝑚 = 𝟎𝟎

μ𝑔𝑔𝑚𝑚𝑓𝑓𝑚𝑚�𝝈𝝈𝑔𝑔𝑚𝑚� = 0 μ𝑔𝑔𝑚𝑚 ≥ 0 𝑓𝑓𝑚𝑚�𝝈𝝈𝑔𝑔𝑚𝑚� ≤ 0
        ∀𝑚𝑚 = 1, … ,𝑛𝑛𝑔𝑔 + 𝑛𝑛𝑠𝑠.                           (3) 

 

where Δ = (⋅)(𝑛𝑛+1) − (⋅)(𝑛𝑛) represents the difference between quantities at step 𝑛𝑛 + 1 and 𝑛𝑛, 
and μ𝑔𝑔𝑚𝑚 are the positive plastic multipliers, Δ𝜺𝜺𝑔𝑔𝑚𝑚 = 𝑬𝑬[𝑧𝑧𝑚𝑚]𝛥𝛥𝝆𝝆𝑔𝑔 represents the strain on the 𝑚𝑚th 
IP, while the assigned Δ𝝆𝝆𝑔𝑔 is constant for each 𝑚𝑚.  The superscript (𝑛𝑛 + 1) is omitted to simplify 
the notation.  

The stress parameters 𝛽𝛽𝑒𝑒 = 𝛽𝛽𝑒𝑒�𝛽𝛽𝑒𝑒
(𝑛𝑛),𝛥𝛥𝒅𝒅𝑒𝑒� for an assigned value of Δ𝒅𝒅𝑒𝑒  are obtained using the 

element state determination algorithm defined by the following additional equations 

�
𝑟𝑟𝑔𝑔         ≡  𝒕𝒕𝑔𝑔  −𝑵𝑵𝑡𝑡𝑔𝑔  𝛽𝛽𝑒𝑒  =  𝟎𝟎,     ∀𝑔𝑔

𝑟𝑟𝑒𝑒 ≡ 𝑸𝑸𝑒𝑒Δ𝒅𝒅𝑔𝑔 −�𝑵𝑵𝑡𝑡𝑔𝑔
𝑇𝑇 Δ𝝆𝝆𝑔𝑔𝑤𝑤𝑔𝑔

𝑔𝑔

= 𝟎𝟎                                                                                          (4) 

where first one imposes that the generalised stresses 𝒕𝒕𝑔𝑔 coming from the solution of the IP state 
determination in Eq. (3) and evaluated using Eq. (1), are the same than those furnished by the 
assumed stress interpolation. The second equation imposes, in a weak form, the 
strain/displacement relation over the element. 
Concrete mechanical response 
The stress response of concrete, 𝝈𝝈𝑔𝑔𝑔𝑔, relative to the generic IP along the thickness is evaluated by 
solving problem (3) on the basis of an elastic isotropic behaviour defined by the Young modulus, 
𝐸𝐸𝑔𝑔, Poisson ratio, ν𝑔𝑔, of concrete and the yield function proposed in [10] and here reformulated 
with respect to the stress invariants 𝐼𝐼1 and 𝐽𝐽2 and the Lode angle 𝜃𝜃 as follows 

𝑓𝑓𝑔𝑔 ≡
3
σ𝑔𝑔
2  𝐽𝐽2 +

𝑚𝑚
√3  σ𝑔𝑔

 �𝐽𝐽2 𝑟𝑟(θ, 𝑒𝑒) +
𝑚𝑚

3  σ𝑔𝑔
 𝐼𝐼1 − 1 .                                                                             (5) 

The exact meaning of the material parameters, 𝑚𝑚 and 𝑒𝑒, is defined in the already cited paper 
[10] where their dependence from σ𝑔𝑔, the compressive strength of concrete, is formulated and 
discussed. In this way an apparently three-parameter hydrostatic-pressure-sensitive loading 
surface, capable to describe parabolic meridians and a variable shape on the deviatoric plane, is 
simply defined on the basis of σ𝑔𝑔 only. 

 
The Newton-Raphson solution of Equation (3) provides the required stress 𝝈𝝈𝑔𝑔𝑔𝑔 but also the 

consistent tangent operator 𝐹𝐹𝑡𝑡𝑔𝑔−1 relative to the concrete IP formulated as 

𝐹𝐹𝑡𝑡𝑔𝑔−1 = Ξ −
Ξ∂ 𝑓𝑓𝑔𝑔∂ 𝝈𝝈 ⊗ Ξ∂ 𝑓𝑓𝑔𝑔∂𝝈𝝈
∂ 𝑓𝑓𝑔𝑔
∂ 𝝈𝝈 ⋅ Ξ

∂ 𝑓𝑓𝑔𝑔
∂ 𝝈𝝈

  ,  Ξ−1 = 𝐹𝐹𝑔𝑔 + μ𝑔𝑔𝑔𝑔  
∂2𝑓𝑓𝑔𝑔
∂𝝈𝝈2

 ,                                                                    (6) 

and ready to be used in the assembly of the global tangent stiffness matrix. 
Steel reinforcement layer mechanical response 
Problem (3) is also solved for the generic steel reinforcement layer whose mono-axial mechanical 
response is now simply defined by the Young modulus 𝐸𝐸𝑠𝑠, the yield stress σ𝑠𝑠 and the vector 
components 𝑐𝑐 = cosα𝑠𝑠 and 𝑠𝑠 = sinα𝑠𝑠 defined by rebar orientation, α𝑠𝑠, with respect to the axes 
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describing the shell mid-surface. In particular, in the elastic phase, the mechanical response is 
defined by 

𝝈𝝈𝑔𝑔𝑠𝑠 = 𝝈𝝈𝑔𝑔𝑠𝑠
(𝑛𝑛) + 𝐹𝐹𝑠𝑠−1 Δ𝜺𝜺𝑔𝑔𝑠𝑠,     𝐹𝐹𝑠𝑠−1 = 𝐸𝐸𝑠𝑠

⎣
⎢
⎢
⎢
⎡ 𝑐𝑐

4 𝑐𝑐2𝑠𝑠2 𝑐𝑐3𝑠𝑠 0 0
𝑐𝑐2𝑠𝑠2 𝑠𝑠4 𝑠𝑠3𝑐𝑐 0 0
𝑐𝑐3𝑠𝑠 𝑠𝑠3𝑐𝑐 𝑐𝑐2𝑠𝑠2 0 0

0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤
                                             (7) 

In the plastic phase the mechanical response is given by 
𝝈𝝈𝑔𝑔𝑠𝑠  =   ±𝜎𝜎�𝑠𝑠[𝑐𝑐2, 𝑠𝑠2,−𝑐𝑐𝑠𝑠, 0,0]𝑇𝑇 ,    𝐹𝐹𝑡𝑡𝑠𝑠−1 = 𝟎𝟎5×5 .                                                                                (8) 

Numerical results 
Efficiency and accuracy of the proposed FE strategy have been tested performing some numerical 
tests consisting in the step-by-step nonlinear analysis of structures subjected to a system of loads 
amplified through a multiplier λ used to describe the loading history. The results provided by the 
layer-wise MISS-4 element are compared with those provided by the commercial software 
Abaqus. In particular, all the analyses are also performed by using the Abaqus S4 shell element 
and describing the nonlinear behaviour of concrete through the Concrete Damage Plasticity (CDP) 
model parameterised in order to obtain a perfectly plastic behaviour. 

The response of MISS-4 element is evaluated by using a 2 × 2 IP grid over the finite element 
mid-surface and 12 IPs through the shell thickness. The results compare the obtained equilibrium 
curves, i.e. the plot of the load multiplier λ versus a reference displacement component.  

 
Figure 2: Square plate: geometry, boundary conditions and a 4x4 mesh (all the measures are 

given in [mm]). 

The test regards the reinforced concrete square plate of length 𝐿𝐿 = 4 [m] and thickness 𝑠𝑠 = 0.2 
[m] represented in Fig. 2. Two different schemes of reinforcement are considered. 

 
Figure 3: Simply supported reinforced concrete square plate 
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The concrete parameters are: σ𝑔𝑔 = 30 [MPa], the compressive strength;  σ𝑡𝑡 = 0.1 σ𝑔𝑔 [MPa], 
the tensile strength; σ𝑏𝑏 = 1.14 σ𝑔𝑔, the biaxial compressive strength; 𝐸𝐸𝑔𝑔 = 2200 (σ𝑔𝑔/10)0.3 and 
ν𝑔𝑔 = 0.2, the Young modulus and the Poisson ratio, respectively. The parameters of steel 
reinforcement bars are σ𝑠𝑠 = 450 [MPa] and 𝐸𝐸𝑠𝑠 = 2.1 × 105 [MPa].   

According to the symmetry of the problem, only a quarter of the plate is analysed, see Fig 2. 
Two boundary conditions are taken into consideration, namely simply supported condition and 
clamped condition. The plate is subjected to a uniformly distributed out-of-plane uniform pressure 
of amplitude 𝑞𝑞 = λ 𝑀𝑀𝑝𝑝/𝐿𝐿2, where λ is the load multiplier and 𝑀𝑀𝑝𝑝 is the plastic bending moment 
considering a mono-axial yield condition only for the concrete subjected to compressive state and 
steel rebars subjected to tensile state. 

Table 1: Square plate: normalised load multiplier 

B.C. Reinf. 
layout 2 × 2 4 × 4 8 × 8 16 × 16 S4-CDP 

Simply 
supported 

rl1 23.2644 23.4824 23.5056 23.5282 23.051 
rl2 22.8898 23.1895 23.2061 23.2100 22.676 

clamped rl1 45.6447 44.3623 42.8930 41.7100 43.401 
rl2 45.4340 43.8796 43.3289 41.0107 43.107 

 
Table 1 reports the load multipliers obtained for a maximum value of the displacement at the 

centre of plate equal to 100 [mm]. The solutions obtained by several meshes of MISS-4 elements 
are compared to the result provided by Abaqus with a very fine mesh of S4 elements. The same 
analyses are compared in Figs. 3 and 4 where the equilibrium curves are reported. The results show 
a good agreement between the proposed formulation and Abaqus code, even in the case of the 
coarsest mesh. 

 
Figure 4: Clamped reinforced square plate 

Concluding remarks 
A mixed 4-nodes finite element has been formulated for the analysis of reinforced concrete shells. 
The element is based on the assumed interpolation of both displacement and stress fields, the latter 
is chosen in order to a-priori satisfy the equilibrium. The material mechanical response of the 
concrete is numerically integrated along the shell's thickness assuming a plasticity yield surface 
depending on all the three stress invariants which allows the description of the confinement-
sensitive behaviour. The steel reinforcement bars are modelled as additional layers, embedded in 
the shell thickness, with von Mises mechanical response. The accuracy and efficiency of the 
proposed formulation are confirmed by the numerical test performed. 
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Abstract. The focus of this paper is the analyses of various work pipelines, allowing to manage 
the transition from in-situ surveys to cloud of points and geometric meshes optimized for structural 
purposes. This topic is very challenging, and today is almost always performed through 
homemade, uncontrolled, approaches, requiring the passage of information between numerous 
codes. These unsupervised workflows often compromise the integrity and the reliability of the 
results. Here two experimental case studies are reported to check the performances of two 
pipelines, based on photographic and laser surveys, respectively. The proposed comparison is used 
to outline significant indications on how properly manage the transformation, in order to create a 
“true” digital twin of the given structure. 
Introduction 
One of the most important issue in the field of structural surveying is the capability of modeling 
real-life constructions. The recent increasing interest given by conservation purposes put the topic 
as a crucial task in modern engineering. In particular, the introduction of BIM (Building 
Information Modeling) procedures among the fundamental goals of civil engineering [1], has 
shifted attention to a whole series of expeditious techniques aimed at making the process 
sustainable in terms of timing and costs. Among these we can mention, for our theme, photo 
modeling (not to be confused with photogrammetry) and laser scanning. Even if these two 
technologies are not exhaustive of the problem, we can confidently state that their proper 
combination could cover most of the artifacts in our area of interest [2]. 

During the last two decades some field experiments on this topic have been developed; the best 
results come from the field of chemical plants constructions, where the simplicity and very high 
standardization of the elements has allowed to create pipelines commonly accepted by a large 
sector of the operators working in the field. In the area of structural engineering, this process did 
not take place for a whole series of reasons, some of which merely ascribable to the IT (Information 
Technology) part of the procedure, as the high computational burden, the complexity of the 
elements composing the geometry and the complications related to the interoperability among 
different software. On the other hand, the rapid evolution of drone-mounted cameras has actually 
solved some important problems due to inaccessibility. However, the possibility of quickly 
acquiring a geometrical model does not allow to immediately pass to the FEM (Finite Element 
Model) work phase [3]. 

The rising of the BIM environments for executive design has made interoperability among 
models a central step. Indeed, within a BIM environment, the models intended as geometrical mesh 
must have a high degree of interoperability and must preserve the required LOD (Level Of Detail) 
[4]. It is therefore necessary to correctly work on the meshes to ensure high values of their main 
quality indicators (such as: aspect ratio, skewness and so on). The worst enemy of a correct 
procedure is the enormous amount of data stored during the detection procedures. Then, relying 
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on the LOD required by the project, only the strictly necessary data should be acquired [5]: 
overabundance of data not only does not improve the quality of the output mesh, but also 
introduces some critical issues (e.g., in the case of photo modeling, a critical issue could be the 
processing of photos taken in conditions of very different light or with lenses distorting the 
images). It follows that the choice of the method for the survey must be made once the LOD and 
the level of interoperability have been set [6]. 

The paper focuses on the transition from photographic and laser surveys to cloud of points and 
geometric meshes optimized for structural purposes. At first, the relevant work pipelines are 
proposed, then, two experimental case studies are discussed to check their performances. The main 
objective of the manuscript is a comparison among the results provided by the two kinds surveys, 
when controlled and supervised approaches are adopted. 
Work pipelines 
To have an efficient pipeline ranging from data acquisition to model finalization, it is necessary to 
divide the process into at least three main blocks. The proposed pipeline is in Figure 1. 

 
Figure 1 – Work pipelines. 

In the first block there is the data acquisition phase with the choice of the survey method and a 
reasoned storage of these. Starting from the experience of the Authors, the following empirical 
laws are here suggested: 

- for photo scanning, considering a LOD of at least 400 and congruently with the geometric 
nature of the artifact, at least 80 full-frame 1200 DPI (Dots Per Inch) photos per m3 taken from 
different camera points (in similar light conditions) are required; 

- for the laser scan, it will be necessary to place the stations so that there are as few data 
redundancies as possible, but ensuring that a functional overlap between the various stations is 
maintained. However, an estimation of the amount of stations is not possible in this case, since it 
strongly depend on the specific case study. 

The data must then be carefully filtered in order to obtain ‘brute’ meshes that have the right 
LOD and are free of noise surfaces and all those biased clouds created by the limits of the 
instruments, such as the color block for photo modeling (occurring when two surfaces with the 
same color are associated with the same plane, even though they do not belong to it) and reflection 
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for the laser scanner. Specifically, three types of filters are here adopted: remove duplicate points 
filter, SOR (Statistical Outlier Removal) filter and noise filter. 

Moving towards the third block, leading to the evaluation and finalization of the model, 
different techniques can be used to make the model as efficient as possible with respect to the use 
of interest. According to the nature of the element, the topology (tri, quad, Delaunay, etc.) will 
then be chosen and the number of iterations of the tessellation (depending on the LOD) must be 
set. At the end of the pipeline the optimization step is fund, the process eliminating all the 
constructive problems of the model and reducing its computational burden on the basis of given 
criteria. The quality of the mesh must be checked in every operation that is done in the third block 
as some of these are irreversible. To speed up this phase, several retopologization tools have 
recently been produced that allow to automatically restore meshes whose topology is 
compromised. Nowadays, retopology becomes crucial to manage the big data coming from 
experimental surveys. Here, basing on the given case studies and relevant hot spots, a specific 
scheme is calibrated (see the following Section for the details). 

The software stack used in this paper to develop the pipelines of Figure 1 is composed of several 
tools, all belonging to the Autodesk environment: ReCap Photo, Meshmixer, Inventor, Inventor 
Nastran, Retopology Tool, Autocad. Moreover, the software Cloud Compare has been used to 
improve the filter phase and, then, the mesh quality. 
Experimental and numerical findings 
Two cases studies were considered, a concrete slab and a small-scale steel frame, Figure 2. The 
slab, measuring 100 x 80 x 15 cm, is made of a C28/35 concrete. The second structure is a shear-
type steel frame, with one span and four floors. The overall height is 800 mm (inter-floor of 200 
mm), and the plant is square with a side of 300 mm. The columns have a rectangular section of 50 
x 4 mm, while the beams have an L-shaped section 50 x 50 x 4 mm. All beam-column joints are 
bolted (Figure 2.b). The steel class is S235. 

  
Figure 2 – Case studies: concrete slab 100 x 80 x 15 cm (left) and shear-type steel frame, height 

of 80 cm (right). 
The two structures were detected with a photographic and laser scanner survey from different 

station points, as shown in Figure 3. 
A CANON EOS 5D camera (resolution 4368x2912 pixels) with natural light was used to 

perform the photo survey. For the concrete slab, 179 photos have been gathered, with 2 different 
lenses (CANON EF 16-35mm f / 4L IS USM and CANON EF 75-300mm f / 4-5.6 III); the duration 
of the survey was 8 minutes. The same camera and lenses plus one (CANON EF 20mm f / 2.8 
USM) were used for the steel frame, gathering a total of 231 photos, in 14 minutes. 

The laser surveys were performed with a Leica BLK360 (properties can be found here: 
https://shop.leica-geosystems.com/au/leica-blk/blk360-g1/product-details), with 5 and 6 station 
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points, for the concrete and steel specimen, respectively. The timing required for the acquisition 
was 5 minutes for each station. 

 
Figure 3 - Axonometry of the photographic (left) and laser (right) shooting project for the 

concrete slab and the steel frame. 
The pipelines described in the previous Section have been developed to build up four 

geometrical meshes, one for each sample (concrete slab and steel frame) and each survey (photo 
and laser). For the sake of brevity, only the results obtained for the concrete slab are here discussed. 
The two meshes provided by the photo and laser surveys have been processed through a retopology 
procedure; the main settings are: 40’000 faces, quad tolerance of 10%, subdivision factor 1, 
regularize 0.7, anisotropy 0.65, adaptivity 0.45. 

The two meshes were imported into the finite element calculation software Midas FEA NX, via 
an Iges CAD file. Once the geometry was imported, the auto-mesh tool of Midas was used to 
generate a mesh of three-dimensional elements, hexahedrons and tetrahedrons. A mesh size equal 
to 10 mm was imposed, small enough not to lose the obtained LOD (Table 1); for instance, it was 
even possible to consider the roughness present on the surfaces. To facilitate the comparisons, the 
models were also scaled imposing the same average depth, 150 mm. 

The images of Table 1 show a counterintuitive result: the geometry created from the laser survey 
(column Laser 1) has less detailed than the one based on the photographic survey (column Photo). 
This is due to some issues of the import procedure. Even if the laser device was capable of 
generating a much more refined mesh than the photographic survey, the retopology operation 
performed with the same settings on both meshes results average surfaces with less asperities in 
the case of laser (basically because there are more asperities to be averaged). 

In order to obtain a geometry that is more similar to the ‘real’ concrete slab (in the meaning of 
the required LOD) even with the laser survey, the retopology scheme was repeated after optimizing 
the model with a smoothing procedure. This allowed to remove the counterintuitive results (see 
the new column Laser 2). 
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Table 1 - Geometry and mesh obtained for the concrete slab. 
 Photo Laser 1 Laser 2 

Imported geometry 

   

Height (average) 1090 mm 1070 mm 1030 mm 
Width (average) 881 mm 849 mm 820 mm 
Depth (average) 150 mm 150 mm 150 mm 

Structural mesh 

   

Mesh elements 143’329 161’340 154’350 
Mesh nodes 143’242 153’206 92’939 

Mesh gen. timing 108 s 283 s 500 s 
 

From a geometrical standpoint, the results of Table 1 show that the various models may carry 
out discrepancies in the dimensions of almost 6 cm among them, both in height and in width 
(remember that, to facilitate the comparisons, the models have been scaled by imposing the same 
average depth). The maximum percentage discrepancies are 7%, for the width, and 6%, for the 
height. 

To evaluate the structural performance of the relevant three meshes, two static and one dynamic 
analyses were performed, Table 2 and Table 3 (elastic parameters are 32.31 GPa and 0.20, for the 
Young’s modulus and the coefficient of Poisson, respectively, and density is 24 kN/m3): 

- the static analyses were conducted considering only the self-weight, the first, and considering 
the self-weight plus a uniformly distributed load of 1 MPa applied to the upper face, the second. 
The bottom face was constrained preventing the vertical displacement direction; to enable rigid 
motions, but allowing the Poison’s effect, two vertices of the same face were also respectively 
constrained with a spherical hinge and a roller preventing the displacement along the short edge; 

- the dynamic simulation was a modal analysis. In this case the slab was constrained preventing 
on the bottom face all the displacements. 

Table 2 - Linear static analyses: resultant of the vertical reactions and maximum vertical 
displacement. 

 Photo Laser 1 Laser 2 
 Reaction Displacement Reaction Displacement Reaction Displacement 

Self-weight 3’539 N 0.45 ∙ 10-3 mm 3’752 N 0.45 ∙ 10-3 mm 3’318 N 0.40 ∙ 10-3 mm 
Self-weight + Load 137’773 N 34.19 ∙ 10-3 mm 138’996 N 32.63 ∙ 10-3 mm 144’984 N 34.40 ∙ 10-3 mm 

All the static analyses (Table 2) were completed in less than 2 minutes and showed results in 
fairly good agreement among them; the maximum percentage discrepancies (equal for reactions 
and displacements) are 13%, for the case considering only the self-weight, and 5%, for the case 
considering the self-weight and the applied load. These important discrepancies are mainly due to 
the differences obtained in terms of geometry. 
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Table 3 - Modal analyses: frequencies of the first ten mode-shapes. 
Mode Photo Laser 1 Laser 2  Mode Photo Laser 1 Laser 2 

1 6.1 Hz 6.7 Hz 6.7 Hz  6 95.0 Hz 101.8 Hz 100.1 Hz 
2 19.0 Hz 21.5 Hz 21.1 Hz  7 96.9 Hz 106.0 Hz 103.1 Hz 
3 28.2 Hz 28.9 Hz 28.5 Hz  8 126.4 Hz 131.6 Hz 130.0 Hz 
4 56.0 Hz 63.5 Hz 61.9 Hz  9 131.0 Hz 144.5 Hz 140.5 Hz 
5 86.3 Hz 89.4 Hz 88.4 Hz  10 143.3 Hz 151.6 Hz 147.8 Hz 

All the modal analyses (Table 3) were finalized in less than 6 minutes and did not reveal any 
critical issue. Even the comparison among the frequencies of the first ten mode-shapes clearly 
highlights important discrepancies, up to 13%. 
Conclusions 
In this study two work pipelines have been proposed and tested for the automatic construction of 
finite element models starting from site surveys. The two different types of surveys taken into 
consideration are the photographic and the laser scanner. The software stack used to develop the 
pipelines belongs to the Autodesk environment; the software Cloud Compare has been also used 
to improve the filter phase. 

Two cases studies were considered, a concrete slab and a small-scale steel frame. For the 
concrete slab, the LOD was set to even detect the roughness of the surfaces: despite the simplicity 
of the considered specimen, some important discrepancies among the results are present, up to 7% 
for the geometry, and up to 13% for the results of the mechanical (both static and dynamic) 
simulations. These results point out that, even for simple case study and controlled and supervised 
pipelines, the state-of-the-art techniques may provide significant discrepancies, thus justifying the 
need of further investigations and studies. More extended results (including those related to the 
small-scale steel frame) will be presented during the conference and published in due course. 
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Abstract. This work presents a numerical framework for long dynamic simulations of structures 
made of multiple thin shells undergoing large deformations. The C1-continuity requirement of the 
Kirchhoff-Love theory is met in the interior of patches by cubic NURBS approximation functions 
with membrane locking avoided by patch-wise reduced integration. A simple penalty approach for 
coupling adjacent patches, applicable also to non-smooth interfaces and non-matching 
discretization is adopted to impose translational and rotational continuity. A time-stepping scheme 
is proposed to achieve energy conservation and unconditional stability for general nonlinear strain 
measures and penalty coupling terms, like the nonlinear rotational one for thin shells. The method 
is a modified mid-point rule with the internal forces evaluated using the average value of the stress 
at the step end-points and an integral mean of the strain-displacement tangent operator over the 
step computed by time integration points. 
Introduction 
One-step implicit time integration methods such as Newmark’s schemes are only conditionally 
stable when used in large deformation analyses [1]. Simo and Tarnow proposed a simple method 
that guarantees unconditional stability by conserving the algorithmic energy in elastodynamics [2]. 
However, energy conservation is lost for other structural models as the Kirchhoff-Love theory, 
more efficient in the terms of spatial DOFs for thin shell problems, where the strain-displacement 
relationship is no longer quadratic. This work presents a numerical framework for long term 
dynamic simulations of structures made of multiple thin shells undergoing large deformations. The 
C1-continuity requirement of the Kirchhoff-Love theory is met in the interior of patches by cubic 
NURBS approximation functions, according to the isogeometric concept, with membrane locking 
avoided by patch-wise reduced integration [4]. A simple penalty approach for coupling adjacent 
patches, applicable to either smooth or non- smooth interfaces and either matching or non-
matching discretizations is adopted to impose translational and rotational continuity [5]. The time-
stepping scheme of Simo and Tarnow is generalized to achieve energy conservation for generally 
nonlinear strain measures and penalty coupling terms, like the nonlinear rotational one for thin 
shells. The method is based on a particular integral mean of the internal forces over the step, that 
includes Simo and Tarnow’s method as a reduced quadrature rule, and has unconditional stability. 
Large deformation dynamic problem with general nonlinear strain measure 
Let us consider a generic elastic body characterized by a linear elastic constitutive law 

𝝈𝝈 = 𝑪𝑪𝑪𝑪 

where 𝝈𝝈 is the vector collecting the stress/generalized stress components, 𝑪𝑪 is the vector col- 
lecting the strain/generalized strain components and C is the constitutive matrix. The strain is  
linked to the displacement field u by means of a differential operator generally nonlinear in u: 

𝑪𝑪 = 𝑪𝑪(𝒖𝒖)   (1) 
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Applying a spatial discretization technique, for instance the finite element method or the 
isogeometric analysis, the displacement is approximated at element level as 

𝒖𝒖 = 𝐍𝐍u𝐮𝐮e    

where matrix 𝐍𝐍u collect the spatial shape functions. The strain energy of the body can be 
expressed as a sum of element contributions as Φ ≡ ∑ Φe(𝐮𝐮e )𝑒𝑒 , with 

Φe(𝐮𝐮e ) ≡ ∫ 1
2
𝑪𝑪𝑻𝑻𝐂𝐂𝑪𝑪 dΩeΩ𝑒𝑒

  (2) 

where Ωe is the element domain. The first variation of the strains in Eq.(1) can be written as 

𝛿𝛿𝑪𝑪 = 𝐁𝐁eδ𝐮𝐮e   (3) 
where matrix B is the strain-displacement tangent operator. The first variation of the element 

strain energy 
Φe
′ (𝐮𝐮e )δ𝐮𝐮e ≡ ∫ 𝛿𝛿𝑪𝑪𝑇𝑇𝐂𝐂𝑪𝑪 dΩe = δ𝐮𝐮eTΩ𝑒𝑒

∫ 𝐁𝐁e𝑇𝑇(𝐮𝐮e)𝛔𝛔(𝐮𝐮e)dΩeΩ𝑒𝑒
= δ𝐮𝐮eT𝒔𝒔𝑒𝑒(𝐮𝐮e)   (4) 

allows us to define the element internal force vector 

𝒔𝒔𝑒𝑒(𝐮𝐮e) ≡ ∫ 𝐁𝐁e𝑇𝑇(𝐮𝐮e)𝛔𝛔(𝐮𝐮e)dΩeΩ𝑒𝑒
    with    𝛔𝛔(𝐮𝐮e) = 𝐂𝐂𝐂𝐂(𝐮𝐮e)  (5) 

Similarly, the velocity field v is approximated consistently as 

𝒗𝒗 = 𝐍𝐍u𝐯𝐯e 

where 𝐯𝐯e are the discrete velocity DOFs. The kinetic energy is then sum of element 
contributions T ≡ ∑ Te(𝐯𝐯e)𝑒𝑒  

T𝒆𝒆(𝐯𝐯e) ≡ ∫ 𝟏𝟏
𝟐𝟐𝜴𝜴𝒆𝒆
𝑪𝑪𝑻𝑻𝚵𝚵𝑪𝑪 dΩe = 𝟏𝟏

𝟐𝟐
𝒗𝒗𝒆𝒆𝑻𝑻𝑴𝑴𝒆𝒆𝒗𝒗𝒆𝒆   (6) 

where 𝚵𝚵 is a diagonal matrix with the mass density associated to each component of 𝒗𝒗, which 
can be different for examples when v collects both translational and rotational velocities, and 𝐌𝐌e 
is the element mass matrix. 

After a standard assemblage process, the semi-discrete equations of motion for the discretized 
body can be written, neglecting the damping, in terms of the global DOFs u and v as 

�𝐯𝐯 = �̇�𝐮
𝐌𝐌�̇�𝐯 + 𝐬𝐬(𝐮𝐮) = 𝐟𝐟 (7) 

where a dot denotes time derivative and 𝐟𝐟 is the discrete load vector, while the total energy of 
the system is 

Π(𝐮𝐮, 𝐯𝐯) ≡ 𝑇𝑇(𝐯𝐯) + Φ(𝐮𝐮) − 𝐮𝐮T𝐟𝐟  (8) 
One-step time integration 
Letting 𝛼𝛼 = 𝑡𝑡−𝑡𝑡0

𝑡𝑡1−𝑡𝑡0
 a one-step time integration scheme can be obtained introducing the 

approximation in time for u and v over the time step [𝑡𝑡0, 𝑡𝑡1] 

�
𝐯𝐯(α) = 𝐯𝐯0 + α(𝐯𝐯1 − 𝐯𝐯0)
𝐮𝐮(α) = 𝐮𝐮0 + α(𝐮𝐮1 − 𝐮𝐮0) (9) 

The semi-discrete equations of motion (7) can be then rewritten in discrete form as 

�
𝐯𝐯 = 𝐮𝐮1−𝐮𝐮0

Δt 

𝐌𝐌𝐯𝐯1−𝐯𝐯0
Δt 

+ 𝐬𝐬(𝐮𝐮)  = 𝐩𝐩
 (10) 
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where 𝐯𝐯, 𝐬𝐬 and 𝐩𝐩 are representative value of 𝐯𝐯(α), 𝐬𝐬(α) and 𝐩𝐩(α) over the step. For 𝐯𝐯  and 𝐩𝐩, a 
simple and natural choice is to define them as the integral mean of the corresponding function, so 
that we have 

�
𝐯𝐯1+𝐯𝐯0
2

= 𝐮𝐮1−𝐮𝐮0
Δt 

𝐌𝐌𝐯𝐯1−𝐯𝐯0
Δt 

+ 𝐬𝐬(𝐮𝐮)  = 𝐩𝐩   with  𝐩𝐩 ≡ ∫ 𝒑𝒑(𝛼𝛼)𝑑𝑑𝛼𝛼1
0

 (10) 

We can get 𝐯𝐯1 from the first of Eq. (11) and substitute it into the second, so obtaining the final 
form of the discrete equations of motion in terms of the only unknowns 𝐮𝐮1: 

2𝐌𝐌𝐮𝐮1+𝐮𝐮0−𝐯𝐯0Δt
Δt2 

+ 𝐬𝐬(𝐮𝐮) = −𝐮𝐮T𝐟𝐟  (8) 

Different choices are possible for 𝐬𝐬(𝐮𝐮). 
The new integration scheme 
Now, we present a new one-step integration method aimed at preserving energy as well as the 
strain-displacement compatibility at the step end-point for generally nonlinear strain measures. 
Starting for the time interpolation in Eq.(9), the idea is to generalize the Simo and Tarnow method 
as follows. Firstly, at each spatial integration point, a representative value of the strain- 
displacement tangent operator is computed as integral mean of B(u) over the step: 

𝐁𝐁� = ∫ 𝐁𝐁(𝛼𝛼)𝑑𝑑𝛼𝛼 ≈ ∑ 𝐁𝐁(𝐮𝐮(𝛼𝛼𝑛𝑛)) 𝜔𝜔�𝑛𝑛
𝑁𝑁𝑡𝑡
𝑛𝑛=1

1
0   (13) 

Then the representative internal force vector of the step is evaluated as 

�̅�𝐬(𝐮𝐮) = ∫ 𝐁𝐁�T𝝈𝝈𝑑𝑑𝑑𝑑     with    𝝈𝝈 = 𝐂𝐂 𝑪𝑪(𝒖𝒖1)+𝑪𝑪(𝒖𝒖0)
𝟐𝟐

1
0   (14) 

with 𝛼𝛼𝑛𝑛 and 𝜔𝜔�𝑛𝑛 temporal position and weight of the nth time integration point respectively. So, 
the scheme is very similar to Simo and Tarnow’s one [2]. The difference is the integral mean 𝐁𝐁� 
instead of the mean value 𝐁𝐁1

2 . This choice is the crucial idea to achieve energy conservation for 

arbitrarily nonlinear strain-displacement laws. Indeed, it is easy to verify that 

𝐂𝐂1 − 𝐂𝐂0 = 𝛥𝛥𝑡𝑡 ∫ �̇�𝐂𝑑𝑑𝛼𝛼1
0 =  𝛥𝛥𝑡𝑡 ∫ 𝐁𝐁�𝐮𝐮(α)��̇�𝐮𝑑𝑑𝛼𝛼1

0 =  𝐁𝐁� (𝐮𝐮1 − 𝐮𝐮0)  (15) 

and then energy conservation holds independently of the strain measure nonlinearity: 

(𝐮𝐮1 − 𝐮𝐮0) T�̅�𝐬(𝐮𝐮) = ∫ (𝐮𝐮1 − 𝐮𝐮0) T𝑉𝑉 𝐁𝐁�T 𝐂𝐂 (𝐂𝐂1+𝐂𝐂0)
𝟐𝟐

dV

   = 𝟏𝟏
𝟐𝟐 ∫ {𝐂𝐂1T𝑉𝑉  𝐂𝐂𝐂𝐂1 − 𝐂𝐂0T 𝐂𝐂𝐂𝐂0}dV = Φ(𝐮𝐮1) −  Φ(𝐮𝐮1)

 (15) 

Clearly, the energy conservation tends to be exact by increasing the number of time integration 
points in (13). For example the Simo and Tarnow method, that is only approximately conserving 
for nonlinear measures other than quadratic, can be seen as a reduced integration of the proposed 
method where the integral mean of 𝐁𝐁 is approximated by a single Gauss point  in time. Although 
the number of time integration point for a converged 𝐁𝐁� is a-priori unknown for general problems, 
a few time points, as shown in the numerical examples, gives energy conservation for practical 
applications and time steps. Compared to the full integration of 𝐬𝐬(𝐮𝐮) discussed in [1], the number 
of time integration points required is usually lower, because only 𝐁𝐁(𝐮𝐮)  in now integrated instead 
of the more nonlinear term 𝐁𝐁(𝐮𝐮)T𝝈𝝈(𝐮𝐮). More importantly, in our proposal the internal forces are 
evaluated using only the stress at the end-points of the step, avoiding the inaccuracies caused by 
the inner stress derived from the displacement. With respect to the Sansour et al. method [3], the 
proposal fulfill exactly the strain-displacement relation at the step end-points and results to be 
unconditionally stable. 
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Extension to nonlinear multi-body coupling laws 
Multi-body coupling laws can be generically written as 

𝐂𝐂c(𝒖𝒖) = 𝟎𝟎      ∀𝒙𝒙 ∈ 𝓵𝓵   (17) 

where ℓ denotes the boundary of the bodies where the coupling occurs. Without introducing 
additional DOFs for the Lagrange multipliers and upsetting the structure of existing finite ele- 
ment packages, general couplings expressed by Eq. (17) can be easily imposed in penalty form by 
adding to the strain energy of the system the penalty term 

Φc(𝐮𝐮c ) ≡ ∫ 1
2ℓ
𝐂𝐂c(𝒖𝒖)𝑻𝑻𝐂𝐂c𝐂𝐂c(𝒖𝒖) ds (18) 

where 𝐂𝐂c(𝒖𝒖) is interpreted as a pseudo-strain that is constrained to negligible values by a stiff 
pseudo-constitutive matrix 𝐂𝐂c = 𝑎𝑎 𝐂𝐂�c with matrix 𝐂𝐂�c chosen on the basis of the actual materi- als 
and geometry of the coupled bodies [6], so that the penalty factor a defines how small we want the 
penalty energy to be with respect to strain energy of the system. For general structural problems 
and coupling laws, the constraint tends to be satisfied point-wise with the mesh refinement as in 
the Lagrange multipliers approach for a sufficiently high penalty factor.  The penalty coupling is 
useful to model real complex structures with generic interfaces and non- matching discretizations 
[5]. The gradient of Φc(𝐮𝐮c ) provides the equivalent internal forces due to the coupling 

𝒔𝒔𝑐𝑐(𝐮𝐮) ≡ ∫ 𝐁𝐁c𝑇𝑇(𝐮𝐮)𝛔𝛔 dsℓ     with    𝛔𝛔𝑐𝑐 = 𝐂𝐂𝐂𝐂c(𝐮𝐮)  (19) 

that has the same form of the element internal force vector with 𝐁𝐁c(𝐮𝐮) the tangent pseudo- 
strain/displacement operator. This is then assembled together with the element ones to obtain the 
global internal force vector to be used in global equations of motion Eq. (7). In this frame- 
work, the time integration method developed in the previous subsection can be directly applied to 
problems with generally nonlinear multi-body couplings, guarantying energy conservation and 
unconditional stability. 

 

Figure 1: Thin-walled cantilever beam: geometry, boundary conditions and mesh 
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Figure 2: Thin-walled cantilever beam in composite material: Newmark vs new proposal 

Numerical examples: thin-walled cantilever beam with local buckling 
A thin-walled cantilever beam with a U cross section is considered in this test. Geometry, load, 
boundary conditions and mesh are reported in Fig. 1. Both isotropic and composite materials are 
considered. The isotropic material is characterized by 𝐸𝐸 =  1.0 × 107 and 𝜈𝜈 =  0.3, while for 
the composite material we have 𝐸𝐸1  =  3.06 ×  107,𝐸𝐸2  =  𝐸𝐸3  =  8.70 × 106, 𝜈𝜈12  =  0.29, 
𝜈𝜈23  =  𝜈𝜈13  =  0.3 and 𝐺𝐺12  =  𝐺𝐺13  =  3.24 ×  106,𝐺𝐺23  =  2.90 × 106, with the material 
direction 1 corresponding to the longitudinal beam axis. The thickness of the walls is 0.05, while 
the density per unit of volume is 10−2. The approximation is based on cubic NURBS functions. In 
such a structure, a patch coupling strategy is necessary for the Kirchhoff-Love shell model along 
the red interfaces. The load amplitude varies linearly from 0 to 150, a little higher value than the 
static buckling load, in 0.075 seconds. Afterwards, the load is removed linearly in 0.075 seconds 
and the simulation proceeds without load. The time step of the analysis is ∆𝑡𝑡 =  0.003125 
seconds. The results in terms of deflection of the loaded point and of total energy of the system 
are reported in Fig. 2 for the composite case. The Newmark method fails to preserve the energy 
after the load removal and its iterative solution fails when the energy oscillation becomes relevant. 
This is even more marked in the composite case with a dramatic blow-up. Instead, the proposal is 
perfectly stable with constant energy for a zero load and without any difficulty in the iterative 
solution. 
Conclusions 
A novel and very simple one-step time integration scheme for large deformation dynamics of 
elastic structures was presented.  It is a generalization of the Simo and Tarnow method [2], 
designed to achieve unconditional stability for a quadratic strain, to arbitrarily nonlinear strain 
measures. The method is also suitable for models with finite 3D rotations, parametrized by the 
pseudo-rotation vector [9, 10]. 
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Abstract. A new method for high-fidelity aeroelastic static analysis of composite laminated wings 
is proposed. The structural analysis and the fluid-dynamic analysis are coupled in a heterogeneous 
staggered process. The Finite Element Method (FEM), the Carrera Unified Formulation (CUF) 
and Equivalent Plate Modelling (EPM) are combined to model complex three-dimensional 
geometries in a bi-dimensional framework; Computational Fluid Dynamics (CFD) is employed to 
solve the Navier-Stokes equations and different turbulence models (i.e. Spalart-Allmaras) through 
SU2, an open-source software that implements C++ routines for 3D fluid-dynamics analysis. The 
Moving Least Square patch technique is adopted to manage the fluid-structure interaction. The use 
of an equivalent plate model, as opposite to 1D  models often employed in the literature, 
shows competitive performances in terms of number of degrees of freedom. High-fidelity 
aerodynamics allows studying non-linear phenomena associated to irregularities of the fluid-
structure interaction, showing a level of accuracy that low-fidelity methods such as Vortex Lattice 
Method (VLM) and Doublet Lattice Method (DLM) are unable to provide. Such advantages are 
balanced by the need to elaborate a staggered iterative method for the resolution of static 
aeroelastic problems, which leads to higher computational costs. 
Introduction 
Aeroelasticity has a fundamental role in many fields of engineering. Multiple strategies are 
adopted in the literature to investigate the behaviour of structures subjected to the action of a fluid, 
so to avoid catastrophic phenomena such as divergence or flutter. Besides providing insights into 
potentially catastrophic phenomena, aeroelastic methods allow to investigate the aerodynamic 
loads redistribution due to the structural deformation, thus providing a valuable tool for the 
assessment of the structural performance. When composite materials are involved, Aeroelastic 
Tailoring aims at selecting suitable material arrangements so to provide reasonable margins with 
respect to dangerous operating conditions. Such tasks generally require reliable computational 
models for representing the aero-structural interaction. 

CUF [1] provides a general framework for the generation of variable order structural theories 
and it has been successfully employed for the generalised analysis of composite structures. In this 
work, EPM [2] is combined with CUF and FEM to generate variable order structural models for 
aeroelastic analysis. 

The fluid properties and phenomena are studied through the CFD open-source software SU2 
[3], from which pressure distribution is obtained. This high-fidelity approach prevents the loss of 
information inherent to low fidelity theories such as VLM or DLM, especially when the drag and 
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possible non-linearities coming from irregular geometries or high-speed regimes play important 
roles. 

After a brief introduction to the main items of the developed framework, some representative 
results are reported to illustrate its scope and potential. 
Theoretical Background 
In this work an EPM+CUF+FEM approach is chosen to model generally complex composite 
structures within a static aeroelastic context. The strategy shows to be computationally competitive 
with respect to classical CUF beam models employed for aeroelastic analysis. In the CUF, the 
kinematic model may be represented as 

𝒖𝒖(𝒙𝒙�) = 𝑭𝑭(𝑥𝑥�3)𝑼𝑼(𝑥𝑥�1, 𝑥𝑥�2)                                                                                                                    (1) 

where 𝒖𝒖(𝒙𝒙�) collects the displacement components at the space point 𝒙𝒙� = (𝑥𝑥�1, 𝑥𝑥�2, 𝑥𝑥�3) which 
spans a three-dimensional structural domain, 𝑭𝑭(𝑥𝑥�3) is the matrix containing through-the-thickness 
functions and 𝑼𝑼(𝑥𝑥�1,𝑥𝑥�2) are the generalized displacement components. 

In the proposed static aeroelastic framework, the kinematic model is employed in conjunction 
with the Principle of Virtual Displacements (PVDs) for addressing generally complex structural 
components of aeronautic interest, e.g. a wing with skins or spars or ribs. The volume integration 
needed for computing the stiffness contributions takes into account the material distribution of the 
considered structure, separating through-the-thickness integration from the integration over the 
reference plane, thus providing an equivalent plate representation of the analysed structure. 

The CFD analysis is based on Reynolds-averaged Navier-Stokes equations and turbulence 
models such as the Spalart-Allmaras or 𝑘𝑘 − 𝜔𝜔 models. SU2 solves these equations through a 
discretization of the 3D domain and applying the Finite Volumes Method once the freestream 
conditions (𝜌𝜌∞, 𝑉𝑉∞) are given. If 𝒙𝒙� = (𝑥𝑥�1, 𝑥𝑥�2, 𝑥𝑥�3) is the three-dimensional CFD domain, tractions 
are defined by 

𝒕𝒕(𝒙𝒙�) =  
1
2
𝜌𝜌∞𝑉𝑉∞𝒄𝒄(𝒙𝒙�)𝒏𝒏(𝒙𝒙�)                                                                                                                (2)  

where 𝒄𝒄(𝒙𝒙�) is the vector of pressure and skin friction coefficients 𝑐𝑐𝑝𝑝, 𝑐𝑐𝑓𝑓,𝑥𝑥�1 and 𝑐𝑐𝑓𝑓,𝑥𝑥�2 and 𝒏𝒏(𝒙𝒙�) 
contains the normal vectors to the surface defined as a boundary wall. 

These tractions are transferred to the structural model through the Moving Least Square patch 
technique, which is based on the conservation of energy and minimisation of the mean square error 
on two displacement fields defined over the aerodynamic and structural domains, weighted by 
radial basis functions. 

�𝑭𝑭𝒌𝒌�𝛿𝛿𝑼𝑼��𝑘𝑘

𝑁𝑁�

𝑘𝑘=1

= � −𝒕𝒕(𝒙𝒙�)
𝛺𝛺�

� 𝑆𝑆𝑖𝑖

𝑁𝑁�

𝑚𝑚=1

�ℎ𝑖𝑖𝑖𝑖�𝛿𝛿𝑼𝑼��𝑚𝑚

𝑁𝑁�

𝑘𝑘=1

𝑑𝑑𝑨𝑨                                                                (3)   

Minimise � 𝜒𝜒�Tr�𝛿𝛿𝑼𝑼��|𝛤𝛤 − Tr�𝛿𝛿𝑼𝑼��|𝛤𝛤�
2
𝑑𝑑𝑨𝑨

𝛤𝛤
                                                                           (4) 

where 𝑁𝑁� and 𝑁𝑁� are the number of CFD mesh nodes and structural mesh nodes respectively 
(with indexes 𝑘𝑘 and 𝑚𝑚), 𝑆𝑆𝑖𝑖 are base functions for the aerodynamic surface domain approximation, 
ℎ𝑖𝑖𝑖𝑖 is the single element of the interpolation matrix 𝑯𝑯, 𝜒𝜒 is the radial basis function and 𝛤𝛤 is the 
virtual surface domains on which the traces of 𝛿𝛿𝑼𝑼�  and 𝛿𝛿𝑼𝑼�  are projected. 

The staggered iterative process for static aeroelastic analysis consists of the recalculation of 
pressure loads for every change in the geometry of the structure caused by deformation. 𝑯𝑯 is 
employed to transfer information from the structural to aerodynamic domain and vice versa, and 
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it is computed once and re-used in every staggered iteration. An overall schematic representation 
of the method is reported in Fig.(1). 

 
Figure 1: Scheme of the staggered iterative static aeroelastic analysis 

Preliminary computational results 
Some preliminary results are reported here. First, the EPM is assessed in terms of accuracy 
considering a torsional load scheme for a realistic composite wing configuration. Second, the 
validation of the static aeroelastic response of an isotropic wing with a NACA2415 airfoil 
transverse section and two spars is shown and compared to the solutions reported in Ref.[4]. 
Structural validation: torsion of a composite [0/90] laminate wing 
A NACA2415 straight wing with span 𝑏𝑏 = 5 m, chord 𝑐𝑐 = 1 m, skin thickness of 𝑡𝑡𝑠𝑠𝑘𝑘 = 0.04ℎ, 
being ℎ the height of the airfoil, and two spars positioned at 𝑥𝑥𝑠𝑠𝑝𝑝1 = 0.25𝑐𝑐 and 𝑥𝑥𝑠𝑠𝑝𝑝2 = 0.75𝑐𝑐 
respectively with thickness 𝑡𝑡𝑠𝑠𝑝𝑝1 = 0.1ℎ and 𝑡𝑡𝑠𝑠𝑝𝑝2 = 0.07ℎ is considered. The wing is subjected to 
a torsional load applied through a suitable fictitious distribution of pressures on portions of the 
lower and upper sides of the wing, as shown in Fig.(2). The value of the pressure distribution is 
𝑝𝑝 = 1 Pa. The results presented in Fig.(3a-3b) show good accuracy with respect to the results 
obtained from ABAQUS through ~106 quad-structured 2D shell elements. The error 𝑒𝑒% is 
measured on the maximum displacement, located at the leading edge of the tip section, and on the 
tip-section twist ∆𝑢𝑢𝑧𝑧 = 𝑢𝑢𝑧𝑧(0, 𝑏𝑏, 0) − 𝑢𝑢𝑧𝑧(𝑐𝑐, 𝑏𝑏, 0). 

 
Figure 2: Load scheme for the structural validation. 

Aeroelastic deformation of a straight wing in subsonic conditions 
The same geometry from Section 1.1 is adopted for a static aeroelastic analysis with isotropic 
aluminium, considering a freestream at 𝑉𝑉∞ = 50 m/s in standard conditions. The result is 
compared with that reported in Ref.[4] and it shows a 7% difference due to the difference between 
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the employed aerodynamic theories. In Fig.(4a-4b) the step values of 𝑢𝑢𝑧𝑧,𝑚𝑚𝑚𝑚𝑥𝑥 and percentual error 
from the staggered iterative process are presented, with a comparison between 𝑁𝑁𝑢𝑢 = 1 and 𝑁𝑁𝑢𝑢 =
3, which represents the order of the expansion in the kinematic assumption. 

 
Figure 3: Results of structural validation for a torsional load on a composite wing 

 

 
Figure 4: Convergence of the reference analysis variable in the staggered aeroelastic solution 

scheme 
Conclusions 
Some preliminary results from a new CUF+FEM+EPM+CFD approach for static aeroelastic 
analysis are presented, showing the flexibility of the proposed tool for the analysis of complex 
geometries and different materials. The main advantage of the method is the accuracy in the fluid-
structure coupling, which allows the study of complex aerodynamic conditions without changing 
anything in the structural approach. 
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Abstract. This work proposes a new FE model to predict dynamic crack propagation mechanisms 
in quasi-brittle materials. The numerical strategy uses a Moving Mesh (MM) technique consistent 
with the Arbitrary Lagrangian-Eulerian (ALE) formulation to reproduce the variation of the 
geometry of the computational domain caused by dynamically growing cracks. Specifically, the 
motion of the mesh nodes takes place consistently with conditions dictated by classic Fracture 
Mechanics, which provide conditions concerning the direction of propagation and the velocity of 
advancing cracks. As a remarkable key novelty, the proposed method introduces the ALE 
formulation of the M-integral for extracting Dynamic Stress Intensity Factors (DSIFs) at a moving 
crack front. This formulation allows extracting fracture variables on deforming elements without 
losing accuracy. Comparisons with analytical and numerical data are proposed to assess the 
validity and efficiency of the proposed strategy. 
Introduction 
Recent developments in computational fracture mechanics have led to a proliferation of numerical 
methodologies for analyzing the failure behavior of most materials typically used in civil 
engineering and mechanical applications. Many numerical methodologies have been developed in 
the context of the Finite Element method because of its widespread diffusion and flexibility in 
modeling complex structures (see, for instance, [1-10]). Unfortunately, each method presents 
advantages and disadvantages, so it is relatively complicated to identify the best one. 

Currently, there is an increasing request for numerical methods that combine high accuracy 
and computational efficiency [11, 12]. 

Consistently with such a necessity, this work presents an effective numerical model for 
reproducing dynamic fracture phenomena in quasi-brittle materials. The proposed model consists 
of an FE code enhanced by a Moving Mesh (MM) technique based on the Arbitrary Lagrangian-
Eulerian (ALE) formulation [13, 14]. Specifically, the MM is used to reproduce the geometric 
variation of the computational domain because of the dynamically advancing cracks. Besides, it 
offers a reliable evaluation of key fracture variables (i.e., Dynamic Stress Intensity Factors 
(DSIFs)) owing to the use of the Interaction Integral method (i.e., M-integral). In particular, this 
work proposes as a key novelty the ALE formulation of the dynamic M-integral, which permits 
using the Interaction integral in the context of the ALE formulation. 

The validity of the present approach is assessed by comparing the proposed method’s 
previsions with experimental data and numerical results available in the literature. 
Theoretical background 
Arbitrary Lagrangian-Eulerian formulation 
Traditional problems of continuum mechanics are formulated either in a spatial or a material 
system of coordinates, denoted as Rx and RX, respectively. The ALE formulation uses a third 
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coordinate system, that is the mesh (or referential) coordinates system Rχ, in which the coordinate 
χ identifies the nodes of the computational mesh. A proper set of mapping functions serve to link 
Rx, RX, and Rχ (see Fig. 1). The use of the ALE formulation requires that the governing equations 
of the problem must be expressed in Rχ instead of RX. According to the ALE, the gradient of a 
vectorial field ( , )M tv X  in the material domain can be stated in the referential one using the 
following expression: 

 1
M R

M M R R −∂ ∂ ∂
∇ = = = ∇

∂ ∂ ∂ Ψ
v v χv v J
X χ Ψ

 (1) 

where ( ) ( )M∇ ⋅ = ∂ ⋅ ∂X , ( ) ( )R∇ ⋅ = ∂ ⋅ ∂χ , and ΨJ  is the Jacobian of the mapping function 
( , )tΨ χ . 

Governing equations 
The governing equations at the base of the proposed method are twofold: the fundamental 
equations of solid mechanics and those concerned with the MM problem. In particular, the latter 
is consistent with the Laplace regularization approach, which smoothly moves mesh nodes, 
avoiding excessive distortions for the Finite Element. Besides, additional equations of Fracture 
Mechanics are included for (i) identifying crack onset conditions, (ii) evaluating the direction of 
propagation, and (iii) quantifying the velocity of the crack tip. 
The Interaction Integral method 
The Interaction Integral method, also known as M-integral, is a strategy used in numerical methods 
to extract DSIFs at the crack front. The M-integral expression derives from the J-integral applied 
to a superimposed state formed by two admissible fields. In particular, the first regards the problem 
under investigation (denoted as the actual state), while the second is an auxiliary state (aux) with 
DSIFs known. The expression of the M-integral assumes the following form: 
 

 
( ) ( )

( ) ( )
,1 ,1 1 ,

,1 ,1 ,1 ,1

act aux aux act act aux act aux
ij j ij j ij ij j j i iA

act aux aux act act aux aux act
j j j j j j j jA

M u u u u q dA

u u u u u u u u qdA

σ σ σ ε ρ δ

ρ ρ

 = + − + + 
 + + − + 

∫
∫

 

     
 (2) 

Numerical implementation 
The proposed strategy has been implemented in COMSOL Multiphysics [15], a commercially 
available software. COMSOL offers a helpful tool that connect it with MATLAB software, thereby 
managing COMSOL functions through script codes [16, 17]. This feature has served to develop a 

 

Fig. 1 – A schematic representation of Spatial, Material, and Referential coordinate systems. 
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user-made script that manages the propagation process automatically. The fundamental steps of 
the script are reported in Table 1. For further clarification, see [18-20]. 

 
Table 1 – Main steps of the MATLAB script 

START 1. Set data of the problem: Geometry, material properties and boundary conditions 
 2. Define stretching segment and initial mesh configuration 
 3. Loading process: Evaluate DSIFs and assess crack initiation conditions 
 4. Propagation process: Evaluate crack tip velocity and check mesh quality 

STOP 5. Check tolerance to the angle variation, crack arrest or collapse conditions  
  
Results 
Fig. 2-a shows a rectangular pre-cracked plate of length L=10 m, height 2H=4 m, and thickness 
b=1 m. The plate is subjected to a uniform and distributed traction σ0 = 500 MPa at the upper 
boundary. Externally, line constraints on vertical boundaries limit the horizontal displacements of 
the plate against horizontal displacements. The Young’s Modulus, Poisson’s ratio, and mass 
density are equal to E=210 GPa, ν=0.3, ρ=8000 kg/m3, respectively. Besides, the dilatational and 
Rayleigh wave speeds are cd=5944.5 m/s and cr=2942.8 m/s, respectively.  

Fig. 2-b depicts the mesh configuration used in the analysis. It comprises 432 triangular 
elements densely arranged around the crack tip and somewhat coarser in the remaining zones. 

The analytical solutions associated with this fracture problem concerning a stationary crack and 
a moving crack have been developed by Freund [21]. In particular, the mode I DSIF analytical 
expressions gained by Freund for stationary and moving cracks assume these form: 
 

 
( ) ( )( )

( ) ( )( )
( )

0

0

1 220, (Stationarycrack)
1

1 22 1, (Moving crack)
1 1 2

d c
I

d c r
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r
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K t
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− −
=

−

− − −
=

− −





 (3) 

Note that such solutions are valid until the stress wave generated by the action of the external 
loads on the upper boundary of the plate, and reflected by the bottom boundary, reaches the crack 
tip. This behavior is experienced in the interval of time estimated to be 0<t<3tc = 3H/cd. 

 

Fig. 2 – (a) Geometry and boundary conditions; (b) Mesh configuration adopted in numerical 
simulations. 

Besides analytical solutions developed by Freund, there are several numerical results in the 
literature. Among these, Menouillard et al. [22] and Chen et al. [23] have investigated the fracture 
behavior of the plate using an XFEM strategy and an advanced numerical procedure based on the 
Singular Edge-based Smoothed Finite Element Method (SE-FEM), respectively.  

In order to assess the reliability of the proposed model, it is supposed a failure behavior of the 
plate characterized by an initial stationary crack that starts moving for t/tc>1.5.  
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Fig. 3-a compares the normalized Mode-I DSIFs KI/K0 ( 0 0σ=K H ) versus normalized time 
t/tc predicted by the proposed method with the analytical solution of Freund and numerical results 
of Menouillard et al. [22] and Chen et al. [23]. The results denote that the proposed method agrees 
well with both analytical and numerical solutions since no appreciable differences in the curves of 
KI are observed.  

A parametric study in terms of mesh configurations is now performed to assess the 
computational efficiency of the numerical model. In particular, the study compares the mesh in 
Fig. 2-b (Mesh M1), with the Mesh M2 (entirely coarse with 175 triangular elements) and the 
Mesh M3 (refined configuration of 1113 triangular elements) reported in Fig. 4-b. 

Fig. 4-a shows that the mesh discretization does not influence Mode-I DSIFs results as there 
are no significant differences between the curves. In addition, Fig. 4-a reports the percentage error 
(ERR) between numerical results and analytical solutions defined as follows: 

 
Analytical Numerical
I I

Analytical
I

K K
ERR(%)

K
−

=  (4) 

From the curves of ERR, it is possible to note that the proposed approach extracts KI quite well for 
each mesh configuration because the percentage variation is less than 10%, even if peaks that 
exceed this threshold just before a re-meshing event occurs. 
 

 

Fig. 3 – (a) Comparison in terms of normalized Mode-I DSIF between the analytical solutions 
proposed by Freund [21], the numerical results obtained by Chen et al. [23] and Menouillard 

et al. [22] and the present approach; (b) A schematic of the crack propagation process 
simulated by the proposed approach. 

 

Fig. 4 – (a) Comparison in terms of normalized Mode-I DSIF and percentage error between 
numerical results and analytical solutions; (b) Mesh configurations used in the parametric 

study. 
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Conclusions 
This work has proposed a new FE modeling strategy for reproducing dynamic crack propagation 
phenomena in quasi-brittle materials. The results denote that the proposed model ensures accurate 
fracture variable prediction, thus representing a powerful numerical tool for analyzing the failure 
behavior of quasi-brittle materials under the action of dynamic loadings. 
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Abstract. Osteoporosis is called a silent disease because bone fragility manifests itself to the 
patient only in an advanced state, through fracture and pain. Medical and industry leaders 
recognize that the current golden standard diagnostic method, densitometry, or Dual Energy X-ray 
Absorptiometry (DEXA), may not always be sufficient to assess the patient’s real risk of fragility 
fracture [1]. Indeed, pathological alterations affect not only the mineral content (quantity) of the 
bone, but also its “quality”, which can be measured from the elastic properties of the bone internal 
trabecular structure by means of the Bone Elastic Structure Test, BES TEST®. In this study, the 
incidence of fragility fractures was assessed after a 3-year follow-up period in the women enrolled 
for a population study in 2015. The BES TEST® resulted an effective estimator of bone health, 
and can improve the assessment of the patient’s fracture risk map. 
Introduction 
Osteoporosis is called a silent disease, due to the fact that bone fragility often manifests itself to 
the patient in an advanced state, through a major fracture (such as that of femur or wrist) or pain 
due to trabecular micro-fractures (often in the vertebrae).  

The current golden standard diagnostic method is the densitometry, or Dual Energy X-ray 
Absorptiometry (DEXA). The DEXA results are usually expressed in terms of T-score, a statistical 
value indicating the number of standard deviations below the average value of young Caucasian 
women. According to WHO [2], there are four general diagnostic categories for women: 

• Normal. A value of BMD within 1 standard deviation of the young adult reference mean (T-
score >= -1).  

• Low bone mass (osteopenia). A value of BMD 1 or more standard deviations below the young 
adult mean, but less than 2.5 standard deviations below this value (-2.5 < T-score < -1).  

• Osteoporosis. A value of BMD 2.5 or more standard deviations below the young adult mean 
(T-score <= -2.5).  

• Severe osteoporosis (established osteoporosis). A value of BMD 2.5 or more standard 
deviations below the young adult mean value in the presence of one or more fragility fractures. 

However, medical and industry leaders recognize that the DEXA examination may not always 
be sufficient to assess the patient’s real risk of fragility fracture: 62% of fragility fractures that 
could be prevented fail to be diagnosed in time [1]. Indeed, bone alterations are not usually detected 
at an early stage by DEXA scans, as they firstly affect the elastic properties of the internal structure 
of the bone [3]. This translates into a cost of care on health budgets that is far from negligible: in 
2010 the EU6 countries (France, Germany, Italy, Spain, Sweden, and UK) spent € 37 billion, and 
this cost is projected to reach €47 billion by 2030 [4].  

The Bone Elastic Structure Test, BES TEST®, is a software medical device for the assessment 
of the bone micro-architecture elasticity, i.e. its ability to withstand loads. It is registered by the 
Italian Ministry of Health and has CE mark and ISO 13485 qualification. 

The purpose of this study is to investigate the effectiveness of BES TEST® in the identification 
of patients at risk for incident osteoporotic fractures.  
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Methods 
BES TEST® 
The test is based on an application of the Cell Method, a direct discrete numerical method, effective 
from the point of view of computation time, memory requirements and accuracy of the results [5, 
6]. A radiographic virtual biopsy of the patient, acquired in the proximal phalanges of the non-
dominant hand, is converted into a structural model and the response to compressive loads along 
the orthogonal axes is computed.  

The simulation results are synthetized in a numerical score, which combines the elastic response 
of the reconstructed structure in several directions, purified of the normalized sum of gray tones, 
indicative of mineralization in the region under examination: the Bone Structure Index (BSI) 
summarizes the elastic behavior of the trabecular structure in different directions and, therefore, 
the ability to withstand the loads of the trabecular part of the bone.  

The BES TEST® results are not correlated with the DEXA ones [7], and its precision 
parameters are in line with the golden standard requirements [8]. The test has shown potential in a 
variety of fields like rheumatology [9], oncology [10] and nephrology [11], in which clinical trials 
are currently being carried on. The procedure is schematically represented in Fig.1. 

 

 
Figure 1. The BES TEST procedure.  

 
Analogously to DEXA, the BESTEST results are presented to the doctor also in terms of BSI_T-

score, which compares the patient’s BSI with the mean value for young Caucasian women (age 
20-45) and measures this difference in number of standard deviations [7].  

Given the statistical nature of the T-score parameter, the same guidelines that are normally used 
in assessing bone density can be used for BSI_T-score, with reference to the clinical assessment of 
bone quality: 

• A T BSI_T-score = 0 indicates that a patient’s BSI is equal to the average BSI found in 
young Caucasian women.   

• A BSI_T-score = -1 or above indicates that a patient’s bone quality is normal. 
• A T BSI_T-score between -1 and -2.5 indicates a first level of bone elasticity deficiency.  
• A BSI_T-score < -2.5 indicates a second level of bone elastic deficiency. 
 

Population 
A population of 351 Caucasian women was enrolled for the BES TEST® population study in 2015 
[7], and incidence of fragility fractures has been assessed after a 3-year follow-up period. For the 
purpose of the present research, two groups were considered (Table1): 

- Non-Fractured, who had not sustained a fragility fracture in 2015 nor in the following 3 years. 
- Fractured, who had sustained a fragility fracture at the time of BES TEST® assessment. 
The BSI-Tscore, Age, and the Bone Mass Index (BMI), an indirect index of adiposity calculated 

as the patient’s weight in kilograms divided by the square of height in meters, were collected for 
each subject at the time of the test. 
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Table 1. Population descriptors: Age, BMI and BSI-Tscore  Mean (Min – Max) values 

 n Age 
[years] 

BMI 
[kg/m2] 

BSI-Tscore 
[St. Dev.] 

Fractured 91 63 (27 – 93) 22.8 (14.7 – 36.3) - 1.5 (-3.4 – 0.8)  

Non-Fractured 75 58 (25 – 84) 23.7 (17.4 – 34.0) -0.4 (-3.2 – -2.4) 

 
Diagnostic accuracy 
True positive (TP) is an outcome where the test correctly predicts the positive class. True negative 
(TN), false positive (FP) and false negative (FN) have analogous definitions. 

The Accuracy of a diagnostic test is the percentage of correct classifications, giving equal 
importance to positives and negatives [12]: 
 

Accuracy = (TP + TN)/(TP + TN + FP + FN).               (1) 
 

The Receiving Operator Characteristic (ROC) curve is created by plotting at various threshold 
settings the True Positives Rate (TPR), or Sensitivity, against the False Positive Rate (FPR), or 
probability of false alarm, which can be calculated as (1 − Specificity).  

Lowering the threshold classifies more items as positive, increasing both FP and TP. The Area 
Under the ROC Curve, AUC, provides an aggregate measure of performance of a diagnostic test 
across all possible thresholds [13].  
Results 
Population 
The Age distribution of the population is depicted in Fig.1. The Fractured group appears to be 
slightly older than the Non-Fractured one (Student’s test p =0.00485).  
 

 

Figure 1. Box plot of Age distribution.  
The BMI distribution for the two groups, classified according to the WHO guidelines, is 

reported in Table 1. The BMI values for the two groups appear to be similar (p = 0.1243). 
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Table1. BMI distribution for the two groups, according to the WHO classification. 

BMI CLASSIFICATION FRACTURED NON-FRACTURED 
< 18.5 UNDERWEIGHT 8% 3% 

18.5 – < 25.0 NORMAL RANGE 74% 64% 
>= 25.0 OVERWEIGHT 13% 27% 
>= 30.0 OBESE 5% 5% 

 
The distribution of BSI_T-score in the two groups is shown in Fig.2. The Non-Fractured 

patients are characterized by a median of -0.5 and a first and third quartile of -1.2 and 0.1, 
respectively, and are very satisfactorily discriminated from the Fractured group (p = 3.18e-10). 
 

 
Figure 2. Box plot of BSI_T-score distribution.  

 
As shown in Fig.3, no correlation appears to be present between the BMI and the BSI_T-score 

values for each of the two groups (R² = 0.0032 in the Fractured and R² = 0.0188 in the Non-
Fractured group).  The fitted ROC curve [14] is plotted in Fig.4, and the AUC value is 0.78. 
 

 
Figure 3. BSI_T-score vs. BMI distribution in the two groups.  
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Figure 4. Red symbols and blue line: Fitted ROC curve for BSI_T-score. Gray lines: 95% 

confidence interval. 
 
An optimal threshold value could be identified: the accuracy trend shown in Fig. 5 is 

characterized by a peak at the BSI_T-score = -1.4 cut-off value that maximizes Accuracy, 
corresponding to 78% of correct results, i.e. a diagnostic capacity of the BES TEST® of 0.78. 
Accuracy for the common threshold values of diagnostic significance for fracture risk assessment 
resulted respectively 53% for a cut-off value of BSI T-score =-2.5, and 31% for BSI T-score =1. 
 

 
Figure 5. Accuracy plotted against threshold values. 

 
Conclusions 
The BSI T-score resulted an effective predictor for the risk of incident fragility fractures, and an 
optimal cut-off value for fragility fracture risk was identified.  

The results achieved are certainly helpful in the diagnostic and preventive practice: the clinical 
portrait of a patient who obtained a BSI T-score lower than -1.4 should be carefully investigated 
because there is a high probability of fracturing in the following 3 years. 

Given the DEXA reduced ability in assessing the load bearing capability of the internal part of 
the bone, it appears that BES TEST®, also in association with DEXA, could be helpful in 
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completing the fracture risk map and reducing the clinical and economic burden of fragility 
fractures. 
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Abstract. Sudden cardiac death in athletes is often related to anomalies in coronary origin, which 
may affect how coronary arteries supply blood to the heart; this highlights the importance of 
understanding coronary perfusion. Studies for the simulation and predictions of coronary blood 
flow under normal or disease conditions are many. Numerical simulations can provide rich 
information about the coronary blood flow with reduced costs in relation to physical models. 
Correct numerical simulation of the coronary blood flow is still challenging due to the complex 
interactions with the upstream, e.g., the aortic root, and downstream, e.g., the ventricular 
contraction, parts of the coronary arteries. Among all, the intrinsic ability of coronary artery 
autoregulation, intramyocardial resistance, cardiac frequency, and aortic valve functioning could 
significantly affect the coronary artery perfusion. In the present study, we aim at investigating the 
effects of the aortic valve and boundary conditions on coronary perfusion. We numerically 
modeled, by means of the ANSYS-Fluent software, the blood flow inside the proximal parts of the 
left and right coronary arteries, aortic sinuses of Valsalva, and ascending aorta with and without 
the aortic valve; the geometry of the computational model represents the average healthy person. 
Physiological boundary values have been applied at the computational domain boundaries to 
achieve a stable solution of the Navier-Stokes equations, which govern the incompressible, 
laminar, Newtonian blood flow. Our numerical results give insight into a proper numerical setup 
to predict coronary blood flow. 
Introduction 
The main medical cause of death in athletes is sudden cardiac death (SCD) [1]. High risks of SCD 
have been observed among patients with a history of coronary artery disease (CAD) [2]. There are 
multiple research studies in the literature indicating the possible relations between coronary 
abnormal functioning and myocardial ischemia which might lead to SCD [3,4]. Thus, knowing 
about coronary artery perfusion could help coronary artery disease diagnosis and surgical planning 
prior to SCD. 

While medical imaging is applied widely for cardiovascular and coronary artery diagnosis, they 
show no predictive capabilities particularly in pathology of the anomalous course of the coronary 
artery in SCD [5,6]. Alternatively, computational methods provide this opportunity to virtually 
simulate the cardiovascular system including the coronary arteries. Lumped parameter or one-
dimensional computational models have been successfully hired to study the variety of patient-
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specific blood flow simulations [7–9]. However, these methods cannot suitably model pressure 
wave propagations or fluid-structure interaction phenomena, which are important factors in arterial 
blood flow simulations [10], such as in the aortic root and proximal part of the coronary arteries. 
Thus, 3D computational fluid dynamics (CFD) simulations, particularly when they are coupled 
with the structural models, can provide a detailed analysis of the blood flow in coronary arteries. 

In this paper, we simulate the blood flow in a three-dimensional model of the proximal parts of 
the left and right coronary arteries, aortic sinuses of Valsalva, and ascending aorta of average 
healthy people. We applied physiological pressure and flow rate boundary values at the boundary 
locations of the computational domain. Subsequently, a numerical flexible aortic valve model has 
been integrated into the computational domain of the blood volume to study the effects of the aortic 
valve functioning on coronary artery perfusion. 
Methods 
The computational domain is twofold. One is the blood volume, and the other is the aortic valve 
structural model.  

We follow the descriptions of works by [11–13] to design the blood flow computational volume 
that represents average healthy people. The blood volume consists of the inlet volume (included 
to manage the inflow), the aortic sinuses of Valsalva, proximal parts of the left and right coronary 
arteries, and the ascending aorta which are shown in Fig. 1; the dimensions of the model elements 
are reported in Table 1. 

 

(A)  (B)  
Fig. 1 (A) 3D schematic of the blood volume computational domain including inlet aorta 

(magenta), aortic sinuses of Valsalva (red), ascending aorta (yellow), left (green), and right 
(blue) coronary arteries. (B) Numbers showing the flow domain boundary locations, (1) inlet, (2) 

aorta outlet, (3) left coronary outlet, and (4) right coronary outlet. 
Table 1 The dimensions of the flow volume computational domain elements as shown in Fig. 1. 

No Part Length [𝒎𝒎𝒎𝒎] Diameter [𝒎𝒎𝒎𝒎] 
1 Ascending aorta 50 36 
2 Left and right coronary arteries 40 3 

3 Sinuses of Valsalva 29 29 (aortic annulus) 
36 (sinotubular junction) 

4 Inlet aorta 10 29 
 
Moreover, the computational flow domain is integrated into the aortic valve structural model 

that is shown in Fig. 2-A. The aortic valve is located right after the aortic inlet downstream at the 
location of the aortic annulus, see Fig. 2-B. The design of the numerical model of the aortic valve 
mimics fairly well the geometry of the Medtronic Avalus 400 bioprosthetic aortic valve that is 
shown in Fig. 2-C; the corresponding dimensions of the aortic valve model are reported in Table 
2. The dynamics of the fluid and solid parts of the domain have been simulated with the numerical 
software Ansys® Fluent and Ansys® Transient Structural, respectively, coupled in a solver 
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package that iteratively solves the discretized forms of the governing equations of the fluid flow 
and solid motion at each computational mesh point. The mesh characteristics of the computational 
domain are summarized in Table 3. 

 
(A) 

 

(B) 

 

(C) 

 
Fig. 2. The aortic valve computational domain (A) is located downstream of the aortic inlet 
(magenta) at the aortic annulus (red) center (B), which has been designed according to the 

Medtronic Avalus 400 bioprosthetic aortic valve (C). 
The fluid flow governing equations are the principle of mass conservation and the Navier-

Stokes equations for incompressible fluid, characterized by density of 𝜌𝜌 = 1060[𝑘𝑘𝑘𝑘/𝑚𝑚3] and 
dynamic viscosity of 𝜇𝜇 = 𝜈𝜈 × 𝜌𝜌 = 3.5 × 10−3 [𝑃𝑃𝑃𝑃. 𝑠𝑠] [14]. The motion of the aortic valve with 
flexible leaflets is governed by the linear momentum balance equation, considering a linear elastic 
and isotropic material, with the Young’s modulus of 1[𝑀𝑀𝑃𝑃𝑃𝑃], Poisson’s ratio of 0.45, and density 
𝜌𝜌𝑠𝑠 = 1000[𝑘𝑘𝑘𝑘/𝑚𝑚3], in line with previous studies [15,16]. The equilibrium of surface forces is 
applied at the interface between the solid and fluid parts of the domain. 
 
Table 2 Dimensions of the computational aortic valve structural model elements according to the 

parameters shown in Fig. 2-A. 
No Part Dimension [𝒎𝒎𝒎𝒎] 
1 𝑑𝑑1 2 
2 𝑑𝑑2 14 
3 𝑑𝑑3 1 
4 𝑑𝑑4 1 
5 𝑑𝑑5 1 
6 𝑑𝑑6 28 
7 𝑑𝑑7 30 

 
Table 3 Summary of the computational domain mesh characteristics generated in ANSYS. 

Computational 
domain 

Element 
type 

Element 
order 

Number of 
nodes 

Number of 
elements 

Min element 
size [𝒎𝒎] 

Max element 
size [𝒎𝒎] 

Blood volume Tetrahedral Linear 71248 389719 4.9063e-05 0.00887179 
Aortic valve Tetrahedral Linear 665 1617 4.2214e-04 4.5706e-03 

Results and Discussion 
To evaluate the effect of inlet boundary value, we applied two sets of boundary conditions: the 
first set of boundary conditions (called inlet flow), taken from reference [17], are a physiological 
aortic flow rate at the inlet volume, and physiological pressure values at three other outlets; the 
second set (called inlet pressure), evaluated from reference [14], are the physiological left 
ventricular pressure at the inlet volume and three physiological pressure values at three outlet 
boundary locations. Moreover, the role of the aortic valve is studied considering two numerical 
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model configurations: one configuration simulates merely the blood volume computational 
domain, without the valve (called without valve) and the other is the fluid-structure interaction of 
the blood volume with the aortic valve structural model (called with valve). 

Fig. 3-A and Fig. 3-B, show respectively the calculated numerical flow rate values of the left 
and right coronary arteries when we hired the inlet flow boundary conditions. In each panel of the 
figure, we can compare the results of the configuration without valve (shown in blue) and of the 
one with valve (shown in yellow) to the reference values (shown in orange) borrowed from [17]. 

Moreover, the numerical results of the left and right coronary artery flow rates when we applied 
the inlet pressure boundary conditions from [14] are shown in Fig. 4-A and Fig. 4-B respectively. 
Similar to the former case, the blue color shows the results of the configuration without valve and 
yellow indicates the results of the model with valve. 

 
(A)  

 

(B)  

 
Fig. 3. (A) Left and (B) right coronary artery flow rates when we applied physiological aortic 

flow rate at the inlet volume boundary location and physiological pressure values at three outlet 
boundary locations; all boundary values are hired from reference [17]. 

 
(A) 

 

(B) 

 
Fig. 4. (A) Left and (B) right coronary artery flow rate when we applied physiological pressure 

values at the aorta inlet boundary location as well as physiological pressure values at three 
outlet boundary locations; all boundary values are hired from reference [14]. 

 
By comparing the numerical results of the models without valve in Fig. 3 and Fig. 4, we can 

observe that the model with the inlet flow boundary conditions could better simulate the coronary 
artery perfusion compared to the model with the inlet pressure boundary conditions. In other 
words, the calculated coronary perfusion waveforms in the former model are mostly positive 
values following, though not perfectly, the waveforms of the reference values. In contrast, the 
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numerical coronary artery flow rates in the latter model show large negative values, particularly in 
the diastolic phase. However, the results of the model without valve by applying either set of the 
boundary conditions show deviation from their corresponding reference values. Thus, we run the 
simulations with valve to study the role of the aortic valve functioning in coronary artery perfusion. 
The comparison of the results obtained in models with and without valve in Fig. 3 indicates that 
the inclusion of the aortic valve in the numerical model does not improve the calculated coronary 
flow rates when the flow rate inlet boundary condition is used. This might be due to the fact that 
the inlet volume flow rate boundary condition reported in reference [17] is located downstream of 
the aortic valve. On contrary, in our numerical model, the inlet volume boundary location is 
upstream of the aortic valve, see Fig. 1-B and Fig. 1-B. Nonetheless, the results of the simulation 
with valve in Fig. 4 show that the left and right coronary artery flow rates better resemble the 
reference values compared to the corresponding simulations without valve, if pressure inlet 
boundary condition is hired. 
Conclusion 
We numerically studied the effects of boundary conditions and aortic valve functioning on 
coronary artery flow rates. We could observe that the choice of upstream boundary condition plays 
a significant role in coronary perfusion. Particularly, considering the model without valve, the inlet 
flow boundary condition provides better results than the inlet pressure boundary conditions. 
Instead, if the aortic valve is included, the inlet pressure boundary condition helps better simulate 
the coronary flow rates. In fact, in real human hearts, the left ventricular pressure acts on the 
upstream side of the aortic valve. 
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Abstract. A limit analysis numerical procedure for the determination of a lower bound on the 
ultimate load of the human proximal femur is presented. The procedure, already applied by the 
authors in different contexts, is based on a simplified 3D geometrical model of the human femur 
and on the assumption of a few geometric and material data available in the relevant literature. The 
perfectly plastic behaviour of the human bone, due to phenomena starting at molecular scale, and 
the orthotropic behaviour of the main human femur tissues, trabecular and cortical, allows to 
assume a yield surface of Tsai-Wu-type for its constitutive description. The effectiveness of the 
promoted numerical approach is validated by comparison of the obtained results with experimental 
findings on in-vitro tests of human femurs. 
Introduction 
The limit analysis theory, in a numerical formulation oriented to the determination of a lower 
bound to the collapse load of a structural element and already employed by the authors for the 
solution of several engineering structural problems [1] is applied in the context of human long 
bones. The study is focused on of the collapse load of the human proximal femur and this, in the 
spirit of the static approach of the limit analysis theory, without following the load history that has 
produced it, excluding as well all the post elastic phenomena, damage or fracture propagation in 
the bone.  

In the promoted approach, the main pre-collapse phenomenon arising within the human bone 
material, that is the stress redistribution process, is numerically simulated by means of an 
appropriate adjustment of the elastic moduli of the main constituent materials of the bone, namely 
the cortical and the trabecular bone tissues. For both the above main constituents it is assumed a 
criterion of Tsai-Wu-type formulated in principal stress space which, in the 3D context, proves to 
be a strictly convex domain for the admissible stresses. The few material parameters needed to 
define the constitutive criterion and to carry on the whole limit analysis procedure represents a 
very attractive feature of the proposed method which can be easily connected with molecular 
imaging and/or other diagnostic tools of prevention.  

The simulation of the stress redistribution process, arising within the bone element until 
collapse, is carried on iteratively with reference to a simplified model of the proximal human 
femur, which approximate the geometry of the bone and that, discretized in 3D solids finite 
elements, is used to analyse two well known mechanical configurations producing the human 
proximal femur collapse, i.e. the so-called stance and side configurations, [2,3]. The former is 
aimed to predict bone fracture under single-leg-stance loading, the latter under sideways-fall.  

Few numerical examples are carried out for comparison with the results of experimental tests 
available in the relevant literature for in-vitro tests on human femurs, [3], also with the purpose to 
define the sensitivity of the results by varying some geometric and material parameters. The 
obtained numerical findings definitively show a good capacity of the employed numerical method 
to predict the real limit load of the proximal human femur under prescribed load conditions.  
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Theoretical background 
The static approach of limit analysis theory, as said in the introductory section, is aimed to the 
determination of a lower bound to the collapse load of a structure or of a structural element. This 
goal is classically pursued by applying the Lower-Bound Theorem of limit analysis that leads to a  
maximization problem in which, a fixed reference load distribution, defining the loading 
conditions, is amplified by a single scalar load multiplier, say PLB, that produces loads that are in 
equilibrium with a stress field, that nowhere violates the yield criterion of the constituent material, 
and that do not exceed the effective collapse load multiplier, say PU . PLB is then a Lower Bound 
(LB) to the load multiplier whose maximum, obtainable by increasing the acting loads, defines the 
collapse, or peak, load value of the structure. It is worth to remind that no matters the elastic 
behaviour before collapse or any type of elasticity law followed by the constituent material.  

On the other hand, the existence of a yield criterion for bone material is assured by the 
circumstance that plasticity in bones starts at molecular scale and is due to breaking of hydrogen 
bonds within single collagen molecules followed by breaking of bonds and intermolecular sliding 
within collagen fibrils, see e.g. [4]. The irrelevance of the elastic behaviour before collapse is a 
key point for the numerical procedure hereafter promoted, namely the Elastic Compensation 
Method (ECM) [1,2]. Indeed, the ECM varies, within a discretized FE model of the bone, the 
elastic moduli of the “bone material” to simulate the process of stress re-distribution arising within 
the bone suffering an increasing load until the attainment of its strength threshold. 
Limit analysis on human proximal femur 
The simplified geometrical model of Fig.1 has been assumed for the human proximal femur. The 
external dimensions of the bone, borrowed from the relevant literature, are given in the same figure 
in tabular form.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Human proximal femur model: a) geometry referred to the medio-lateral section; b) 
3D model and main reference orthogonal coordinate system; dimensions taken from the relevant 

literature in tabular form. 
 

It should be specified that the bone has an external part made of cortical tissue and an internal 
part made of trabecular and marrow tissues, the latter is only present in the shaft zone. The 
thickness of the cortical tissue is here considered variable in the different zones into which the 
simplified proximal femur model has been divided. In particular, from now on S1, S2 and S3 

a) b) 

head 

neck 

shaft 

trochanter 

Dimension   Reference 
d1 [mm] 51.60  [5] 
d2 37.40  [5] 
d3 65.64  [6] 
d4 35.40  [6] 
h1 80.00  [3] 
h2 5.30  [6] 
h3 44.00  [6] 
AC 90.26  [6] 
θ [grad]   130  [7] 
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indicate the cortical thickness in the head zone, in the neck and trochanter zones and in the shaft 
zone, respectively.  

As already said, the cortical and trabecular tissues are assumed to obey a Tsai-Wu-type 
constitutive criterion, which in principal stress space can be given the shape: 
 

                
2 2 2

11 11 22 22 33 33 1111 11 2222 22 3333 33

1122 11 22 1133 11 33 2233 22 33

σ + G σ +G σ + F σ +F σ + F σ +

2F σ σ +2F σ σ +2F σ σ =1

G
 (1) 

where:  

            ii iiii iijj+ - + - + - + - 2
i i i i i i j j ij

1 1 1 1 1 1 1G = - ;   F = ;   F = + -
2σ σ σ σ σ σ σ σ σ

æ ö÷ç ÷ç ÷ç ÷ç ÷÷çè ø
 (2) 

In Eq.(1) 11σ , 22σ , 33σ  are principal stresses and repeated indices in Eqs.(2) do not imply 

summation. Moreover, +
iσ , -

iσ , ijσ  are the moduli of ultimate strengths in tension, compression 
and shear, respectively; finally i, j=1, 2, 3 refer to direction and plane of orthotropy. 

Typical Tsai-Wu-type yield surfaces for the two main bone tissues are shown in Fig.2 and the 
ECM limit analysis procedure is applied with reference to both these yield surfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Typical Tsai-Wu-type yield surface for trabecular a) and cortical b) proximal femur 
tissues. 

For sake of brevity, the Reader can refer to [1,2] for the details on the ECM iterative procedure. 
The latter performs a sequence of FE elastic analyses and, within each sequence carried on for a 
fixed loads distribution, applies an iterative procedure. It is worth noting that, at current iteration, 
the elastic moduli within the discretized structural model, are updated (reduced) only within those 
FEs where the elastic element solution, in terms of average stress within the element, is “greater” 
than the corresponding stress at yield. This produces, at the subsequent iteration (within the current 
sequence of elastic FE analyses), a redistribution of the stresses, which migrate from the weakened 
elements to the neighbour ones, so miming the redistribution of the stresses arising before the 
incipient state of collapse. The latter is reached when, for the applied loads (increased sequence 
by sequence by increasing the acting loads multiplier), such redistribution is not possible any more. 
In-silico vs in-vitro tests 
Two experimental tests on real human proximal femurs, after D’Allara et al. 2013, [3], have been 
numerically reproduced, precisely, the so-called STANCE and SIDE configurations which are 
shown in Fig.3(a-c) together with the assumed FE models. 

a) b) 
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Figure 3. Human proximal femur in-silico configurations: STANCE a) Experimental set up 
(after [3]), b) FE mesh of 6408 3D-Solids (10nodes, 17GPs); SIDE c) Experimental set up (after 

[3]), d) FE mesh of 7111 3D-Solids (10nodes, 17GPs) 
In order to evaluate the influence on the collapse load of material and geometric parameters, 

three different material strength values (for cortical and trabecular) and three different geometrical 
models have been considered and this for each configuration, STANCE and SIDE. 

Three pairs of apparent density values are assumed leading to the definition of three different 
materials, hereinafter referred to as Mat1, Mat2 and Mat3. In particular, for Mat1 ρcortical = 1.5 g/cm3 
and ρtrabecular = 0.1 g/cm3; for Mat2 ρcortical = 1.75 g/cm3 and ρtrabecular =0.4 g/cm3 ; finally for Mat3 
ρcortical = 2.0 g/cm3 and ρtrabecular = 0.7 g/cm3. These values, corresponding to the minimum, 
average and maximum values of apparent density either in cortical and in trabecular, give rise to 
the strength material values reported in Table1. Finally, the contribution of the marrow to the 
overall strength of the femur is neglected. 

Concerning the geometry, three geometrical models, hereinafter named GM1, GM2 and GM3, 
are obtained by assuming for the thickness of the cortical in the shaft (S3) the values 5.7 mm, 7 
mm and 8.3 mm, respectively. Moreover, following [16] the thickness in other zones of the bone 
are derived by assuming the ratios S1 / S2 = 0.5 and S1 / S3 = 0.25. In summary, the adopted ECM 
FE-based numerical predictive procedure has been applied nine times for each configuration.  

The obtained results, in terms of PLB are reported in Table 2. It can be observed that for fixed 
geometry (values reported in columns) there is a great variability of the PLB as the strength 
characteristics of the material vary, while the variability for fixed material strengths (values 
reported in rows) is less relevant on varying the geometry. It is then essential to calibrate the 
strength parameters as accurately as possible to increase the predictive capabilities of the whole 
procedure. Another important remark is that the ECM is able to reproduce the experimental data 
and, in fact, for the average value of ρcortical, corresponding to the row Mat2, the values of the 
collapse loads are very close to each other and to the ones given in the quoted experiments. More 
precisely, in the STANCE configuration the experimental collapse load value is 8.7±2.9 kN and 
the one obtained from the numerical simulations is 9±1.5 kN, in the SIDE configuration the 
experimental collapse load is 3.1±1.1 kN and the one obtained applying the ECM procedure is 
4±0.5 kN. 
  

 
a) b) d) 

c) 
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Table 1. Assumed strength values [MPa] for the two main bone tissues. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. PLB values for the three geometrical models (GM1, GM2, GM3) and for the three 

considered materials (Mat1, Mat2, Mat3): a) STANCE configuration, b) SIDE configuration. 

 
 
 
 
 
 
 

 

Concluding remarks 
The numerical iterative procedure, known in the literature as Elastic Compensation Method, has 
been applied to determine a lower bound on the ultimate load of the human proximal femur. The 
specification of a few geometrical and material parameters suffices to reach a very good prediction 
of the ultimate load. In particular, rather than the geometrical parameters, the needed crucial 
parameters are the strengths of the cortical and trabecular tissues, which are related to the bone 
mineral density. The obtained results seem very promising as witnessed by comparison with 
available experimental data on the collapse load of in-vitro specimens for two typical conditions 
driving to human femur rupture. On taking into account that the bone mineral density and, in 
general, the actual bones’ strengths of a patient affected by orthopedic diseases are nowadays 
easily detectable via molecular imaging, a predictive tool as the one here promoted could be easily 

Strength Cortical Trabecular Cortical Trabecular 

 Mat1  Mat2  

σ σ1 2
- -=  68.249(1)  0.913(1) 86.137(1)  6.099(1) 

σ3
-

 155.164(1)  0.526(1) 207.324(1)  7.220(1) 

σ σ1 2
+ +=  23.887(2)  0.602(3) 30.148(2)  4.025(3) 

σ3
+

 93.098(4)  0.347(5) 124.394(4)  4.765(5) 

σ σ13 23=  53.50(6)  0.315(7) 53.50(6)  4.332(7) 

σ12  67.80(6)  0.548(8) 67.80(6)  3.659(8) 

 Mat3  Reference  

σ σ1 2
- -=  105.380(1)  13.128(1) [8,9,10] (1)  

σ3
-

 266.486(1)  20.792(1)   

σ σ1 2
+ +=  36.883(2)  8.664(3) [11,12] (2)  (

σ σ σ1 2 135% + + -= =
) 

   [13] (3) (
σ σ σ1 2 166% + + -= =

) 
σ3

+

 159.892(4)  13.722(5) [11,12] (4) (
σ σ3 360% + -=

) 
   [13] (5) (

σ σ3 366% + -=
) 

σ σ13 23=  53.50(6)  12.475(7) [14] (6)
, [15] (7)

 (
σ σ σ13 23 30.6 -= =

) 
σ12  67.80(6)  7.877(8) [15] (8) (

σ σ12 10.6 -=
) 

 

Geometrical Model/ 
Material Model GM1 GM2 GM3 

Mat1 
 

3 3.5 5 

Mat2 7.5 9 10.5 

Mat3 14 17 18 
 a) 

Geometrical Model/ 
Material Model GM1 GM2 GM3 

Mat1 
 

1.7 2.2 2.7 

Mat2 3.5 4 4.5 

Mat3 6.2 7 7.3 
 b) 
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integrated within diagnostic tools of prevention. 
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Abstract. Bone is an extraordinary biological material able to modify dynamically its outer shape 
and inner microstructure in response to chemo-mechanical stimuli coming from the environment 
adapting its hierarchical microstructure to respond to static and dynamic loads for offering optimal 
mechanical features, in terms of stiffness and toughness. To date, many theories and mathematical 
models have been proposed by several authors to describe the remodeling phenomenon, all 
approaches starting from the adaptive elasticity and the bone maintenance theories. Within this 
framework, one of the most classical strategies employed in the studies is the so-called Stanford’s 
law, which allows uploading the effect of the time-dependent load-induced stress stimulus into a 
biomechanical model to guess the bone structure evolution. In the present work, we generalize this 
approach by introducing the bone poroelasticity, thus incorporating in the model the role of the 
fluid content that, by driving nutrients and contributing to the removal of wastes of bone tissue 
cells, synergistically interacts with the classical stress fields, in this way affecting growth and 
remodeling of the bone tissue. Two paradigmatic example applications, i.e. a cylindrical slice with 
internal prescribed displacements idealizing a tract of femoral diaphysis pushed out by the pressure 
exerted by a femur prosthesis and a bone element in a form of a bent beam, and a real study case 
of a patient subject to total hip replacement, and CT scanned at 24 hours after surgery and at 1 year 
post-surgery have been considered. It has to note that the proposed model is capable to catch more 
realistically both the transition between spongy and cortical regions and the expected non-
symmetrical evolution of bone tissue density in the medium-long term, unpredictable with the 
standard approach. Although limitations still characterize some hypotheses at the basis of the 
present approach, the proposed model overcomes the intrinsic - and unrealistic - independence of 
the bone remodeling from the stress sign and from the indirect effect of stress gradients driving 
nutrients through the flow of the fluid content in the tissue, allowing to predict important spatial 
asymmetries in bone mass density, so paving the way to more reliable mechanobiological 
strategies and engineering tools for the faithful prediction of bone remodeling, with implications 
in diagnosis of risk fracture, optimal design of scaffolds and bone prostheses. 
Introduction 
The bone tissue is a dynamic system able to modify dynamically its outer shape and inner 
microstructure in response to chemo-mechanical stimuli coming from the environment, through 
several processes such as growth (mass change), remodeling (material properties change) and 
morphogenesis (shape and structural changes). The first studies were based on clinical 
observations. Galileo Galilei compared the dimensions of bones from animals of different sizes 
and suggested that their forms were determined by their functions, gravity and environment [1]. 
To date, many theories and mathematical models have been proposed by several authors to 
describe the remodeling phenomenon [2]. Two general approaches are proposed in the literature: 
the adaptive elasticity theory and the bone maintenance theory. The adaptive elasticity theory, is 
a continuum mechanical-based formulation, in which the remodeling equations relate the change 
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of the bone tissue density to mechanical stimuli [3] In particular, a mathematically rigorous theory 
for the remodeling of the internal architecture of the cancellous bone, called the evolutionary 
Wolff's law, was proposed by [4]. On the other hand, the bone maintenance theory, developed by 
[5], is based on optimizing a local remodeling objective function depending on the apparent 
density, the orientation of material axes, and the stress tensor. Expanding these ideas, Carter [6] 
introduced the daily remodeling stimulus. Beauprè [7] proposed the so-called Stanford law by 
extending the bone maintenance theory including time-dependent remodeling and adding surface 
growth, with internal remodeling considered as surface growth in internal cavities.  
The influence of interstitial fluid on bone remodeling plays a crucial role, often highlighted in literature with respect 
to processes occurring at cellular level [8], and is believed to play important roles in providing nutrients and removing 
wastes, being directly involved in cellular mechano-transduction [9]. By starting from this framework, the present 
study is aimed to extend the Stanford law proposed by [10] by including the dimensionless fluid content, in a way to 
affect the relation between stress stimulus at the tissue level and the rate of density responsible for the remodeling, 
regulating the nutrients supply and thus the activity of bone tissue cells, being the stress stimulus at tissue level 
supposed as a function of the density, the stress, and the fluid content as well.  

Materials and Methods 
A time-dependent bone tissue remodeling theory – the Stanford law  
Beauprè [7] proposed a unified time-dependent approach – known as the Stanford law – for 
periosteal and internal bone. The essence of this approach is that the bone tissue needs a certain 
level of mechanical stimulus to maintain itself. At the macroscopic scale, the bone adaptation 
process is described on a daily basis by relating the remodeling rate to a set of stresses 
corresponding to successive loading conditions. At the microscopic level, the bone remodeling 
response is expressed by the daily stress stimulus at the tissue level, and the remodeling response 
is measured in terms of the bone resorption/formation rate, which gives the net tissue volume 
formed or resorbed per unit time, with a homeostatic region corresponding to a range of “normal” 
activities, and absorption and formation zones associated with decreased and increased levels of 
daily stress stimulus, respectively.  

Moreover the density change rate, is directly related to the bone surface area per unit volume. 
Summing up, the internal and external remodeling are treated in a unified surface-mediated 
phenomenon.  
 
The role of the interstitial fluid content in bone remodeling – the proposal 
In this work, a new remodeling formulation, aimed to extend the Stanford law by including the 
dimensionless fluid content [11], is proposed. We thus assumed that the stress stimulus at tissue 
level is a function of the density, the stress, and the fluid content. In this way, the fluid content can 
be interpreted as a triggering factor influencing both the support of nutrients and the removal of 
wastes of bone tissue cells, in turn affecting the relation between stress stimulus at the tissue level 
and remodeling rate of density. This more realistic interpretation of the bone remodeling process 
is translated mathematically  by means of an ad hoc function fζ , related to the dimensionless fluid 
content ζ , as follows 

if 0 (1 )
if 0 (1 )

f
f

γ
ζ

γ
ζ

ζ ζ
ζ ζ −

≥ = +
< = +

 (1) 

where the quantity (1 )+ζ  works as an activator factor and γ  is the power to be set for properly 
describing the effectiveness of the action. The power value γ  depends in fact on the level of 
activities of the bone tissue cells, the concentration and quality of the fluid and the possible 
presence of growth factors, and needs to be determined by experimental tests. Hence, the stress 
tissue at tissue level is supposed to be proportional to the fluid content through the function fζ  
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with effects on the bone formation and resorption rate, and the , modifying the DZ window width 
in the case of homeostasis. 
 
The proposed examples 
Two paradigmatic examples of direct interest in biomechanical applications have been chosen to 
verify the feasibility and the effectiveness of the proposed remodeling approach, that is a beam 
with a rectangular section undergoing bending moment and a bi-phase hollow cylinder subject to 
prescribed radial displacements at the innermost boundary [12, 13]. To this purpose, both the 
classical Stanford Law and our proposal have been implemented by means of customized 
algorithms in the numerical Finite Element code ANSYS® Multiphysics (ANSYS Inc., 
Canonsburg, PA, USA) and the obtained results have been compared. The adopted poroelastic 
material parameters are provided by [14] 
Discussion and Results 
The numerical simulations have been performed with the aim of simulating the remodeling process 
during a period of 360 days. At the end of each iteration, once calculated the current value of the 
density for each element, the corresponding material properties have been consequently updated. 
As an effect to the applied bending moment the material grows on the outer surfaces and absorbs 
in the central part of the beam. The density distribution produced by using the Stanford law 
(continuous red line) remains symmetrical during the time with highest and equal values at the 
outermost fibers. On the contrary, the proposed formulation leads to have asymmetry of the results 
in terms of spatial distribution of density during remodeling (continuous blue line), see Figure 1 
(left). Both formulations gave a thickening of the material up to the cortical value at the internal 
radius, however in a faster way for the poroelastic model, see Figure 2 (right). Additionally, when 
implementing our formulation (continuous blue line), the density became quite symmetrical at 180 
days with cortical density values at the internal and external radius. Conversely, when 
implementing the Stanford law, the density reached the cortical value for most of the section. 
 

 
Figure 1: Plot of the density (continuous) and fluid content (dotted) when implemented Stanford 
law (red) and our proposal (blue), along with the height of the beam (left) and the radius of the 
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cylinder (right) at 10 days 60 days, 180 and 360 days. Contour plots of the density and fluid 
content when implemented Stanford law (upper row) and our proposal (lower row), along with 
the height of the beam (left) and the radius of the cylinder (right) at 10 days 60 days, 180 and 

360 days. 
A real study case for testing the proposed model 
A real patient from the clinical trial at the Healthcare Center of the Icelandic National Hospital has 
been considered, and the related CT data at 24 hours have been used to build-up the corresponding 
in silico model by means of the voxel-based approach [15]. Due to the high computational times 
related to poroelastic-based remodeling analyses, the geometry-based meshing strategy was 
chosen, and bone material properties, both elastic and porous parameters, were estimated from CT 
data. The model was loaded by forces on the prosthesis cup by considering the actions related to 
the living daily activities [16] and constrained in the distal part of the model. Both the classical 
Stanford’s law and our proposal were implemented in the FE-based algorithm, performing the 
numerical simulations for a period of 360 days, finally comparing the results of the two models. 
Figure 2 shows the whole three-dimensional femur obtained by filtering CT data (left), the maps 
of the density of the considered transverse section at 24H (top-middle) and 1Y (bottom-middle), 
and the corresponding plot of the densities obtained by CT data along a line from the innermost to 
outermost points across a femur region actually interested by significant changes in bone density, 
with clear spatially inhomogeneous transition from cortical to trabecular tissues.  
 

 
Figure 2: The whole femur (left), the maps of the actual density over the considered transverse 

sections in the trochanter region at 24H (top-middle) and 1Y (bottom-middle), and the 
corresponding plot of the densities obtained by CT data (up). Plot reporting the comparison 

between predictions from Stanford law (red) and from our proposal (blue) of the bone densities 
along the transverse section of the femur in the trochanter region at 10 days, 60 days, 180 days 

and 360 days (down). 
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The comparison between the predictions from Stanford law (red) and from our proposal (blue) 
as densities along the transverse section of the femur in the trochanter region at 10 days, 60 days, 
180 days and 360 days is shown in Figure 2 (down). Both the model approaches produced a denser 
bone at the interface with the prosthesis. However, when implementing the Stanford law, the 
simulated remodeling process predicts values of density close to those of the cortical bone in the 
whole section, starting from the outcomes at 60 days and up to one year, in contrast to the actual 
density distribution one year after the implant. On the contrary, the proposed strategy seems 
instead affect growth and remodeling, the densities curves replicating more faithfully the actual 
bone density profile measured at one year along the selected line of the femur slice of the 
benchmark. 

 
A sensitivity analysis to set the activation factor 
The function fζ  is a measure of the surplus of fluid content strictly related to the applied loads to 
which the bone tissue is subjected to. If the fluid content is positive, the bone tissue has a surplus 
of fluid and, as a consequence, a greater supply of nutrients and a better capability to remove 
wastes of bone tissue cells. Conversely, when negative, the dearth of the fluid reduces the amount 
of nutrients available for bone tissue cells and helps the stack of wastes. When null, the bone tissue 
does not involve a strain due to proroelastic effect and thus the bone tissue is soaked by basal fluid, 
and the effect of the activator factor vanishes. Due to the key role of the fluid content on the 
remodeling phenomenon, a in silico sensitivity analysis to set the activator factor was performed 
on the real patient model. It must be highlighted that, despite the very encouraging obtained results, 
the a priori setting of the crucial parameter p of the proposed model would deserve a deeper 
discussion, for example by designing an experiment to be performed in vitro, a topic that is 
however beyond the scope of the present work.  
Conclusions 
The work presented an improved version of the classical so-called Stanford’s law by coupling the 
direct effect of the stress stimulus on bone growth with the spatially inhomogeneous nutrient 
supply kindled by pressure gradients inside the bone, modeled as a poroelastic medium. Two study 
cases, i.e. a ring under axis-symmetrical conditions and a plate under pure bending, were built up 
and numerically solved, which gave symmetrical results when adopting standard approaches based 
on Stanford’s law, giving instead non-symmetrical and biophysically coherent results in terms of 
bone density spatial distribution, if the classical Stanford’s law was enriched by taking into account 
the role of the fluid transporting nutrients throughout the poroelastic bone medium. Moreover, a 
real patient case was considered, and once again, the results obtained with the proposed affect 
growth and remodeling, the densities curves replicating more faithfully the actual bone density 
profile measured at one year along the selected line of the femur slice of the benchmark. Although 
limitations still characterize some hypotheses at the basis of the present approach, the proposed 
model overcomes the intrinsic – and unexpected – independence of the bone remodeling from the 
stress sign and from the indirect effect of stress gradients driving nutrients through the flow of the 
fluid content in the tissue, allowing to predict important spatial asymmetries in bone mass density, 
so paving the way to more reliable mechanobiological strategies and engineering tools for the 
faithful prediction of bone remodeling, with implications in diagnosis of risk fracture, optimal 
design of bone prostheses and precise medicine. 
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Abstract. Abdominal aortic aneurysm (AAA) is an irreversible dilation of abdominal aorta, which 
may rupture if not surgically treated. To date, most aorta stent-graft used in clinical practice are 
batch manufactured devices with a uniform diameter. Custom abdominal aortic stent-grafts are 
able to overcome standard stents limitations. In this study, a customized aortic stent-graft (NiTi -
Dacron) for the treatment of AAA has been proposed. Fluid dynamics analyses were performed to 
deepen the hemodynamic of aneurysm vessel and the proposed patient-specific graft. By means 
this study, the authors have shown the real benefits of the device for the patient and the possibility 
to apply this new stent-graft in the near future.  
Introduction 
Abdominal aortic aneurysms (AAAs) are irreversible dilations of the abdominal aortic wall due to 
gradual weakening and remodeling, which alter physiologic blood flow patterns. AAA is defined 
as a permanent localized dilation of an artery with a 50% increase in diameter compared with 
expected normal diameter [1, 2]. The risk of AAAs increases of above 60 years population with a 
major incidence in men (four to six times more common in men than in women [3]), and in patients 
who present cardiovascular diseases, history of smoking or family history of aneurysmal disease. 
Progression of the disease can ultimately result in rupture of the abdominal aorta, which has 
mortality rates of 50-75% [4]. The surgical options for the aneurysm treatment include the 
conventional Open Surgical Repair (OSR) and the Endovascular Aneurysm Repair (EVAR). OSR 
is an invasive procedure consisting of a large incision on the site of aneurysm in order to remove 
and replace it by a synthetic graft. Treatments vary depending on the patient’s condition and on a 
case-to-case basis. Choices include open-surgery procedures which are largely invasive or 
endovascular aneurysm repair (EVAR). Size and structure mismatch between standardized stent 
and aorta may cause internal leakage or rupture of blood vessels. With the development of 
precision medicine, personalized vascular stents that conform to the patient's true vascular 
structure have become the purpose of the next generation stents. EVAR has clear benefits in terms 
of less trauma, reduced mortality and lower morbidity.   

Nevertheless, it has also limitations related to the anatomy and the morphology of the patient 
vessel and major post-operative complications may still occur due to stent graft migration and 
endoleaks. The conventional geometry are, in some cases, not compliant with the patient’s blood 
vessels and the mismatch may cause internal leakage, rupture and the failure of EVAR treatment. 
For these reasons, the patient-specific stent grafts are considered the next generation of device, 
able to accommodate the patient’s anatomical vascular structure. Hemodynamics is believed to 
play a key role in the formation and the progression of the dissecting aneurysm [7]. These 
numerical methods can provide detailed information about wall stresses and fluid flow. Several 

mailto:sara.ragusa01@community.unipa.it
mailto:info@amedsrl.com
mailto:salvatore.russotto@unipa.it
mailto:%20emanuela.bologna@unipa.it
mailto:massimiliano.zingales@unipa.it


Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 299-304  https://doi.org/10.21741/9781644902431-49 

 

 
300 

study of AAA by means of computational models have been reported in literature [8–11]. Over 
the years, Computational Fluid Dynamics (CFD) analysis and, in the last decade, Fluid-Structure 
Interaction (FSI) are used to simulate the complex cardiovascular system.  
The aim of the work is to evaluate the advantages of using a patient-specific stent graft for EVAR 
treatment by means FSI analysis.  In this preliminary study, a case of abdominal aortic aneurysm 
was examined by means of CFD in order to compare hemodynamics in the proposed patient-
specific graft with respect to fluid dynamics in abdominal aortic aneurismatic vessel and in a 
conventional graft, ideally implanted after aneurysm resection by means OSR. 
Materials and Methods 
Image Segmentation and Model Construction.  
The three-dimensional model of the patient’s aneurismatic aorta was reconstructed from the 
patient’s CT images using the software Mimics 21.0 (Materialise). The first step in the 
reconstruction process is the image segmentation to highlight the region of interest, the aorta in 
this specific case. Based on this, to perform the CFD analyses, the AAA model was obtained and 
conventional and the patient-specific grafts models were reconstructed in Solidworks®. 
 
Geometry Discretization. 
In the CFD approach, the continuous domain volume was discretized in approximate discrete 
domain. The three fluid models ( i.e. aneurysmatic aorta, conventional and patient-specific grafts) 
were imported in .STL format in ICEM CFD 19.2 (Ansys Inc.) to discretize the volume in small 
elements and realize the mesh. For each model, tetrahedral elements in the core region and 
prismatic elements in the boundary layer (3 layers) were used. The mesh created consist of about 
1 million elements with a mesh quality above 0.3, ratio between the volume of the element and the 
cube of the radius of the sphere that circumscribes it. In addition, meshes were verified in order to 
eliminate the unconnected vertices. 
 
Computational Fluid Dynamics Analysis.  
Fluid dynamics was evaluated by a transient CFD simulation performed using FLUENT v19.2 
(Ansys Inc.). CFD solver is used to obtain an approximate solution of the Navier-Stokes 
differential equations.  
 

  
𝐷𝐷𝜌𝜌
𝐷𝐷𝑡𝑡
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𝜕𝜕𝒖𝒖
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 , u is the  velocity, p is the pressure, 𝜇𝜇  
is the viscosity, g the gravitational acceleration.  

The analyses set-up are the same for all three fluid models.  
The blood was assumed to be an incompressible and Newtonian fluid with a density 𝜌𝜌 of 1060 

kg/m3 and viscosity 𝜇𝜇 of 0.003 Pa*s. Assuming a diameter of 0.5mm it is correct to assume a 
Newtonian flow through the aorta, in fact the blood viscosity is relatively constant at the high rates 
of shear (100 s-1) typically found in the aorta [12]. The boundary conditions were imposed on inlet, 
outlets (abdominal, renal - branch1 and branch2 - and mesenteric) and the wall surfaces (Fig. 1). 
Mixed-type boundary condition represents physiological conditions more accurately because 
when the heart ventricles contract, it induces a change in volume that causes a pressure gradient 
and forces the blood out [13]. In addition, rigid and no slip conditions were assumed at wall. Two 
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(2) 
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cardiac cycles have been simulated in order to achieve a solution independent from the initial 
conditions. 

The investigated hemodynamic variables are Wall Shear Stress (WSS) and velocity. WSS in a 
blood vessel is the force per unit area created when tangential force (blood flow) acts on a surface 
(endothelium). The magnitude of WSS is proportional to the velocity gradient near the wall of the 
vessel, that is called wall shear rate:  

 
𝜏𝜏𝑤𝑤 =  𝜇𝜇 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

 

 
Where μ is the dynamic viscosity, �̇�𝛾 is shear rate and y the distance from the wall. 

Figure 1 CFD analysis set-up. The same surfaces are defined for both conventional graft fluid 
model and patient-specific graft fluid model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Wall shear stress. The figure shows schematic illustration of the velocity profile 
experienced by inner surfaces of a vessel because of flowing blood 

(3) 
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Results and Discussion 
 

Figure 6 Wall Shear Stress at systole peak in a) aneurismatic aorta, b) conventional graft, c) 
patient-specific graft. 

 
Wall shear stress (WSS) and velocity at peak systole are the hemodynamic in-depth variables in 
all three fluid models by CFD analyses. Fig. 6 shows the WSS in three fluid models. At the site of 
aneurysm, the WSS is zero (Fig. 6a). This indicates that blood flow does not exert tangential 
stresses on the wall due to the presence of low-velocity areas in the site as shown in Fig. 6a. The 
maximum WSS is located in branches: its value is of 184.6 Pa in aneurismatic vessel and the 
conventional graft (Fig. 6 a-b) compared to 142 Pa in patient-specific graft (Fig. 6c). The use of   
patient-specific graft reduces the maximum WSS of about 23% to the vessel and exhibits a  
distribution of wall shear stress more uniform than other models.  

In Figure 7, the velocity magnitude of selected cross-sections is visualized at peak systole 
(0.313 s). Cross-section A is at aneurysm site, while cross-sections B and C are located in graft 
models at the same place of cross-section A. The use of both conventional and patient-specific 
graft removes the low-velocity area present in the aneurismatic vessel (Fig. 7a). The flow pattern 
in conventional graft (Fig. 7b) shows that the blood flow is not full developed and it is very 
different to the flow pattern of patient-specific graft (Fig. 7c). This aspect is associated to the 
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conventional graft morphology and alters the vascular physiology. On the other hand, the flow 
pattern of patient-specific graft (Fig. 7c) is consistent and accommodates the vessel curvatures. 
The maximum of velocity is located in the branches in all three models.  
 

 
Figure 7 Velocity at systole peak in a) aneurismatic aorta, b) conventional graft, c) patient-

specific graft. 
Summary 
In this work, we introduce a patient specific case study of the aortic aneurysm with the consequent 
design of a stent graft that can accommodate the complex anatomical structure of the patient. The 
device was modeled from abdominal aorta segmentation derived by CT scan images of abdomen. 
CFD, structural analysis and, more recently, the FSI are the numerical methods used for the study 
of cardiovascular disorders such as aneurysm even in patient specific cases. Computational 
methods were used in order to evaluate its hemodynamic advantages with respect to conventional 
graft. The fluid dynamics analysis carried out on the aneurysm vessel allowed to highlight salient 
aspects such as, first of all, the presence of flow recirculation and a high pressure profile. At the 
same time, it’s worth to note how the insertion of a patient specific graft is beneficial. 

The blood flow inside does not present the zones at low speed, not altering the physiology and 
fluid-dynamic of the vessel (unlike conventional graft) with a consistent fluid pattern. In addition, 
patient-specific graft reduces the maximum WSS of about 23% to the vessel and conventional 
graft and exhibits a distribution of Wall Shear Stress more uniform than aneurismatic vessel. The 
future goal is to implement the fluid structure interaction of the patient specific stent graft in order 
to evaluate the behavior of the two materials and their interactions when subjected to the fluid 
forces and, consequently, of the device itself. 
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Abstract. In this paper the diffusion model representing the motion of membrane receptors with 
respect to virus endocytosis is considered in the context of applied mechanics. The unexpected 
behaviour of the receptor density that moves from higher concentrations in the unbound phase to 
lower concentration at the right of the virus surface is accounted for introducing a mechanical drift 
term in the governing equation so that the difference of concentrations, higher in the bounded 
phase and lower in the unbounded phase is accounted for in the receptor motion. Additionally, a 
non-gaussian model of diffusion has been introduced in terms of fractional generalization of the 
Fick law. 
Introduction 
Endocytosis is one of the main processes by which the cells of the human body receive substances 
and nutrients from the extracellular matrix, but it is also the route whereby viruses enter host cells 
to reproduce [1,2]. Generally, viruses have protuberances, small spikes, called ligands, on their 
outer surface. Ligands play a major role in the first phase of endocytosis, because they are 
responsible for the first contact by the virus with the cell membrane. The ligands form bonds with 
membrane receptors, which diffuse under the virus, to the area where endocytosis will occur, to 
allow the formation of various ligand-receptor pairs. As the virus descends toward the membrane, 
and more ligand-receptor pairs are formed, it exerts pressure on the membrane, deforming it. So, 
when the entire surface of the virus is in contact with the membrane, a concavity will have been 
formed in which the virus will reside. This last mechanism is called invagination and is completed 
as soon as the entire virus is surrounded by the cell membrane and passes the plasmalemma finding 
itself in the cytosol. Such a foreign body in the cell is called an endosome. This process will be 
followed by dissolution of the endosomatic capsule and biosynthesis of the viral components. 

It's very important to know the time it takes viruses or nanoparticles to permeate the membrane, 
because on the one hand a virus that spends too much time to cross membrane will not be able to 
infect the host body, and on the other hand drug-containing nanoparticles can be functionalized 
more optimally to form ligand-receptor bonds effectively and act faster. 

Recently the fractional calculus tool has provided excellent results to describe tissue 
biomechanics [3,4], proving its usefulness in describing tissue behaviour. 

The aim of this paper is to propose a model that describes receptor diffusion, through a 
fractional form of Smoluchowski's fractional equation, which considers not only the chemical 
potential, given by Fick's law, but also an external potential in term of Morse potential. 
The gaussian diffusion of membrane receptors 
The mathematical formulation of the Stefan' problem proposed in previous section is not 
satisfactorily, from a mechanical  perspective for the following reasons: i) The motion of the 
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receptors following diffusion is always in the direction of the lower concentrations; ii) In order to 
achieve condition i) a first-order singularity in concentration appears at the moving  boundary 
separating the bounded-unbounded phases of the receptors; iii) The force-flux relation presented 
by the Fick relation involves a random motion of diffusion of particles, non-mutually interacting, 
in a viscous media. This condition is hardly to find in receptors floating in the cell-membrane since 
the presence of other larger molecules of cholesterol, rafts and large protein-channels may be 
observed in real cellular membranes. 

The aforementioned considerations pushed the authors, toward a different model of receptor 
diffusion that make use of the generalization of the Fick law with the introduction of fractional 
calculus [5,6,7,8,9]. In this regard, in the present section the first two issues i) and ii) will be 
considered introducing a mechanical drift in the model, derived from a specific potential, that 
represent the driving force that allows to overcome the hole of concentrations among the bounded-
unbounded phases of the receptors. This potential represents an electrostatic attraction among the 
OH- sites of the receptors and the H+ protons free to connect in the virus ligands and, for them, a 
specific expression of potential has been chosen in the following. Let us consider a generic instant 
when the virus has already made first contact with the membrane: 

 

 
Fig. 1. Schematic representation of the receptor density profile of the proposed model. 

 
Receptor diffusion follows Fick's classic law, in which there is an additional term: 

 

𝑗𝑗(𝑥𝑥, 𝑡𝑡) = −𝜆𝜆
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥

−
𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜁𝜁

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

.                                                                                              (1) 

 
Where 𝜆𝜆 = 𝑘𝑘𝐵𝐵𝑇𝑇

𝜁𝜁
 is the diffusivity coefficient  [𝜆𝜆] = 𝐿𝐿2

𝑇𝑇
, 𝜁𝜁 = 4𝜋𝜋𝜋𝜋𝜋𝜋 friction factor [𝜁𝜁] = 𝑀𝑀 

𝑇𝑇
, 𝜋𝜋 

membrane viscosity  [𝜋𝜋] = 𝑀𝑀 
𝐿𝐿 𝑇𝑇 

 e 𝜋𝜋 radius of the receptor [𝜋𝜋] = 𝐿𝐿. While 𝑑𝑑(𝑥𝑥) is the potential 
energy, which we decided to express through the following Morse potential: 
 

𝑑𝑑(𝑥𝑥) = 𝑘𝑘𝐵𝐵𝑇𝑇 �1 − 𝑒𝑒
−� 𝑘𝑘𝑒𝑒

2𝑘𝑘𝐵𝐵𝑇𝑇   �𝑥𝑥−𝑎𝑎(𝑡𝑡)�
�
2

.                                                                                          (2) 

 
Where 𝑘𝑘𝑒𝑒 is the force at the minimum of the well. Contrary to the model [10], we assumed that 

we know the density of receptors at the interface. This density is the same as that found under the 
virus with regard to ligand-bound receptors, and we denote it by 𝜕𝜕𝐵𝐵. We also know the density of 
unbound receptors in areas far from where the process of endocytosis is occurring. We denote this 
density by 𝜕𝜕𝑈𝑈. Noting that 𝜕𝜕𝐵𝐵 > 𝜕𝜕𝑈𝑈. Summarizing in mathematical terms, with reference to Fig. 1: 
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𝜕𝜕(𝑥𝑥, 𝑡𝑡) = �𝑗𝑗
(𝑥𝑥, 𝑡𝑡) = 0, 𝜕𝜕(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝐵𝐵      𝑖𝑖𝑖𝑖  𝑥𝑥 ≤ 𝑎𝑎(𝑡𝑡)
𝑗𝑗(𝑥𝑥, 𝑡𝑡) → 0, 𝜕𝜕(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝑈𝑈 𝑖𝑖𝑖𝑖  𝑥𝑥 → ∞    .                                                                (3) 

 
To find the condition at the interface, we assume that over time the change in receptor density 

over the domain remains constant: 
 

𝑑𝑑
𝑑𝑑𝑡𝑡
�� 𝜕𝜕(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑥𝑥

𝑎𝑎(𝑡𝑡)

0
+ � 𝜕𝜕(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑥𝑥

∞

𝑎𝑎(𝑡𝑡)
� = 0.                                                                                       (4) 

 
We apply Leibniz rule to (4) and taking into account the boundary conditions (3), we get: 
 

�
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡

𝑎𝑎(𝑡𝑡)

0
𝑑𝑑𝑥𝑥 + 𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)

𝑑𝑑𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ �
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡

∞

𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑥𝑥 − 𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)

𝑑𝑑𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 0.                     (5) 

 
We can elide the equal terms of (5) and since the density of receptors under the virus over time 

remains constant, we can erase the first integral, then: 
 

�
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡

∞

𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑥𝑥 = 0.                                                                                                                              (6) 

 
Recalling the continuity equation: 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑡𝑡
= −𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥
. We can substitute it into (6) and integrate: 

 
[𝑗𝑗(𝑥𝑥, 𝑡𝑡)]𝑎𝑎(𝑡𝑡)

∞ = 0.                                                                                                                                      (7) 
 
The first term validated to infinity is null, while in the second term we have that the potential 

present a minin in 𝑎𝑎(𝑡𝑡) and therefore its derivative will be zero, so there remains only a single 
term: 

 

𝜆𝜆
𝜕𝜕𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)

𝜕𝜕𝑥𝑥
= 0.                                                                                                                                    (8) 

 
By deriving with respect to time the (8), the speed of the interface can be obtained: 
 

�̇�𝑎(𝑡𝑡) = −  
𝜕𝜕𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑡𝑡𝜕𝜕𝑥𝑥

𝜕𝜕2𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑥𝑥2

.                                                                                                                      (9) 

 
It is interesting to note that by adopting the form (2) of the Morse potential the diffusion of 

receptors is from higher to lower potentials, in this case that at the interface. Finally, we can write 
the complete system of the set of equations, in the form of Stefan's problem [11], describing the 
flow of receptors: 
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⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑡𝑡
= 𝜆𝜆𝛽𝛽

𝜕𝜕2𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

+
1
𝜁𝜁
�
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

+ 𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝑑𝑑2𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥2

�                                           (10.𝑎𝑎) 

𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡) = 𝑐𝑐𝐵𝐵.                                                                                                                                   (10. 𝑏𝑏) 
𝜕𝜕(𝑥𝑥 → ∞, 𝑡𝑡) = 𝑐𝑐𝑈𝑈.                                                                                                                              (10. 𝑐𝑐)

�̇�𝑎(𝑡𝑡) = −  
𝜕𝜕𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑡𝑡𝜕𝜕𝑥𝑥

𝜕𝜕2𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑥𝑥2

.                                                                                                                   (10.𝑑𝑑)

 

 
The domain of the (10.𝑎𝑎) is 𝑎𝑎(𝑡𝑡) < 𝑥𝑥 < ∞, 𝑡𝑡 > 0. 

 
The fractional-order model of membrane receptors diffusion 
We introduce the fractional Fick law in terms of the Caputo derivative [12] with 0 < 𝛽𝛽 < 1: 

 

𝑗𝑗(𝑥𝑥, 𝑡𝑡) = −𝜆𝜆𝛽𝛽 � 𝐷𝐷0𝐶𝐶 𝑡𝑡
𝛽𝛽 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑥𝑥
� (𝑥𝑥, 𝑡𝑡) −

𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜁𝜁

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

.                                                                (11) 

 
In which 𝜆𝜆𝛽𝛽 is the anomalous diffusivity coefficient with dimensions: �𝜆𝜆𝛽𝛽� = 𝐿𝐿2

𝑇𝑇1−𝛽𝛽
. 𝑑𝑑(𝑥𝑥) is as 

previously the Morse potential. For the condition at the interface, we can follow the steps given 
above up to equation (7). So, we get: 𝜆𝜆 � 𝐷𝐷0𝐶𝐶 𝑡𝑡

𝛽𝛽 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� (𝑎𝑎(𝑡𝑡), 𝑡𝑡) = 0. Using property 𝐼𝐼0 𝑡𝑡

𝛽𝛽� 𝐷𝐷0𝐶𝐶 𝑡𝑡
𝛽𝛽𝑖𝑖�(𝑡𝑡) =

𝑖𝑖(𝑡𝑡) − 𝑖𝑖(0) and then deriving with respect to time and isolating the interface velocity, we obtain 
the same equation for the non-fractional system proposed before. To obtain the time-fractional 
diffusion equation, we substitute (11) into the continuity equation. The complete system will be: 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑡𝑡
= 𝜆𝜆𝛽𝛽 � 𝐷𝐷0𝑐𝑐 𝑡𝑡

𝛽𝛽 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

� (𝑥𝑥, 𝑡𝑡) +
1
𝜁𝜁
�
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

+ 𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝑑𝑑2𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥2

�                             (12.𝑎𝑎) 

𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡) = 𝑐𝑐𝐵𝐵.                                                                                                                                   (12. 𝑏𝑏) 
𝜕𝜕(𝑥𝑥 → ∞, 𝑡𝑡) = 𝑐𝑐𝑈𝑈.                                                                                                                              (12. 𝑐𝑐)

�̇�𝑎(𝑡𝑡) = −  
𝜕𝜕𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑡𝑡𝜕𝜕𝑥𝑥

𝜕𝜕2𝜕𝜕(𝑎𝑎(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑥𝑥2

.                                                                                                                   (12. 𝑑𝑑)

 

 
Numerical investigation 
For both system (10.𝑎𝑎 − 10.𝑑𝑑) and (12. 𝑎𝑎 − 12.𝑑𝑑), it is not possible to obtain an analytical 
solution, so we applied the finite difference method. For simplicity we will report the case where 
𝛽𝛽 = 0 and then we get the non-fractional system again. Considering a generic particle with a 
diameter 𝑑𝑑 ≅ 38 𝑛𝑛𝑛𝑛, the data used follow: 𝜋𝜋 = 10−3 𝑝𝑝𝑝𝑝 𝜇𝜇𝜇𝜇

𝑛𝑛𝑛𝑛2 , 𝜋𝜋 = 5 𝑛𝑛𝑛𝑛, 𝜁𝜁 = 0.0628 𝑝𝑝𝑝𝑝 𝜇𝜇𝜇𝜇
𝑛𝑛𝑛𝑛

, 𝜆𝜆 =

67.8 𝑛𝑛𝑛𝑛
2

𝜇𝜇
, 𝑘𝑘𝑒𝑒 = 0.01 𝑝𝑝𝑝𝑝, 𝑐𝑐𝑢𝑢 = 5 × 10−4 𝑛𝑛𝑛𝑛−2,𝑐𝑐𝐵𝐵 = 5 × 10−3𝑛𝑛𝑛𝑛−2. In the following graph, one 

can observe the curves obtained from the numerical solution for the receptor densities as a function 
of the radius of a generic virus for different times: 
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Fig. 2. Numerical solution of the proposed model with five curves at different time instants. The 

first point at the top of each curve represents the particle-membrane interface. 
 

While in this second graph the corresponding interface position as a function of time. Each first 
point of the receptor density curves corresponds to one of the red curve points of the interface 
position. 
 

 
Fig. 3. Position of the particle-cell membrane interface as a function of time. 

Conclusions 
In this paper we analyzed the process of endocytosis and specifically the diffusion of receptors 
under the virus, an important step that allows the virus to bind to the cell membrane. We proposed 
a new model of receptor diffusion by considering an external potential as a function of the Morse 
potential. And finally proposed a generalized time-fractional form of the model, representing a 
typical sub-diffusive process, in which for 𝛽𝛽 = 0 we regain the classical model. 
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Masonry modelling and analysis: from 
material to structures 
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Abstract. In this paper, advanced numerical models are used to study the progressive damage of 
a historic building, namely the Palazzo of Podestà and the Civic Tower of Accumoli (central Italy). 
The dynamic behaviour of the structure is analyzed following important seismic events such as 
those that occurred in 2016-2017. Discontinuous and continuous approaches are used. In the 
formers, the masonry response is represented both with Discrete Element Method (DEM) and the 
Non-Smooth Contact Dynamic (NSCD) method; in the latter the masonry nonlinearity is replicated 
using the Concrete Damage Plasticity (CDP) model. The numerical results showed a good 
correspondence of all the approaches with the real damage suffered by the structure after the 
seismic sequence. 
Introduction 
In 2016, a series of catastrophic seismic shocks caused victims and considerable damage to the 
heritage structures in the Central Italy regions [1,2]. These earthquakes heavily stroked the Norcia, 
Visso, Arquata del Tronto, Amatrice and Accumoli villages [3,4]. 

 
Figure 1. The geographical location of Accumoli village. 

The case study of this paper is located in the Accumoli village, in the Lazio region (central 
Italy). The historic center of Accumoli, before this disaster (Fig. 1), was the tangible testimony of 
a troubled history. 
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Figure 2. North (a), South (b), East f (c) and West façade (d), Ground (e) and first floor (f). 
Accumoli dates to 1211, the territory was initially much larger than the current ones including 

several municipalities. At the heart of this small village there is the case study of this paper, i.e. 
the Civic Tower of Accumoli and the adjacent Podestà palace. The Tower dates to the twelfth 
century, it is unique in its kind in the entire Tronto’s valley. It is in via Tommasi, featuring a square 
plan measuring 6.15x6.15 m2 with walls of 1.20 m thickness at the base and 1.00 m at the top. In 
elevation, the maximum height exceeds 20 m (Fig. 2). The bearing structure consists of multi-leaf 
walls [5,6], the perimeter curtains are in cut stones and the inner core is in irregular stones. The 
structure ends with a pitched roof in reinforced concrete. 

Next to the tower, there is the Palace of Podestà. It dates to the thirteenth century, and it is the 
oldest structure in the Accumoli village. The palace has a rectangular plan of 8.6x16 m2 dimensions 
and a maximum height of 10 m. It consists of ground and noble floors. In the latter, there are 
architrave windows, instead on the ground floor there are two arched openings, typical of medieval 
public buildings. The bearing structure is made of square and smooth sandstone ashlars. (Fig. 2). 
On the north side of the palace, there is a little annex of one floor. It has a rectangular plant of 
10x3.8 m.  

After the 2016 earthquakes, the complex exhibited visible cracks, especially on the tower as 
visible in Figure 3. 

 
Figure 3. Real damage of the North façade (a) and West façade (b). 

Discontinuous and continuous approaches 
Numerical models were created to have a complete picture of the progressive damage that the 
structure undergoes when subjected to a seismic sequence. A comparison was made between the 

(a) (b)

(d)(c)

(e)

(f )

(a) (b)
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discontinuous and the continuous approach [7–9]. 
In the discontinuous approach, the dynamic response of the structure is studied with the Non-

Smooth Contact Dynamic (NSCD) method [10–12] implemented in LMGC90© open-source code 
and with the Distinct Element Method (DEM) [13–15] implemented in 3DEC© code. A 3D 
numerical model is created, and the masonry is discretized in different individual rigid blocks, 
reproducing the real behaviour of the structure, and analysing the progressive damage under a 
seismic action [16–18]. The size of the blocks has been approximated to obtain a fair compromise 
between a good degree of detail and a not too expensive computational burden (Fig. 4) [12]. 
Furthermore, it was decided to model the tower also considering its internal filling (Figure 4.b-c-
d) as can be seen in Figure 4c, made with larger blocks than the two external leaves in order to 
limit the computational burden. 

The blocks in the NSCD method are subjected to Signorini's law (i.e., impenetrability condition) 
and to the dry-friction Coulomb’s law. The contacts have than a non-smooth nature. 

 
Figure 4. Discontinuous (a-d) and continuous model (e). 

DEM models use smooth functions to represent interactions between blocks. A Mohr-Coulomb 
constitutive model is used. 

Differently, in the continuous approach, the masonry is approximated to a fictitious and 
homogeneous isotropic medium [19]. To reproduce the nonlinear behaviour of the masonry, the 
Concrete Damage Plasticity (CDP) model [20,21] is used. Such a model is one of the most used to 
analyse the masonry behaviour under horizontal loads [8]. Indeed, it can simultaneously provide 
the compression and tension damages and consider the recovery of stiffness due to cracks closure.  
Numerical results 
The structural behaviour of the structure was first studied under gravitational loads, then the 
records of the three most important seismic events that occurred in Central Italy in 2016 were 
applied in the three main directions to obtain a first comparison between the numerical and the real 
damages.  
The three events taken into consideration are summarized in Table 1. The events were applied in 
sequence considering 10 seconds of the peak amplitude of each and two seconds of rest between 
one event and another, the total time histories apply were of 34 seconds.  
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Table 1. Characteristic of the three main shocks of the Central Italy seismic sequence of 2016 
recorded in Amatrice (AMT) and Accumoli (ACC) station, where * indicates that the site 

classification is not based on a direct Vs,30 measurements. 

Seismic event ML Depth 
[km] Station Class 

EC8 R [km] R [km] R [km] 
Channel 
NS PGA 
[cm/s2] 

Channel 
EW PGA 

[cm/s2] 

Channel 
UD PGA 
[cm/s2] 

1st 24/08/2016 6 8.1 AMT B* 1.38 4.62 8.5 368.39 -850.8 391.37 
2nd 26/10/2016 5.9 7.5 AMT B* 25.93 26.09 33.3 -58.55 90.74 -49.11 
3rd 30/10/2016 6.1 9.2 ACC B* 35.33 35.32 47.10 -122.44 75.95 -44.07 

 
Figure 5 shows an excellent correspondence of results between DEM and NSCD. The part of 

the structure that is most affected by the seismic sequence is the belfry; in fact, following the first 
two events the formation of crack patterns on it is visible. Following the earthquake of 30th October 
2016, it is possible to notice the propagation of crack patterns between the palace and the tower. 
Furthermore, the palace after the last shock is damaged near the openings on the ground floor. The 
tower instead highlights the formation of vertical crack patterns on all the façades. On the other 
hand, the FE model also shows the vulnerability of the bell-cell. After the first event, horizontal 
cracks at its base are visible; instead, at the end of the sequence, a crack appeared also in the upper 
corner of the single arched windows. In contrast to the discrete approaches, the continuous showed 
important cracks in the connection between the tower and the palace just after the first events (Fig. 
5). 

 
Figure 5. Comparison between results of 3DEC©, LMGC90©, and FEM. 

Finally, it is important to stress the fact that all the approaches were able to identify the bell-
cell as the most vulnerable element, as incidentally demonstrated by the 2016 seismic sequence. 
However, the cracks’ pattern is more accurate with the discontinuous approaches instead than with 
continuous one. It is certainly linked to a loss of the resistant properties of the mortar, but also to 
a masonry’s texture with irregularities, at least in the filling. With these boundary conditions, the 
masonry exhibits crumbling instead of a monolithic behaviour, the first one impossible to catch 
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with continuous approaches. 
Conclusions 
The Palazzo of Podestà and the Civic Tower were studied through continuous and discontinuous 
approaches. The latter allows to represent the discontinuities of the masonry, capturing the 
dynamic behaviour of the structure following the seismic sequence of Central Italy in 2016. It is 
possible to note a good correspondence between the models with the NSCD and DEM methods 
and the real damage. In particular, the global and local behaviour of the structure is obtained. 
Furthermore, good results are obtained with the continuous approach, which, however, unlike the 
discontinuous approach, cannot faithfully reproduce the cracks because the texture of the masonry 
has a high influence on the structural response. 
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Abstract. A new application of the elastic no-tension material model is developed through 
Sequential Linear Analysis (SLA) to analyze masonry structures. The approach has been 
demonstrated to be more robust compared to incremental analysis procedures. In the SLA 
framework, the equilibrium state of a masonry-like material is sought through a series of linear 
elastic analyses. In the loading process, cracking strains are simulated by sequential reduction of 
the directional stiffness upon violation of the no-tension constraint in terms of principal stresses. 
Some applications are presented to show the effectiveness of the proposed method in analyzing 
masonry structures under the effect of gravity, lateral loading, and ground settlements. 
Introduction 
In the last decades a number of refined models have been developed for masonry structures based 
on the theory of plasticity and damage mechanics [1]. Although they have been shown to be quite 
accurate in simulating the mechanical behavior of masonry specimens and small-scale buildings 
tested in the laboratory, these models require many input parameters, which are hardy available in 
practical situations. A comparison between limit analysis solutions and finite element methods in 
the stability assessment of masonry structures was addressed in [2]. An alternative is the so-called 
no-tension material model, which completely neglects the limited tensile strength of masonry 
[3][4]. The reduced number of parameters required by the no-tension model makes it very 
appealing for unreinforced masonry constructions, compared to more refined constitutive models. 

Despite the apparent simplicity of the linear elastic no tension (ENT) model, numerical issues 
arise as discontinuities in the stress and displacement fields have to be dealt with, leading to 
convergence issues. In fact, the application of ENT material models remains still limited. Readers 
may refer in particular to Angelillo [5], who proposed a finite element solution based on a 
complementary energy theorem for ENT bodies, or to Bruggi and Taliercio [6], who reformulated 
the analysis of no-tension structures as an energy-based problem introducing an equivalent 
orthotropic material. 

In this contribution, the analysis of no-tension structures in plane stress conditions is dealt with 
through the application of a procedure of Sequential Linear Analysis (SLA). This technique 
provides a robust alternative to traditional incremental-iterative methods for finite element 
simulations, since it transforms the problem into a series of linear elastic analyses, see in particular 
[7]. The implementation presented here is developed through the combined application of a user 
subroutine in Abaqus, Python and Matlab scripts.  

Two benchmark cases have been analyzed to assess the capabilities of the proposed model 
under vertical loads, lateral loads, and ground settlements. 
Governing equations 
According to [3][8], a no-tension masonry-like material has to fulfill a prescribed set of conditions. 
The stress tensor must be negative semidefinite: 

𝜎𝜎𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚−, (1) 
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where 𝑆𝑆𝑆𝑆𝑚𝑚− is the closed cone of negative semi-definite symmetric second-order tensors.  
The strain tensor is assumed to consist of two parts, an elastic part 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒  and a latent part 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐  

accounting for cracking:  

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 .   (2) 

Finally, the elastic strain is related to the stress 𝜎𝜎𝑖𝑖𝑖𝑖 through the elasticity tensor 𝐶𝐶𝑖𝑖𝑖𝑖ℎ𝑘𝑘, while the 
latent strain, 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 , follows the normality condition: 

𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 = 0     and    𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚+, (3) 

where 𝑆𝑆𝑆𝑆𝑚𝑚+ is the closed cone of the positive semi-definite symmetric second order tensors. 
Sequential Linear Analysis Methodology 
The domain occupied by the structure is discretized by 4-node plane-stress finite elements with 
one integration point (Fig. 1a). The SLA consists in a series of elastic analyses with modified 
stiffness and orientation of each element, until a stable value of the total strain energy is reached. 
This criterion is used as convergence condition for the iterative procedure.  

Upon violation of the condition that states that all the principal stresses must be negative, the 
original isotropic material is replaced by an equivalent orthotropic one, with vanishing stiffness in 
tension. The symmetry axes, �̃�𝑧1, and �̃�𝑧2, of the equivalent orthotropic material and the principal 
stress directions, 𝑧𝑧𝐼𝐼 and 𝑧𝑧𝐼𝐼𝐼𝐼, of the no-tension medium share the same orientation with respect to 
the general reference system 𝑂𝑂𝑧𝑧1𝑧𝑧2 (Fig. 1b). This is achieved through a process of alignment of 
the symmetry axes of the equivalent orthotropic material with the principal stress directions, zα, α 
= I, II, detected in the no-tension medium. 

The principal stresses are computed as the eigenvalues of the stress tensor at the Gauss points, 
whereas the principal directions are found as the relevant eigenvectors. 

In order to track cracking strains, at each Gauss point, two nondimensional material densities 
𝜌𝜌𝑖𝑖 ∈ (0,1] are introduced along the material axes; these parameters govern the stiffness 
penalization of the orthotropic material along �̃�𝑧1 and �̃�𝑧2. The material density 𝜌𝜌𝑖𝑖 is related to the 
damage variable 𝐷𝐷𝑖𝑖 through the expression 𝐷𝐷𝑖𝑖 = (1 − 𝜌𝜌𝑖𝑖). If any of the principal stresses becomes 
positive, the material density variable is initialized with a value, 𝜌𝜌0 = 0.25, whereas further 
reductions are performed using a quadratic reduction factor, i.e.: 

𝜌𝜌𝑘𝑘+1,𝑖𝑖 = 1 − �1 − 𝜌𝜌𝑘𝑘,𝑖𝑖�
2

, 𝑖𝑖 = 1,2. (4) 

In each material direction, the model can capture elastic (negative) compressive strains, or 
positive strains, which correspond to cracking strains. In the latter case, a scaled stiffness is 
computed in the direction where the principal stress becomes positive, to account for cracking.  

The stress-strain law written in matrix form in the general reference system reads: 

𝝈𝝈 = 𝑫𝑫 𝜺𝜺 (5) 
where: 

𝑫𝑫 = 𝑻𝑻(𝜃𝜃)  𝑫𝑫�   𝑻𝑻(𝜃𝜃)𝑇𝑇 (6) 

being T a transformation matrix and θ the angle between z1 and 𝒛𝒛𝑰𝑰. In plane stress, the stiffness 
matrix in the material (principal stress) reference system reads: 

𝑫𝑫� = 1
1−𝜈𝜈�12𝜈𝜈�21

�
𝐸𝐸�1 𝜈𝜈�12𝐸𝐸�2 0

𝜈𝜈�21𝐸𝐸�1 𝐸𝐸�2 0
0 0 𝐺𝐺�12(1 − 𝜈𝜈�12𝜈𝜈�21)

� (7) 
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being 𝐸𝐸�1 and 𝐸𝐸�2 the elastic moduli of the equivalent orthotropic material along the axis �̃�𝑧1 and 
�̃�𝑧2, respectively, 𝐺𝐺�12 the in-plane shear modulus, and 𝜈𝜈�12 𝜈𝜈�21 the material Poisson’s ratios such 
that 𝜈𝜈�21𝐸𝐸�1 = 𝜈𝜈�12𝐸𝐸�2. When the negative stress criterion is violated at any Gauss point, the equivalent 
moduli are reduced with respect to those of the original material as follows: 

𝐸𝐸�1 = 𝜌𝜌1𝐸𝐸0,   𝐸𝐸�2 = 𝜌𝜌2𝐸𝐸0,   𝐺𝐺�12 = 𝜌𝜌1𝜌𝜌2
𝐸𝐸0

2(1+𝜈𝜈)
 (8) 

being E0 and ν the elastic constants of the original isotropic material. At the same time, the 
Poisson’s ratios of the equivalent orthotropic material are given by: 

𝜈𝜈�12 = 𝜌𝜌2𝜈𝜈,   𝜈𝜈�21 = 𝜌𝜌1𝜈𝜈. (9) 
 

 
        a)     b)    c) 

Fig. 1. State of stress in a plane element: a) initial state, b) alignement of the material axes with 
the principal stress directions, c) damage onset normal to a nonnegative principal stress. 

Applications no. 1: Masonry panel under gravity loads and soil settlements 
The aim is to test the ability of the ENT model to simulate the behavior of a masonry wall over a 
strip foundation subjected to ground settlements along a portion of its constrained boundary. The 
wall is supposed to be 3.2 m long, 0.6 m high and 0.1 m thick; only the central part, for an extension 
of 1.2 m, is affected by settlements (Fig. 2). The initial modulus of elasticity, E0, is assumed to be 
equal to 1020 MPa. The panel is discretized with a mesh 75 x 75 mm2. The wall is analyzed under 
self-weight condition, while settlements are simulated by removing all the constraints at the nodes 
of the central region. 
 

 
Fig. 2. Scheme of a masonry wall experiencing ground settlements in the central region. 

The numerical simulations show the formation of a relieving arch (Fig. 3), which is typical of 
no-tension bodies. Starting from the ends of the fixed boundary, the direction of the principal 
compressive stress decreases and becomes horizontal at the middle of the unconstrained region. 
The rest of the model is not affected by settlements, and only nearly vertical compressive stresses 
are found.   

The formation of the arch-like compressive stress path affects the displacement field 
significantly. In fact, compared to the conventional elastic case (Fig. 4a), where settlements affect 
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also the neighboring regions, in the case of the ENT material displacements of non-negligible 
amplitude arise only beneath the inner arch (Fig. 4b). The zone above experiences much smaller 
displacements, whereas the rest of the model is virtually undeformed. This is in line with the 
schemes proposed by Mastrodicasa [9] regarding the effects of settlements in masonry walls. 
 

 
Fig. 3. Wall with settlements. Principal stresses from the ENT simulation. 

 
Fig. 4. Wall with settlements. Displacement contour plots: a) elastic model with symmetric 

behaviour in tension/compression, b) Elastic No-Tension model. 
Application no. 2: Masonry panel under vertical pressure and horizontal loading 
A slender masonry panel with dimensions 2.7m x 1.1m x 0.102m was tested at TU Delft [10] 
(experiment TUDCOMP-20): this experiment will be now adopted to validate the proposed 
numerical procedure. The top of the panel is loaded with a uniform vertical pressure of 0.63MPa. 
The pressure is applied through a horizontal steel beam and is kept constant during the experiment. 

The domain is discretized by 100 mm x 100 mm square elements. The top steel beam is 
modelled though a row of elastic elements in the mesh, and is allowed to rotate similarly to the 
experimental setup. The material properties are: 𝐸𝐸0=4972 MPa, 𝜈𝜈=0.16. The compressive strength 
of the material, 𝑓𝑓c, reported by the experimenters, is of 6.35 MPa. 

In Fig. 5 the distribution of the principal stresses and that of the “void” phase (elements with 
biaxial damage, in blue) are both shown at the first converged stage in which any of the principal 
compressive stresses reaches the strength limit 𝑓𝑓c.  
 

 
Fig. 5. Panel under horizontal loading, first SLA stage in which 𝑓𝑓𝑐𝑐 is reached in some element: 
a) distribution of the principal stresses in the masonry wall, b) distribution of “void” elements, 

i.e. those with biaxial damage (in blue). 
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The collapse load is estimated in 12.77 kN. This value matches quite well the horizontal branch 

of the experimental curve whose maximum value is 12.8 kN.  
The analytical calculation considering a simple panel overturning under vertical and horizontal 

loads gives a value of 14.4 kN, if the hinge is formed at the corner, or a value of 13.1 kN, if the 
hinge is considered 50 mm far away. The second value seems to be more representative of the 
considered case, since in the numerical model the hinge is allowed to occur at the midpoint of the 
side of a finite element, that is, at 50mm from the corner. Therefore, the difference between the 
numerical failure load and the analytical model is about 2.4%. 

Regarding the displacement capacity, it must be remarked that limit analysis can predict only 
the limit load. However, if we consider a finite strength in compression, the predicted 
displacements when 𝑓𝑓c is reached is 13.2 mm. Additional converged steps were obtained, but the 
compressive strength of masonry is exceeded. 
Conclusions 
In this contribution, the ENT model has been implemented in the framework of sequential linear 
analysis, which consists in a number of elastic analyses sequentially launched. The properties of 
the equivalent orthotropic material that replaces the ENT material to avoid the occurrence of tensile 
stresses are obtained through a penalization procedure. 

The proposed approach was used to analyze masonry structures subjected to prescribed loads 
or ground settlements. In the latter case, the cracking strains computed by the SLA procedure 
match the real crack pattern expected at incipient collapse fairly well. Also, the limit load of a 
panel tested under increasing horizontal load and dead vertical load was predicted with good 
accuracy. 

An advantage of the proposed approach compared to traditional incremental approaches is its 
inherent robustness.  

 

 
Fig. 6. Panel under horizontal loading. Comparison of experimental and numerical shear vs 

displacement capacity curve. Displacement are in mm, loads in kN.  
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Abstract. Numerical homogenization strategies can provide average mechanical responses, either 
in stress or coupled-stress quantities, which include many phenomenological features. 
Nonetheless, a direct application of numerical homogenization in sensitivity analysis in which 
uncertainty is propagated becomes impractical, as hundreds or thousands of simulations are 
conventionally required. In this study, a reliable and rapid predictive surrogate model is developed 
aiming to characterize the homogenized response of masonry. The case of English-bond 
arrangement is addressed, and the following steps are considered: (1) creation of a synthetic 
database through numerical homogenization based on a Finite-Element method, generated by 
randomization of model parameters; (2) training of a nonlinear Gaussian process; and (3) 
approximation of homogenized stress-strain curves for a masonry wall and for both linear and 
nonlinear ranges. The performance of the proposed technique is evaluated using training-
validation-test in terms of computational accuracy. Results indicate that computational time is 
lessened 1200% while relative errors remain below 5-10%.  
Introduction 
Including uncertainty in the mechanical analysis of masonry structures is generally achieved 
through forward propagation of uncertainty. Input variables are assumed to be random and 
uncertainty is propagated aiming to evaluate its effect in the mechanical response [1]. Inverse 
propagation is the opposite process and it is receiving attention due to the advance of surrogate 
modelling, as for instance to predict cement mortar strength [2], but also in dynamic identification 
problems [3]–[5]. Inverse problems allow predicting the parameters of a given system through a 
data-driven framework and within a probabilistic prediction interval. Although these are receiving 
a growing attention [6], its extension to the mechanical analysis of masonry structures is still 
limited. 

In such a context, the present study tries to tackle such opportunity. Classical Finite-Element 
(FE) and Discrete-Element (DE) strategies are expensive to run when analyzing masonry 
structures in the inelastic range and when parameter uncertainty is considered. This study 
addresses such difficulty by reducing the high computational time-cost required. The provision of 
a mesoscopic numerical model through a homogenization technique [7]–[11] and within a 
probabilistic framework has a paramount role, as it can provide data for training and testing of a 
surrogate model. In specific, a Gaussian process [12] is adopted since it offers promising accuracy 
when applied to non-linear structural mechanics problems [6], [13]. The presented strategy is thus 
based on numerical tools only, which is convenient as it precludes the need of other data sources 
such experimental tests. Hence, the study develops a simple-to-use and fast model based on a 
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Gaussian process to predict the homogenized in-plane mechanical response of an English-bond 
masonry wall. 
Mesoscopic boundary value problem 
A meso-mechanical problem is solved to compute average field variables for the in-plane 
mechanical response of masonry. The problem is formulated for the case of regular and periodic 
masonries. A single Representative Volume Element mΩ  (RVE) is defined. The kinematical 
description of the in-plane case assumes that the macroscopic strain tensor E is obtained as the 
volume average of the mesoscopic strain field ( )m m y=ò ò  over the associated volume mV  of the RVE 
(Eq. (1)). The mesoscopic strain field can be decomposed into a macro-scale and meso-scale 
contributions. The homogenized generalized stress is computed considering the mesoscopic stress 
field mσ  upon RVE equilibrium following the Hill-Mandell principle. The homogeneous 
macroscopic stress tensor Σ  can be written as the volume average of the mesoscopic stress field 

)(m m y=σ σ  over the RVE (Eq. (1)). 
 

1 1 .,
m

m

m m
m m

dV d
V

E
VΩ

Ω

= Ω= ∫∫ Σ σò  (1) 

 
A 2D unit-cell FE model based on a Kirchhoff-plate theory method is adopted to solve the 

meso-scale BVP. Brick units ( 235 115 70× × mm3) are modelled as elastic and through quadrilateral 
FEs and material nonlinearity is lumped on mortar joints that are represented through interface 
FEs. Such assumption is particularly adequate for strong unit masonry structures [14]. The so-
called composite interface model [15] is adopted, which is able to reproduce fracture, frictional 
slip and crushing along the interface elements of the joints. It is defined by a convex composite 
yield criterion with three individual functions able to represent softening behavior, i.e. a (i) a 
tension cut-off criterion designated as , 1criterionf  and defined in Eq. (3); (ii) a Mohr-Coulomb shear 
criterion designated as , 2criterionf  and defined in Eq. (4); and (iii) a cap in compression designated 
as , 3criterionf  and defined in Eq. (5). 
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Here, σ  is the generalized stresses, tf  is the interface bond strength, c  is the interface cohesion, 

φ  is the friction angle; P  is a projection diagonal matrix and p  a projection vector based on 
material parameters [15]; f

ftG , II
fG  are the mode-I and mode-II fracture energy terms, respectively; 

1σ , 2σ  and 3σ  are the effective stresses of each the adopted yield functions governed by the 
internal scalar variables 1κ , 2κ  and 3κ , respectively. The deterministic strategy given in [14] was 
enriched by attributing probability distribution functions to each input parameter; specifically to 
both geometric and material properties. If X defines the random input variables iX , then one can 
write the following: 
 

, , , , , , , ,, },{ .I I II
brick mortar t ft c fc f c jointX E f G f G c G f t tE=  (6) 
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in which : ( )i iX X X f x=∀ ∈  whereas ( )f x is assumed to be an uniform function. The sampling 
of random variables (RVs) is achieved by the Latin Hypercube method. The solution of the 
mesoscopic BVP is processed simulN  times, hence finding simulN  homogenized quantities. 

Gaussian process emulation 
A Gaussian process is a non-parametric probabilistic model that can be used for nonlinear 
regression of an existent model, hence approximating the structural response containing noise for 
classification problems [16]. For the present study, the nonlinear mapping between the input 
parameters and the corresponding homogenized stress-strain curves of the masonry will be 
approximated using a Gp. A Gp is fully defined by a mean and covariance function that is dependent 
on a set of parameters – known as hyperparameters – that must be estimated from a training data 
set. The mean m and covariance V are given by: 
 

2( ) ( ) ( , ) ( , )m x x V x x s x x= =H β R .  (7) 

in which N p×∈H R  is a regression matrix, 𝛃𝛃 ∈ ℝ𝑝𝑝 is a vector of regression coefficients, x
represents the strain and parameters described in the previous section that define the stress-strain 
curve, 2s  is a scalar response variance and  𝐑𝐑 ∈ ℝ𝑁𝑁×𝑁𝑁 is a correlation matrix. The matrix H
contains N  first order polynomial functions 1 1( ) [1 ]h x x=  of degree 2p = . The matrix R  contains 
the entries for a correlation function, which has been assumed to be linear: 
 

  ( , , ) max{0,1 | |}R x x x xω ω′ ′= − − .  (8) 

in which ω  is a roughness parameter [17] that represents how roughly the response changes 
between training data points. The hyperparameters that define the above functions, 2{ , , }sϑ = β ω , 
must be estimated from training data. Summarily, a likelihood function that describes how well 
the model fits the data is established and maximized. To simplify it, analytical expressions can be 
found for 2s  and β . For further theoretical details see [16]. 

Training and testing data 
The homogenized EΣ −  curves have been generated through the meso-mechanical model. The 
input parameters are given in Table 1. Both friction angle φ  and masonry wall thickness t  are 
assumed to be deterministic variables. An elastic response has been considered in compression, 
which is acceptable for a strong-unit-weak-joint type of masonry.  
 

Table 1 – Random input for the meso-mechanical model. 
 Random parameters 

iX  brickE  
(N/mm2) 

mortarE  
(N/mm2) 

,t mortarf  
(N/mm2) 

I
ftG  

(N/mm) 

II
fG  

(N/mm) 
c  

(N/mm2) 
jointt  

(mm) 
[X ]iE  [1000;15000] [500;4000] [0.05;0.40] [0.005;0.015] [0.02;0.055] [0.05;0.80] [10;15] 

 
The generated data comprises 2697 curves for each associated Cauchy’s deformation mode: (i) 

in-plane tension xx, (ii) in-plane tension yy, and (iii) in-plane shear xy. Homogenized curves are 
presented in Fig. 1. Each curve is composed of 100 points with a total of 269700samplesN =  points. 
Nonetheless, only 2.9% have been randomly selected for the training ( 7600trainingN = points) and 
20% for the testing (Ntesting). 
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Fig. 1 – Probabilistic homogenized stress-strain curves used in the Gaussian process emulation. 
Discussion of results 
The elastic and inelastic homogenized responses have been emulated separately since the curves 
have a discontinuity between these ranges. Note that such division is easily achieved by scanning 
the peak of each curve. The mean function and prediction interval of two curves are hence 
predicted – elastic and inelastic ranges –, being subsequently merged to form the full predicted in-
plane response of the periodic masonry arrangement. The mean function is used for the validation 
or testing of the predicted results. In the elastic part, both the estimated Young’s modulus and 
elastic strain energy are validated against the reference data, as given in Fig. 2. Results indicate 
that relative errors below 10% are expected for the homogenized Young’s modulus when the 
training data are equal to 2697 points. From an energetic standpoint, a total of 1500 points are 
enough to respect such threshold of 10%, as given in Fig.2(b).  

  

(a) Young’s modulus (b) elastic strain energy 
Fig. 2 – Relative errors of the predicted response in the elastic range. 

For the inelastic range, the estimated peak and plastic strain energy, based on the Gp predicted 
mean function, are evaluated and compared with the reference testing data. The relative error is 
plotted in Fig. 3(a) and Fig. 3(b), respectively. In this case, all the training samples (Ntraining = 7900 
points) have been used, for which relative errors below 5% for the peak stress are found; and 
around 10% for the plastic strain energy in shear (xy curve) and vertical tension (yy curve) and 
around 4% for horizontal tension (curve xx). We can also highlight the existence of a plateau for 
Ntraining > 7900 points, meaning that the improvement of the solution accuracy in the inelastic range 
may require a significant number of more data. 
 

0 500 1000 1500 2000 2500 3000

Training data (samples)

0

10

20

30

40

50

60

70

80

xx
xy
yy

0 500 1000 1500 2000 2500 3000

Training data (samples)

0

10

20

30

40

50

60

70

80

xx
xy
yy



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 325-330  https://doi.org/10.21741/9781644902431-53 

 

 
329 

  

(a) peak stress (b) plastic strain energy 
Fig. 3 – Relative errors of the predicted response in the inelastic range. 

Conclusions 
A Gaussian process has been used to predict the in-plane mechanical homogenized response of an 
English-bond masonry. The framework is purely numerical data-driven and proved its efficiency 
to compute the elastic and inelastic ranges of the in-plane tension (horizontal and vertical 
directions) and shear responses has been demonstrated. The homogenized Young’s modulus, the 
elastic strain energy, the strength value, and the inelastic strain energy were considered to 
demonstrate the accuracy level. Generally, the Gaussian process is effective and accurate even for 
a small number of training data. After the training step, it requires in average 4 seconds to compute 
each homogenized curve, i.e. ~1200% lower than the time required by the meso-mechanical 
simulation. Its generalizability is guaranteed, as the topological input is independent on the type 
of masonry bond. Lastly, the study gives an important contribution to the application of inverse 
methods for the structural analysis of masonry structures. The results are promising and may lead 
to a future publication, in which case studies at a structural level will be provided. 
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Abstract. The in-plane rocking of a masonry arch is studied. The starting motion of the arch is 
assumed to take place along the four-link failure mechanism u corresponding to a constant 
distribution of horizontal loads proportional to the arch self-weight. During such a motion, if 
overturning does not occur, the arch returns to the undeformed configuration, with all the hinges 
of the mechanism u simultaneously closing. At such an instant, impacts occur, implying a motion 
exchange and a subsequent movement of the arch along a new four-link mechanism u’. A novel 
impact model, different from the one available in literature, is here proposed. The restitution 
coefficient is computed by applying the linear and angular momentum impulse theorems. The 
rocking mechanism u’ of the arch after the impact is determined under the condition of minimum 
energy expense at the impact.  
Introduction 
Fig. 1 shows a free-standing stone column over a supporting plane that, hit by a horizontal impulse 
from left to right, puts itself in a rocking motion. The friction between the column and its 
supporting plane is sufficiently high, and the column is sufficiently slender, to avoid occurrence 
of sliding or bouncing during the motion. The column thus rotates around the point O of its basis 
up to the attainment of a maximum rotation angle; then, if overturning does not occur, it inverts its 
motion until an impact occurs at the opposite point O’ of its base. Afterwards, the column continues 
to rotate with non-harmonic oscillations of reduced amplitudes and periods until it stops. This type 
of motion is called “rocking”. 

 

Figure 1. Rocking motion of a free-standing masonry wall 
 

A fundamental paper by Housner [1], concerning the study of the behaviour of a free-standing 
stone column placed upon a rigid horizontal base and undergoing rocking motion, set the basis for 
the application of these concepts in the assessment of the dynamical behaviour of masonry 
constructions. The first description of the in-plane motion of a masonry circular arch, without any 
impact analysis, can be found in [2]. More recently, energy dissipation models of the impacts 
occurring in the rocking of the arch, considered as a rigid body four-link mechanism, have been 
given in [3, 4, 5]. In spite of the numerous researches on the subject, the definition of the 
mechanical model of the impacts in the rocking motion of the masonry arch is still debated and a 
new model is here proposed. 
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The rocking mechanism of the arch 
A horizontal ground acceleration pulse, acting from right to left, is assumed to hit a masonry arch. 
If the magnitude of the acceleration pulse exceeds the incipient rocking value AL, the arch starts to 
move along a four-link mechanism u. Both the incipient rocking acceleration AL and the 
mechanism u can be straightforwardly computed by the Limit Analysis theorems [6]. During such 
a motion, if overturning does not occur, the arch, moving from right to left, returns to the 
undeformed configuration, with all the hinges of the mechanism u simultaneously closing. At that 
instant, a motion exchange takes place and a new motion, still from right to left, develops along a 
new four-link mechanism u’.  

 

Figure 2. Hinge locations in mechanisms u and u’ 
 
In the mechanism u the rotations δθ2 and δθ3 can be expressed as a function of δθ1 as: 

𝛿𝛿𝛿𝛿3 = 𝑘𝑘31𝛿𝛿𝛿𝛿1;       𝛿𝛿𝛿𝛿2 = 𝑘𝑘21𝛿𝛿𝛿𝛿1 (1) 

where the coefficients 𝑘𝑘𝑖𝑖1 are evaluated in the undeformed configuration as function of the 
coordinates of the centres of the rotation: 

𝑘𝑘31 =
𝑥𝑥𝐶𝐶13−𝑥𝑥𝐶𝐶1
𝑥𝑥𝐶𝐶3−𝑥𝑥𝐶𝐶13

;     𝑘𝑘21 = 𝑘𝑘31
𝑥𝑥𝐶𝐶23−𝑥𝑥𝐶𝐶3
𝑥𝑥𝐶𝐶2−𝑥𝑥𝐶𝐶23

 (2) 

Analogous expressions hold for the mechanism u’. 
A new impact model 
An essential problem to be addressed for computing the mechanism u’ after the impact is the 
localization of the internal impulsive forces arising at the instant when impacts occur. A first step 
in solving that problem requires to recognize that the locations of the hinges of u’ are impact 
points, thus transmitting impulsive internal forces. 

Some researchers, basing on the analogy with the behaviour of Housner’s column, account for 
impacts occurring at the opposite side of the sections containing the hinges of the mechanism u, 
which are closing [2, 3]. However, besides those unquestionable impact points, also the locations 
of the hinges of u’, i.e. the points around which the arch segments pivot in the new motion of the 
arch after the impact, should be recognized as impact points. 

In fact, consider the instant when the hinges of the mechanism u begin to close while the new 
mechanism u’ is taking place. If the hinges of u’ develop at the same sections of the arch where 
the hinges of former mechanism u are located (Fig. 3), the passage from u to u’ is similar to what 
happens in the Housner column (Fig. 1) and it is recognized that impacts occur at points where the 
hinges of the new mechanism are located.  

Consider then the case in which the hinges of u’ develop at sections different from those of the 
former mechanism u. While the hinges of u are closing, inertial effects force the arch to develop 
the new mechanism u’. Impulsive compressive forces flow across the closed sections of u while 
the sections including the new hinges of u’ begin to open and start to reciprocally rotate, thus 
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impacting one against the other. So, an impact occurs at the points where the hinges of the 
mechanism u’ are located and therein compressive impulse forces are transmitted (Fig. 4).  

The impulsive forces can be determined by using the linear and angular momentum impulse 
theorems, as shown below. 

4 
Figure 3. The case, similar to the Housner column, in which the hinges of u’ occur at the same 

sections where the hinges of u are located 

 
 

Figure 4. The case in which hinges of u’ develop at sections different from those of the former 
mechanism u 

 
However, the issue to define the locations of the hinges of the mechanism u’ developing in the 

arch after the impact remains to be solved. Here it is postulated that those hinges are formed at 
locations producing the minimum energy expense at the impacts, i.e. maximizing the restitution 
coefficient r.  

In passing, some authors in the literature assume that the locations of the hinges of the 
mechanism u’ are at the mirrored locations of the hinges of the mechanism u. However, that 
assumption does not generally imply the minimum energy expense at the impact.  

To that purpose, it is recalled that I, II, III denote the arch segments included between the 
sections through the hinges 𝐶𝐶1, 𝐶𝐶13, 𝐶𝐶23, 𝐶𝐶2 of the mechanism u, whereas I’, II’, III’ denote the 
arch segments included between the sections through the hinges 𝐶𝐶1′, 𝐶𝐶13′ , 𝐶𝐶23′ , 𝐶𝐶2′  of the mechanism 
u’ (Fig. 2). If considered altogether, the sections through the hinges of the mechanisms u and u’ 
pinpoint seven bodies, labelled as 1, …, 7, such that the arch segments of those mechanisms can 
be recovered as (Fig. 5): 

𝐼𝐼 = 2 ∪ 3           𝐼𝐼𝐼𝐼 = 6 ∪ 7           𝐼𝐼𝐼𝐼𝐼𝐼 = 4 ∪ 5
𝐼𝐼′ = 5 ∪ 6           𝐼𝐼𝐼𝐼′ = 1 ∪ 2           𝐼𝐼𝐼𝐼𝐼𝐼′ = 3 ∪ 4  (3) 

Let 𝑚𝑚i and 𝐼𝐼𝑂𝑂,𝑖𝑖  respectively denote the mass and the polar moment of inertia around the centre 
O of the ith of those bodies. It is noticed that the kinematics of that body before [resp., after] the 
impact is completely described by its angular velocity �̇�𝛿𝑖𝑖k [resp., �̇�𝛿𝑖𝑖′k], with k as a unit vector 
orthogonal to the plane of the arch, and by its absolute centre of rotation 𝐶𝐶𝑖𝑖  [resp.,  𝐶𝐶i′].  

u- u’ 
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Figure 5. The seven bodies composing the mechanisms u and u’ 

 
Indeed, due to the compatibility conditions of the mechanism u [resp., u’], the angular velocities 

can be expressed in terms of a single free parameter �̇�𝑞 [resp., �̇�𝑞′] by: 

�̇�𝛿𝑖𝑖 = 𝛩𝛩𝑖𝑖�̇�𝑞;    �̇�𝛿𝑖𝑖′ = 𝛩𝛩𝑖𝑖′�̇�𝑞′      (4) 

where 𝛩𝛩𝑖𝑖  [resp., Θ𝑖𝑖′] are known geometrical coefficients (e.g., if the choice �̇�𝑞 = �̇�𝛿1 [resp., �̇�𝑞′ = �̇�𝛿1′] 
is made, it follows that Θ1 = 1, Θ2 = 𝑘𝑘21 and Θ3 = 𝑘𝑘31 [resp., Θ1′ = 1, Θ2′ = 𝑘𝑘21′  and Θ3′ = 𝑘𝑘31′ ], 
consistently with Equation (1)). 

Accordingly, the linear momentum 𝒑𝒑𝑖𝑖  [resp., 𝒑𝒑𝑖𝑖′] and the angular momentum 𝑳𝑳𝑂𝑂,𝑖𝑖   [resp., 𝑳𝑳𝑂𝑂,𝑖𝑖
′ ] 

around the pole O of the ith body before [resp., after] the impact are given by (equations to be read 
without [resp., with] apex): 

𝒑𝒑𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑽𝑽𝐺𝐺𝑖𝑖 = [𝑚𝑚𝑖𝑖𝒌𝒌 × (𝐺𝐺𝑖𝑖 − 𝐶𝐶𝑖𝑖)]𝛩𝛩𝑖𝑖�̇�𝑞  (5) 

𝑳𝑳𝑂𝑂,𝑖𝑖 = 𝐼𝐼𝐺𝐺𝑖𝑖,𝑖𝑖�̇�𝛿𝑖𝑖k + (𝐺𝐺𝑖𝑖 − 𝑂𝑂) × 𝒑𝒑𝑖𝑖 = �𝐼𝐼𝐺𝐺𝑖𝑖,𝑖𝑖 + 𝑚𝑚𝑖𝑖(𝐺𝐺𝑖𝑖 − 𝑂𝑂) ⋅ (𝐺𝐺𝑖𝑖 − 𝐶𝐶𝑖𝑖)�𝛩𝛩𝑖𝑖�̇�𝑞𝒌𝒌 (6) 

where 𝑽𝑽𝐺𝐺𝑖𝑖 denotes the velocity of the centre of gravity 𝐺𝐺𝑖𝑖 of the ith body.  
As the impact is of very short duration, very large impulsive forces act on the arch, producing 

finite changes of velocity of its various parts without significant changes in configuration. 
Accordingly, during the impact, all ordinary forces (such as gravity) are negligible, and no change 
of configuration of the arch needs to be considered.  

On such a basis, the computation of the unknown parameter �̇�𝑞′ can be achieved by including 
among the unknowns the impulsive forces 𝑭𝑭1′ 𝑑𝑑𝑑𝑑 and 𝑭𝑭2′ 𝑑𝑑𝑑𝑑 carried out by the hinges 𝐶𝐶1′ and 𝐶𝐶2′  at 
the impact, and by formulating a system of five equations in five unknowns.  

In detail, those equations are: 
• the linear momentum impulse theorem for the portion of the arch between 𝐶𝐶1′ and 𝐶𝐶2′  along x 

and y directions (Fig. 6): 

∑ 𝒑𝒑𝑖𝑖6
𝑖𝑖=1 +  (𝑭𝑭1′ + 𝑭𝑭2′ )𝑑𝑑𝑑𝑑 = ∑ 𝒑𝒑𝑖𝑖′6

𝑖𝑖=1  (7) 

• the angular momentum impulse theorem for the portion of the arch between 𝐶𝐶1′ and 𝐶𝐶2′  about 
the center O (Fig. 6): 

∑ 𝑳𝑳𝑂𝑂,𝑖𝑖 + (𝐶𝐶1′ − 𝑂𝑂) × 𝑭𝑭1′ 𝑑𝑑𝑑𝑑 + (𝐶𝐶2′ − 𝑂𝑂) × 𝑭𝑭2′ 𝑑𝑑𝑑𝑑 =6
𝑖𝑖=1 ∑ 𝑳𝑳𝑂𝑂,𝑖𝑖

′6
𝑖𝑖=1  (8) 

• the angular momentum impulse theorem for the portion of the arch between 𝐶𝐶13′  and 𝐶𝐶1′  about 
the point 𝐶𝐶13′  (Fig. 7): 

 ∑ 𝑳𝑳𝐶𝐶13′ ,𝑖𝑖 + (𝐶𝐶1′ − 𝐶𝐶13′ ) × 𝑭𝑭1′ 𝑑𝑑𝑑𝑑 =6
𝑖𝑖=5 ∑ 𝑳𝑳𝐶𝐶13′ ,𝑖𝑖

′6
𝑖𝑖=5  (9) 
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Figure 6. Linear and angular momentum impulse theorems during the impact 

 

 
 

Figure 7. Angular momentum impulse theorem around the point 𝐶𝐶13′  
 

• the angular momentum impulse theorem for the portion of the arch between 𝐶𝐶2′  and 𝐶𝐶23′  about 
the point 𝐶𝐶23′  (Fig. 8): 

∑ 𝑳𝑳𝐶𝐶23′ ,𝑖𝑖 + (𝐶𝐶2′ − 𝐶𝐶23′ ) × 𝑭𝑭2′ 𝑑𝑑𝑑𝑑 =2
𝑖𝑖=1 ∑ 𝑳𝑳𝐶𝐶23′ ,𝑖𝑖

′2
𝑖𝑖=1  (10) 

 
Figure 8. Angular momentum impulse theorem around the point 𝐶𝐶23′  

 
It is remarked that the angular momentum impulse theorem equations (9) and (10) are purposely 

written in such a way that the impulsive forces explicated by the internal hinges 𝐶𝐶23′  and 𝐶𝐶13′  are 
not explicitly involved (Fig. 5). 

After solving Eqs. (7)–(10), and hence computing the free parameter �̇�𝑞′ of the arch mechanism 
u’, the angular velocities �̇�𝛿𝑖𝑖′ follow from Eq. (4), whence it is a simple matter to compute the 
restitution coefficient of the arch as the ratio of the kinetic energy after the impact to the kinetic 
energy before the impact [1]. 
 

Furthermore, it is highlighted that r depends on the arch geometry and location of the hinges 
before the impact, which are known in advance, and by the location of the hinges after the impact, 
which are not. Hence, the latter are assumed as the unknowns of a nonlinear optimization problem, 
aimed at determining the maximum value of r, i.e. the minimum value of energy dissipation, 
among the various possible mechanisms u’.  
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Numerical applications 
A circular arch with an angle of embrace equal to 180°, a ratio t/Rm equal to 0.15 is considered for 
a numerical application of the proposed model. The mean radius Rm does not influence the results. 
The failure acceleration AL results to be 0.1443. The mechanisms u before the impact, and the 
mechanism u’ after the impact that maximize the restitution coefficient r, are shown in Fig. 10. It 
is remarked that the hinges of the mechanism u’ are not in the mirrored location of the hinges of 
the mechanism u. The corresponding maximum value of the restitution coefficient r results to be 
0.6812.  

Finally, the new concept of impulse line is introduced. Analogously to the thrust line, which 
graphically depicts the equilibrium between applied loads (including inertia forces) and constraint 
reactions at regular instants of motion, the impulse line depicts the equivalence between impulsive 
forces and variations of linear and angular momenta at impact instants. The impulse line at the 
impact instant relevant to the present case study is depicted in Fig. 10. It passes through the 
indrados and the extrados of the arch at sections where the hinges of u’ take place. It can be shown 
that the impulse line is statically admissible, i.e. it is entirely contained within the thickness of the 
arch, if and only if the post-impact mechanism u’ maximizes the restitution coefficient r over the 
space of kinematically admissible post-impact mechanisms. 
 

 
Figure 10. Mechanisms u and u’ and impulse line at the impact instant 
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Abstract. The work reports some numerical tests concerning the use of the Embedded Truss 
elements implemented in the Midas FEA NX software in modeling a specific FRCM reinforcement 
system for masonry structures. The efficacy of the finite element is demonstrated through the 
comparison of the numerical results with experimental results obtained by other authors relating 
both to the mechanical characterization of the FRCM system materials and to the response of 
masonry arch models. The Embedded Truss element appears to be promising for application to 
real large structures, such as masonry arch bridges of large span or multi-span masonry bridges. 
Introduction 
New reinforcement systems have recently been proposed for retrofitting of existing masonry 
structures, consisting of cementitious matrices reinforced by fiber networks (Fiber Reinforced 
Concrete Matrix). These materials have high strength and durability, higher compatibility with the 
masonry support than other polymeric matrix reinforcement systems, originally conceived for the 
reinforcement of reinforced concrete works. FRCM are therefore finding extensive use in civil, 
infrastructural and historical masonry structures. The design of the reinforcement intervention and 
ex-post verification of the strengthened structure require the modeling of the reinforcement system 
through the software commonly used in structural analysis. The need for a detailed model of the 
reinforcement, capable of adequately simulating the crisis mechanisms, is countered by the need 
for streamlined numerical models, which do not burden the non-linear calculation in terms of size 
of the problem and computation time. The paper concerns modeling methods of a specific type of 
FRCM with PBO mesh. The method is based on the FEM technology named Embedded Truss and 
implemented in Midas FEA NX software [1]. The purpose is the definition of an effective 
modeling methodology of the FRCM reinforcement, which is susceptible of application in the 
structural analysis of masonry multi-arched bridges, even with very large spans. The method, 
applied to a specific commercial product, allows the accurate simulation of experimental tests for 
the characterization of the Ruregold PBO-Mesh 22/22 system [2] and reproduce the response of 
fiber reinforced masonry arches. Non-linear analyses based on the Smeared Crack Model for the 
masonry support and for the matrix of the reinforcement are presented. Specific constitutive 
models are used to define the fibers behaviour and the support-reinforcement interface. Sensitivity 
analyses show the importance that certain constitutive parameters have on the numerical solution. 
The numerical results are compared with the experimental ones to validate the method. 
FEM Modeling of FRCM composites in the analysis of reinforced structures by Embedded 
Truss elements 
In the literature of the last 10 years there are some attempts to model FRCM reinforcements in 
FEM codes [3]. This study proposes the use of the Embedded Truss element, implemented in 
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Midas FEA NX software [1], for modeling the mesh of the FRCM composite. The element consists 
in a truss embedded in a matrix. The lattice, which represents the fibers, and the matrix are 
attributed distinct nonlinear constitutive behaviour that reproduce the phenomenological aspects 
typical of the two materials. 

The input method, coordinate system, material property, etc. of the Embedded Truss elements 
are identical to those of the standard Truss elements. Embedded Truss elements are generally used 
to model structural elements such as anchors, nails, and rock bolts, which ignore flexural behavior.  

The elements (Fig. 1a) do not require the sharing of discretization nodes (Fig. 1b) and are 
therefore convenient for modeling and analyzing systems with fiber networks embedded in a 
continuum (Fig. 1c). The parent element in which the truss system is incorporated can be a flat 
deformation element or a solid element. The parent element includes each node of the Embedded 
Truss element. A multipoint constraint is used to automatically constrain the nodal displacement 
of the Embedded Truss element to the internal displacement of the parent element. 
 

  

 
 

(a) (b) (c) 
Figure 1 (a) Mother elements; (b) Embedded Truss element and (c) FEM model of a reinforced 

masonry arch 

Both an elastic behaviour and a non-linear uniaxial constitutive behaviour with limited strength 
in compression and tension can be attributed to the Embedded Truss element. 
The compressive non-linear behaviour of the matrix of the FRCM composite and of the masonry 
structure is ruled according to the Smeared Crack Model by a specific plasticity function. A 
Linearly Elastic-Perfectly Plastic stress-strain relationship defined by the elastic modulus Ematrix 
and compressive strength fc,matrix has been considered to model the FRCM matrix compressive 
behavior. A parabolic softening, defined by the size of the mesh hmesh, the fracture energy Gc,matrix 
and the compressive strength fc,matrix has been  selected to define the compressive response of the 
masonry. The tensile behaviour is ruled by a crack detection surface. The FRCM matrix tensile 
behaviour is defined by Linear or Hordijk softening [1] defined by the size of the mesh hmesh, the 
fracture energy Gf,matrix and the tensile strength ft,matrix. The tensile behaviour of the masonry is 
described by means of a bi-linear function defined by the size of the mesh hmesh, the fracture energy 
Gf,masonry and the tensile strength ft,masonry. The shear behaviour of all fragile elements is defined by 
means of a linear τ-γ function, being β the coefficient regulating the slope. 
Mechanical characterization of FRCM composites 
The results of laboratory tests carried out on Ruregold PBO-Mesh 22/22 net, Ruregold MX-PBO 
mortar and on FRCM specimens reported in the work [4] have been considered for comparison. 

Based on these experimental results, different numerical models have been calibrated for the 
various materials constituting the FRCM composite and for the composite itself. 
Numerical results of the simulation of the uniaxial tensile test on a network specimen of PBO-
Mesh 22/22 (Fig. 2a) are reported in the stress-strain graph shown in Fig. 2b. The net model is 
made of standard truss elements whose tensile behaviour is ruled by an elastoplastic function. 
Parameters of elastic modulus E =306924 [Mpa], tensile strength σt = 3031 [Mpa] and compressive 
strength σc = 0 [Mpa] allows a very good fitting of the experimental test. 
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(a) (b) 
Figure 2 (a) PBO mesh 22/22 specimen scheme and (b) Numerical and experimental result 

comparison 

A second numerical test refers to the experimental tensile test on the FRCM composite panel 
reported in Fig. 3a [4]. The finite element model is illustrated in Figs. 3b, 3c, 3d. 
 

    

(a) (b) (c) (d) 
Figure 3 (a) Geometric Scheme of FRCM Specimen; FRCM panel: FEM model (b) Frontal view, 

(c) cut plane Z and (d) the net. 
The result of the numerical simulation is compared with the envelope of the stress-strain curves 

derived from the experimental tensile tests performed on 14 specimens of fiber-reinforced panels 
[4], according to the set-up shown in Fig. 3a. In Fig. 4 it is possible to appreciate the influence of 
the value of the fracture energy that defines the tensile behavior of the matrix of the FRCM system, 
governed by the linear softening. The matrix  parameters are: elastic modulus Ematrix =2875 MPa, 
tensile strength ft,matrix=2.84 MPa , fracture energy Gf,matrix =0.05 N/mm. 

A final test concerns the phenomenon of detachment of the FRCM from the support. Fig. 5a 
shows the discrete model. The dimensions of the surface of the reinforcement adhered to the tuff 
block are 100 x 300 mm. The longitudinal fibers of the mesh are extended to a length of 150 mm 
and then connected to a rigid bar. An interface has been introduced between the matrix and the 
support (in tuff), which approximates the stress redistribution in the matrix. Fig. 5 shows 
respectively the solid stress of all solid elements (b), the tangential tension along the interface (c) 
and the crack status at the interface (d) at a rate of the load of 85 %.  It is clear that the detachment 
of the interface in the upper part involves a redistribution of the stresses in the matrix. The plot in 
Fig. 5a show that the loss of the interface bond strength happens about at the maximum force 
applied in experimental tests. The model based on the Embedded Truss is therefore able to 
adequately reproduce both the tensile response of the composite system and delamination tests, 
provided appropriate interface laws are adopted to simulate the behavior between the support and 
the matrix. 
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Figure 4 Comparison of numerical ad experimental results. 

 

                  
 

   

 
 

(a) (b) (c) (d) 
Figure 5  Debonding FEM model. (a) Wireframe view, Solid View and Interface resistance; 

Results at 85% max load: (b) Matrix tensile stress; (c) Interface tangential stress and (d) Matrix 
crack status. 

Behaviour of a single span FRCM strengthened masonry arch. Results and discussion. 
In order to validate the proposed numerical technique, the experiments developed in [5] [6] [7] 
have been considered as benchmark test. The works experimentally investigate the structural 
behavior of masonry arches with different types of reinforcement, including PBO-Mesh 22/22 
reinforcement. The tests were performed on 1:2 scale models with the dimensions depicted in Fig. 
6a. The load is applied to a quarter of the span (378 mm from the left of the stump). Two samples 
were tested in the non-reinforced configuration (1-US and 2-US samples) and two samples with 
intrados reinforcement made of PBO Mesh 22/22 [5]; the control point of the displacements 
matches the loaded nodes. A nonlinear analysis was performed, in which the imposed displacement 
is assigned incrementally up to the last value of 6 mm with a step of 3.0 10-3; the solution 
convergence criterion of the nonlinear problem was on the norm in energy (Work (W)) with a 
tolerance of 1. 0 10-3. The elastic mechanical properties, from technical sheets and experimental 
identification, are reported in Table 1. The Smeared Crack model was used for both the matrix and 
the masonry. The input parameters of the non-linear model used in the numerical simulation were 
calibrated on the previous tests. Ruregold MX matrix: Linearly Elasic-Perfectly Plastic in 
compression, fc,matrix= 26.4 MPa; Hordjik tensile softening, ft,matrix= 2.64 MPa, Gf,matrix= 0.05 
N/mm, internal length hmesh=10 mm, shear retention factor β=0.01. Masonry: Linearly Elasic-
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Perfectly Plastic in compression, fc,masonry= 8.53 MPa; Linear tensile softening, ft,masonry= 0.27 MPa, 
Gf,masonry= 0.001 N/mm, internal length hmesh =20 mm, shear retention factor β=0.01.  

 
Table 1 Material Parameters 

 Ruregold MX-PBO Masonry Parameter PBO mesh 22-22  
E (MPa) 7500 4500 270000 
ν 0.3 0.27 0.3 
G (MPa) 2885 1771.654 103846 
ft (MPa)   3031 
εel   0.013 

 
The graph in Fig. 6b shows the numerical response of both the unreinforced (N-UNR) and 

reinforced (N-RF) arch in terms of the Applied Force vs. Control Point Displacement curve. The 
model satisfactorily reproduces the experimental trend (Exp), both in the pre-peak and in the post-
peak phase. In the case of the reinforced arch model, an increase of about 480% in the maximum 
strength was obtained compared to the non-reinforced model, in line with the experimental results.  
 

  

(a) (b) 
Figure 6 (a) Geometric representation of the masonry arc specimen and (b) Comparison 
between experimental and numerical results of the strengthened and unstrengthened arch 

In the graph (b), the three upper experimental curves (N-R) correspond to simulations in which 
the Hordjik tension function of the matrix was used with fracture energy Gf,matrix chosen as multiple 
of the elastic energy Ee, that is, of the area underlying the strain curve in the elastic range. It is 
clear that, among the various parameters characterizing the Smeared Crack Model, the fracture 
energy plays a fundamental role and significantly affects the definition of the tensile behaviour of 
the matrix and the arch material. This implies that Gf must be carefully assessed. In the absence of 
certain data, the use of simpler models that adequately reproduce the salient aspects in the initial 
phase of the deformation history of the reinforced system, seems more prudential, even if they are 
not able to capture the entire evolutionary path of the damage.  

From numerous numerical tests it has been observed that the shear retention function also plays 
a significant role, tuning the loss of shear stiffness (β G) and the evolutionary state of the cracks.  
On the contrary, not very significant, for the applications investigated, is the detailed definition of 
the compression damage function of both the masonry and the matrix of the FRCM. Indeed, the 
collapse mechanisms occur by the formation of hinges (cracks) due to the achievement of ultimate 
tensile stresses in specific sections, while the arch is divided into blocks whose compression stress 
state is well below the values at the elastic limit. For this reason, in the numerical applications, a 
simple Linearly Elastic-Perfectly Plastic model was assigned in compression to the brittle 
materials, that never exhibit excursions in the inelastic range.   
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The analysis of the crack pattern of the reinforced arch shows a widespread cracking in the 
masonry due to the transfer of the stresses performed by the FRCM, otherwise concentrated in the 
inelastic hinges in the case of the unreinforced arch.  
 

  

(a) (b) 
Figure 7 Crack pattern at the failure load of the unstrengthened arch (Tz=0.6 mm) (a) 

Unstrengthened arch and (b) strengthened arch 

The above applications show the reliability of the numerical modeling methodology through 
Embedded Truss. The method appears suitable of application even to large structures, such as 
large-span and multi-span masonry arch bridges. Indeed, the reinforcement can be easily added to 
existent FEM models, with a limited increase of the size of the discrete structural model. 
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Abstract. The method for identifying the line of thrust closest to the geometrical axis of an 
undamaged arch, developed by the authors in a publication in 2019 for the first time, is extended 
in this paper to the case of cracked arches. Cracks subdivide the arch into rigid portions linked in-
between in correspondence to points at the extrados or the intrados, which can be interpreted as 
internal hinges. Under this assumption, the procedure is reformulated and extended to the cases of 
the one and two-hinged arch. In the paper, the procedure is presented in detail for the case of the 
one-hinged arch. 
Introduction 
The static indeterminacy of the equilibrium problem of the masonry arch is a well-known concept. 
In the 19th century, a great debate arose on this topic and the eighteenth-century theories for which 
the safety of an arch could be evaluated based on the condition of the existence of any line of thrust 
within the profile of the arch was replaced, little by little, by the emerging topic of detecting the 
true line of thrust within the arch, i.e. the actual state of stress. By removing the rigidity 
assumption, the true line of thrust can be identified by considering the elastic and inertial properties 
of the arch to formulate the congruency conditions. 

However, some authors have proposed methodologies to work around the indeterminacy of the 
equilibrium problem by avoiding considering the masonry properties and its deformability. In this 
context it is worth mentioning the graphic procedure proposed by E. Mèry [1], where the elasticity 
theory affects his methodology only in the choice of the centers of pressure. 

To work around the indeterminacy, particularly interesting is the research carried out by 
Winkler in [2], who, referring to the “principle of least pressure” enunciated by Moseley [3], 
stated that “of all the thrust lines that can be built for the external loads, the true thrust line is the 
one that deviates least, on average, from the geometrical axis of the arch”. Although it cannot be 
proved that this is the true one, what is certain is that the thrust line closest to the geometrical axis 
is the optimal one because it provides the lowest bending and shearing stresses and the arch is 
subjected to a fairly uniform compression stress. The topic of detecting the thrust line closest to 
the geometrical axis was addressed, firstly, by Heyman [4] who proposed an iterative procedure 
by trials and errors and, later on, by the authors of this contribution who provided the closed form 
solution to the problem stating it as a minimization problem of the quadratic deviation of the 
centroids of the discrete elements composing the arch from the nodes of the thrust line [5,6]. The 
minimum of this function is obtained expressing the zeroing of its partial derivatives with respect 
to three redundant unknowns, chosen as the horizontal thrust and the ordinate of the first and the 
last node of the thrust line. A system of three equations is obtained, which provides the value of 
the three redundant unknowns and, backwards, the ordinate of all the nodes of the thrust line. It is 
worth noting that the development of closed-form equations, capable of accurately estimating the 
load-bearing capacity of structures, is strongly recommended as it is a useful tool for practitioners 
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to perform a preliminary assessment of structure capacity [7]. 
In all the procedures mentioned above, only undamaged arches are considered, i.e. structures 

with a degree of statically indeterminacy equal to 3. However, arches can also be cracked or 
constructed with geometric defects, and, at the cracked or imperfect joints, hinges can have 
occurred. Nevertheless, no one, until now, has addressed this topic considering cracked arches. 
Leaving aside the three-hinged arch, which is a statically determined structure for which only one 
line of thrust exists, in this paper the numerical procedure developed by the authors for identifying 
the thrust line closest to the geometrical axis of an undamaged arch is extended to the case of the 
one and two-hinged arch and is presented, in detail, for the former case. 
Procedure extended to cracked arches 
Let us consider a continuous arch, subjected to a set of n vertical loads F1, F2, F3, …, Fn (Fig. 1). 
Let us subdivide the arch into n elements in such a way as to apply these loads at the element 
centroids Gi. Let us also consider the occurrence of one or two hinges, C1 and C2, at the 
intrados/extrados of some lines of separation between the elements. The line of thrust is a polyline 
passing through the points Pi, vertically aligned to the element centroids, and through the hinges 
C1 and C2. It is worth noting that the line of thrust forms a cusp in correspondence to the nodes Pi 
and it is straight in correspondence to the hinges, where no external load is applied. For this reason, 
hereafter, nodes Pi, C1 and C2 are referred to as “cusp” nodes and “hinge” nodes, respectively. 

 
Fig. 1. Reference one-hinged arch. 

To address the problem and identify the position of the nodes of the thrust line, the equilibrium 
conditions of both the “cusp” nodes and the “hinge” nodes are written. The equilibrium condition 
between the vertical components of the internal and external forces acting on the generic “cusp” 
node Pi of the thrust line is given by Eq. 1: 

�−1

hi
� ∙ yi−1 + �hi+hi+1

hi∙hi+1
� ∙ yi + � −1

hi+1
� ∙ yi+1 =

Fi

H
 (1) 

The equilibrium condition between the vertical components of the internal forces acting on the 
generic “hinge” node Cj (1 ≤ j ≤ 2) of the thrust line, located in-between the “cusp” nodes Prj

 and 
Psj

, is given by Eq. 2: 
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�−1

hcj
∗
� ∙ yrj

+ �
hcj
∗+hcj

∗∗

hcj
∗∙hcj

∗∗
� ∙ yCj

+ � −1

hcj
∗∗
� ∙ ysj

= 0  (2) 

By collecting the equilibrium conditions of all nodes of the thrust line, a system of (n+nc) linear 
equations in (n+3) unknowns is obtained (Eq. 3), where nc is the number of internal hinges: 
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 (3) 

In the system of Eq. 3 the unknowns are the ordinates yi of the n+2 cusp nodes Pi of the thrust 
line, comprising the former one, P0, and the latter one, Pn+1, and the constant thrust, H. Therefore, 
as expected, the problem is statically undetermined to (3-nc) degree, because ∞ 3−𝑛𝑛𝑐𝑐 lines of thrust 
in equilibrium with the external loads can be identified. In fact, the requirement that the line of 
thrust passes through one or two hinges reduces the indeterminacy of the problem by one (nc=1) 
or two (nc=2) degrees. 

The numerical technique developed to solve the problem requires the choice of three 
parameters, as follows: primarily, the nc ordinates 𝑦𝑦𝐶𝐶𝑗𝑗  of the hinges (known terms) are selected; 
successively, the remaining (3-nc) parameters (unknowns) that are chosen are the horizontal thrust 
H and the ordinate y0 of the first node of the thrust line. These parameters are then isolated within 
the system of Eq. 3, which is rewritten, in matrix form, rearranging the system putting the 
equation(s) of the hinge node(s) in the last row(s). 

Referring to the case of the one-hinged arch (nc=1) and to the case of the two-hinged arch 
(nc=2), the matrix system takes the form of Eq. 4 and Eq. 5, respectively: 

[D]{Y} = {T1} ∙ k + {T2} ∙ y0 + {T3} ∙ yC1
 (4) 

[D]{Y} = {T1} ∙ k + {T2} ∙ yC1
+ {T3} ∙ yC2

 (5) 

where k=1/H. 
For lack of space and for the sake of clarity, in the following lines the numerical procedure is 

presented and discussed only for the one-hinged arch. Hence, referring to Eq. 4, entries of vectors 
and matrices are shown below: 
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The solution of Eq. 4 is provided by Eq. 7: 
{Y} = {R1} ∙ k + {R2} ∙ y0 + {R3} ∙ yC1

 (7) 

where: 
{R1} = [𝐷𝐷]−1 ∙ {T1},        {R2} = [𝐷𝐷]−1 ∙ {T2},        {R3} = [𝐷𝐷]−1 ∙ {T3}. (8) 

In order to identify, among the ∞ 3−𝑛𝑛𝑐𝑐 lines of thrust (nc=1 in the case at hand), the one closest 
to the geometrical axis and passing through the hinge node, the squared distance function between 
the ordinates of the nodes of the thrust line and the ordinates of the centroids of the elements is 
computed and minimized with respect to the (3-nc) redundant unknowns, nc parameters being 
known terms: 

S = ∑ (∆yi)2 =n+n𝑐𝑐
i=1 ∑ (yi − yGi)2 = �{R1} ∙ k + {R2} ∙ y0 + {R3} ∙ yC1 − {YG}�2n+n𝑐𝑐

i=1  (9) 

Function S is minimized by expressing the partial derivatives of it, with respect to the two 
unknowns, equal to zero: 

∂S

∂k
(y0, k) = 0

∂S

∂y0
(y0, k) = 0

 (10) 

By doing so, the system of two linear equations that follows is obtained: 
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�
{R1}2 ∙ k + {R1}{R2} ∙ y0 = {R1} �{YG} − {R3} ∙ yC1

�

{R1}{R2} ∙ k + {R2}2 ∙ y0 = {R2} �{YG} − {R3} ∙ yC1
�
 (11) 

and it is then put in matrix form: 

�
{R1}2 {R1}{R2}

{R1}{R2} {R2}2 � ∙ �
k
y0
� = �

{R1} �{YG} − {R3} ∙ yC1
�

{R2} �{YG} − {R3} ∙ yC1
�
� (12) 

and, more compactly, re-written as: 
[N]{P} = {W} (13) 
The solution of Eq. 13 provides the value of the two unknowns, k and y0, stored in vector P. 

The ordinates of the nodes of the line of thrust are finally obtained by back-substituting these 
values into Eq. 7. 

Nevertheless, it is worth noting that the solution of Eq. 13 is not unique because it depends on 
the squared distance function in Eq. 9, which is affected by the value of the ordinate yG(n+1) of the 
centroid of the element n+1, which does not exist within the arch. It is possible to explore different 
lines of thrust passing through the hinge, with different shape and distance from the geometrical 
axis of the arch, by setting different values of yG(n+1). To identify the line of thrust passing through 
the hinge and closest to the geometrical axis, a procedure for trials and errors is conceived which 
converges when the value of yG(n+1) corresponding to the minimum of the squared distance 
function, computed for the n elements composing the arch, is obtained. At convergence, the two 
unknowns in Eq. 13 and the ordinates of the nodes of the thrust line are obtained. 
Numerical explanatory example 
The simple case of a portion of a segmental barrel vault, 100 cm deep, with a span length of 600 
cm, a rise of 210.1 cm, 45 cm thick and an angle of embrace of 140° (t/R=0.13) is analyzed in this 
section. The vault is subdivided into six elements of the same size (n=6), with a unit weight of 
18kN/m3. Except for the self-weight, no additional load is applied on the vault.  

 
Fig. 2. Explanatory example; set of lines of thrust passing through the extrados hinge at the key 

section and identification of the one which is closest to the geometrical axis. 
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The numerical procedure proposed is used to identify the line of thrust closest to the geometrical 
axis of the structure passing through the extrados hinge at the key section (Fig. 2). 

Fig. 2 allows for the exploring of the set of lines of thrust passing through the hinge at the key, 
corresponding to different values of the squared distance function, and the one which is also closest 
to the geometrical axis, corresponding to the minimum of the squared distance function which is 
found to be equal to min(S)=64.63 cm2 by applying Eq. 9 iteratively. For that value, the ordinate 
yG(7) = 64.63 cm of the centroid of the fictitious 7th element is obtained.  

In detail, in order to allow the interested reader the possibility of reproducing the example 
numerically on his own, we report the main data and entries of the input vectors built by the 
procedure: 

h1 = h7 =  57.01 cm, h2 = h6 =  93.02 cm, h3 = h5 =  124.47 cm, hc1
∗ = hc1

∗∗ =  67.78 cm, yC1
=  364.25 cm 

{T1}𝑡𝑡 = {16.96|16.96|16.96|16.96|16.96|16.96|0} kN  
{T2}𝑡𝑡 = {0.0175|0|0|0|0|0|0} cm-1  
{T3}𝑡𝑡 = {0|0|0.0148|0.0148|0|0|−0.02951} cm-1  

The ordinates of the nodes of the line of thrust closest to the geometrical axis and passing 
through the hinge at the key, computed for the centroid ordinate yG(7) = 64.63 cm of the fictitious 
7th element are finally shown in the vector that follows, obtained by applying Eq. 7: 

 {𝑌𝑌}𝑡𝑡 = {64.63|171.05|286.80|364.25|286.80|171.05|64.63} cm 
The corresponding thrust line is drawn in Fig. 2 with the thick continuous polyline. 

Conclusions 
In this paper the numerical procedure developed by the authors for identifying the line of thrust 

closest to the geometrical axis of an undamaged arch has been reformulated and extended to the 
case of cracked arches. The case of the one-hinged arch has been addressed and the related 
numerical procedure presented in detail. The case of the two-hinged arch will be addressed in an 
extended paper in the near future and, most certainly, presented, in Palermo, at the Aimeta 2022 
conference in person by the corresponding author of this contribution. 
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Abstract. This study adopts an enhanced multiscale approach to investigate the effects of the 
damaging process on the structural behavior of masonry vaults with regular texture, in view of 
their safety assessment. The model, recently developed by the authors, links two different 
structural models at macro and microscale, exploiting the advantages of each formulation. At the 
macroscopic level a homogeneous Mindlin-Reissner shell is modeled and its constitutive response 
is derived by the detailed analysis of a three-dimensional (3D) masonry Unit Cell (UC) studied at 
microlevel. The UC is considered as the assembly of elastic bricks and damage-plastic zero-
thickness interfaces, representative of both mortar and mortar-unit interaction, thus accounting for 
the actual geometry, arrangement and constitutive response of each constituent material. A 
Transformation Field Analysis procedure is used to link the two scales, speeding up the numerical 
simulations. Structural response of a masonry vault under differential settlements is investigated, 
determining its load-bearing capacity and the damaging path evolving in the structure up to 
collapse. The reliability of the results is proved by comparison with outcomes derived by detailed 
micromechanical analysis, interpreting and arguing similarities and differences. 
Introduction 
Vaulted structures are the key element of many historical and monumental masonry constructions 
and require a special attention to maintain their structural integrity and preserve cultural identity. 
Many efforts were devoted to developing efficient procedures, both analytical and numerical, to 
accurately study the response of masonry curved elements, like arches and vaults. An extensive 
review specially dedicated to masonry vaults can be found in [1]. 

The limit analysis is one of the oldest methods, widely adopted in the past [2]. However, 
recently some interesting contributions proposed modern numerical procedures relying on limit 
analysis concepts [3]. 

Among the computational approaches, the discrete element [4] and the finite element method 
(FEM) are today the most selected to model in detail general geometry, mechanical properties, 
boundary conditions and accurately reproduce the masonry structural response. Limiting the 
attention to the FEM, a possible classification of the proposed procedures relies on the scale of the 
analysis [5] and distinguishes between macromechanical, micromechanical and multiscale 
approaches [6]. 

This paper investigates the effects of the damaging process on the structural response of an 
experimental masonry vault, by adopting the multiscale procedure proposed by the authors in [7]. 
This relies on a Reduced Order Model (ROM) based on the Transformation Field Analysis (TFA) 
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to address the nonlinear homogenization problem of the regular masonry considered at the 
microscale level. 

Two different models are coupled at the macroscopic structural scale and microscopic material 
level. Indeed, a thick shell formulation is adopted at the higher level for the vault, whereas a 3D 
Cauchy continuum is used for the masonry repetitive Unit Cell (UC) at the lower material scale. 
Here, possible nonlinear damage-plastic mechanisms are only concentrated at the mortar joints 
modeled as zero-thickness interfaces. The two scales communicate by means of a kinematic map, 
defined as function of the macroscopic strain measures, that represents the displacement field in 
the UC, in the framework of a computational homogenization procedure. The overall 
micromechanical response of the UC is evaluated under the effects of the imposed macroscopic 
strain components and inelastic strains and proper localization operators are computed. Based on 
these, the evolution problem of the damage and plasticity at each macroscopic point is solved. 

The presented procedure is implemented in the finite element program FEAP and used to study 
the structural response of the masonry vault under differential settlements, investigating both the 
global response features and the damaging paths. 
Shell-3D multiscale formulation  
The multiscale strategy proposed in [7] is used to analyze response of masonry vaults. The model 
adopts different formulations at the two analysis scales (Fig. 1): at macroscale, a homogeneous 
thick shell is considered, based on Mindlin-Reissner plate theory. To derive the constitutive 
response of the shell, at each macroscopic point a UC, modeling the actual masonry texture, is 
linked. This is studied at microscale adopting a three-dimensional Cauchy continuum. The UC is 
formed by assembling linear elastic bricks and nonlinear mortar joints, modeled as interfaces. The 
relationship between tractions, t, and displacement jumps, s, at the interface results as:  

[ ] ( )D= − =  − +  t C s π C s c p                                                                                                           (1)  

with C the diagonal stiffness matrix and π the inelastic vector accounting for damage, D, unilateral 
contact, c, and sliding friction, p [8]. 

The linking procedure involves the definition of a suitable kinematic map. Indeed, the UC 
microscopic strain field in the bricks, where the displacements are continuous, is expressed as: 

*= +ε BE ε                                                                                                                                     (2) 

being E the vector collecting the generalized strains of the shell, *ε the strain field derived by the 
periodic displacement perturbation, and B the matrix governing the kinematic map.  

The upscaling process is performed by invoking a generalized Hill-Mandel principle. 
Accordingly, the shell stresses, Σ, result as: 

/2

3
/2

1 t
T

t

dx dA
A −

= ∫ ∫Σ B σ                                                                                                                      (3) 

being A the area of the UC mid-plane, t the UC thickness and x3 the axis running along t. In the 
right side of Eq. 3, only the brick stresses, σ, are considered, as the interface terms give null 
contributions. 

The Transformation Field Analysis technique is exploited to determine the homogenized 
response of the composite material. This consists in the subdivision of the interfaces into regions, 
called subsets, where the inelastic quantities are assumed as uniform. The effects of the 
macroscopic strains and that of the inelastic ones in each subset of the UC are determined by 
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preliminary elastic analyses and, then, the results obtained in terms of localization matrices are 
used during the multiscale analysis to evaluate the constitutive response of the homogenized shell.  

The model is implemented in the finite element code FEAP using a nonlocal integral 
formulation to overcome the mesh-dependency numerical issue. 

 

 
Figure 1: Multiscale modeling approach for masonry vaults. 

 
Masonry vault under differential settlements 
The response of the masonry barrel vault experimentally tested in [9] (Fig. 1) is numerically 
reproduced. In [10], same specimen is tested under vertical differential settlements to investigate 
the performance of the proposed approach in reproducing the behavior of curved elements. To 
extend this study to different loading conditions and analyze the response under different stress-
strain states, horizontal displacements of the abutments are here considered, as indicated in Fig. 
2, simulating the eventual out-of-plane mechanisms of the walls supporting the vault. Fig. 1 shows 
the adopted UC, made of a single brick, one head and one bed mortar joint. As opposed to the real 
specimen geometry that assumes running bond texture, for this test stacking bond arrangement is 
considered, resulting in a simpler and computationally less time-consuming description. In fact, 
under such loading conditions, structural response is expected to be governed by bed mortar joint 
opening, which is equally described by both masonry layouts. 

 
Figure 2: Differential horizontal displacement of the vault abutments. 

 
Fig. 3 shows the global response curve of the vault in terms of total horizontal reaction of the 

fixed abutment (outward direction assumed as positive) versus imposed horizontal displacement. 
Blue curve refers to the solution obtained with the proposed model by dividing the UC into 16 
subsets, i.e. 8 for the head and 8 for the bed joint, uniformly spaced across the masonry thickness 
[10]. This solution well agrees with that obtained by a reference micromechanical model (dashed 
red curve) made of linear elastic 8-node finite elements for the bricks and nonlinear zero-thickness 
interfaces for mortar joints, proving that the proposed model can correctly predict the vault 
nonlinear structural behavior. 
 

d
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Figure 3: Global response of the vault under differential horizontal displacement of the 

abutments. 
 

    As expected, under the imposed displacement, vault walls uniformly bend inducing opening of 
the bed mortar joints at the abutments, on the extrados side, and at the key, on the intrados side. 
The vault deformed shape at d = 0.85 mm is shown in Fig. 4, for the two models. For the proposed 
shell model, contour plot indicates the values of the damage occurring in the bed mortar joints, 
averaged over the thickness of the UC. Damage appears more diffused than in the 
micromechanical model due to the homogenization and nonlocal nature of the multiscale model. 
 

 
Figure 4: Deformed shape of the vault: micromechanical FEM (left) and multiscale model with 

damage distribution (right). 
Conclusions 
The study presented investigated the structural response of masonry vaults, representative 
elements of many components of the world cultural heritage, mainly focusing on the effects of 
damage evolution on the response global features. A multiscale procedure, relying on a reduced 
order model, was adopted, that consider a thick shell model at the structural scale and a Cauchy 
continuum at the real material scale. Here, the assumption of nonlinear damage-plasticity 
mechanisms only concentrated at mortar joints turned out to be accurate enough and suitable to 
reproduce the main characteristics of the masonry vault response, under simple distributions of 
the ground settlements.  
     Moreover, the use of the TFA technique, based on the assumption of piece-wise uniform 
distribution of nonlinearities over the mortar joints at the UC level, has allowed to avoid the high 
computational burden related to a full FE2 multiscale procedure. Indeed, the obtained numerical 
results, as compared to those evaluated by a cumbersome micromechanical analysis, were accurate 
and reliable. Of course, the adopted method cannot describe localized cracking processes, 
although giving a correct indication of the region where damage concentrates but in a more 
diffused fashion.  
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     Therefore, the multiscale model adopted, due to its computational efficiency and stability, has 
resulted to be a very promising tool and encourages to extend its application to other types of 
masonry elements characterized by different, more complex, geometries and fabric, as well as 
different boundary conditions. Further developments will be devoted to enhancing the description 
of the nonlinearity distributions in the TFA procedure to overcome the limits related to the piece-
wise uniform assumption. Moreover, also the possible introduction of strengthening interventions 
will be accounted for, by properly modifying the presented multiscale approach.  
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Abstract. Historical masonry structures represent a conspicuous part of the European architectural 
heritage. However, these often are more vulnerable to damage risk than other constructions due to 
their peculiar mechanical properties. This justifies the lively interest in the development of 
efficient and reliable approaches for their structural capacity assessment. This work presents the 
vulnerability assessment of the historical masonry building, “Palazzo Assicurazioni Generali”, for 
the effects induced by the underlying tunnel excavation required for line C of the Rome 
underground. The structure is a 12-floor building, built in 1902-1906 in Piazza Venezia, one of the 
most prestigious areas of the city. A detailed macromechanical three-dimensional numerical model 
of the entire structure is developed and two kinds of static analyses are conducted, assuming linear 
elastic and nonlinear constitutive response for masonry. 
Introduction 
Masonry structures compose most of the architectural heritage of many European countries. 
However, due to the poor tensile strength, these usually exhibit high vulnerability against natural 
loadings but also anthropic phenomena, such as excavation-induced ground settlement. 

The assessment of structural response to differential settlements has always been a felt concern, 
especially in metropolitan areas. Indeed, several works have been dedicated to the estimation of 
damage in masonry buildings due to settlement effects. Meaningful examples and extensive 
reviews are reported in [1,2]. Most adopted techniques usually rely either on simplified 
approaches, where elastic strains in the material are compared with limit values, e.g. [3,4], or on 
more complex methods, based on nonlinear Finite Element (FE) analyses [5-7]. For the latter, soil-
structure interaction can be neglected [8], for simpler and more conservative analyses, or included 
[9], for more accurate solutions. 

This work is part of the studies conducted to estimate the effects induced on historical buildings 
by the tunnelling operations required for the construction of the new Line C of the Rome 
underground in Italy. These involve the realization of two tunnels that connect the station located 
near the Colosseum to that to be built under Venice Plaza (Piazza Venezia). In particular, this work 
presents the vulnerability assessment of the Assicurazioni Generali building (Palazzo 
Assicurazioni Generali), an important historical masonry building located in Venice Plaza, on the 
northeast side of the underground station. 

A three-dimensional (3D) numerical model of the building is defined and structural analyses 
are carried out to estimate the damage distribution in the masonry due to the settlement-induced 
deformations. These are conducted by modeling the structure as decoupled from the soil. However, 
assumed vertical displacement profiles of the foundation, corresponding to the settlements, are 
defined according to two different approaches, namely level 1, based on the assumption that 
interaction between soil and building is negligible (free field), and level 2, based on numerical 
simulations capable of accounting for this interaction. 

Two types of structural analyses are performed. In the first, the response of the building is 
assumed as linear elastic. Hence, the level of strains induced by the application of the subsidence 
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fields is determined and used to evaluate the potential crack patterns occurring in the masonry. In 
the second, a smeared crack non-linear constitutive model (SCM) [10,11] is used to simulate the 
material damage and, thus, the evolution of cracks produced by the differential settlements. 
Structure geometry 
The Assicurazioni Generali building is a 12-floor masonry structure, occupying a large area of 
almost 3500 m2 in plan. It was built in 1902-1906 by the Architect G. Sacconi, who decided to use 
high-quality solid brick masonry for almost the entire construction. 

In the main portion of the building, the structure consists of 9 floors of different heights, 2 of 
which are underground, for a total height of about 32 m from the ground level (Figure 1: left). The 
building has a pseudo-quadrilateral layout, with one of the vertices beveled. The main façade 
overlooks Venice Plaza. On the southern corner of the building, a square tower rises for almost 17 
m, reaching a height of approximately 48 m. 

   
Figure 1: Façade on Piazza Venezia with indication of the building floors (left) and ground floor 

plan with indication of the main walls as blue dotted lines (right) 
The structural plan is organized according to a "ring" system (Figure 1: right), consisting of the 

perimetral façades and central spine walls, connected by transverse walls and horizontal slabs. All 
the main walls have a large thickness, reaching at some points the value of 2.5 m. The horizontal 
slabs and the 4 main stairways, located at the internal courtyard vertices, have various natures, 
ranging from barrel and cross vaults to wood, steel or RC elements. 

On the ground floor, the center of the building hosts a cloister and a travertine colonnade made 
with 18 cross vaults. These stand above a vast basement, covered by a reinforced concrete (RC) 
vault that is supported by 14 RC pillars. 

The foundation is an RC slab supported by wooden piles that go beyond the first layer (about 
11 m) of fill material soil and reach the underlying layer of compact silty clay (about 43.5 m). 
Excavation-Induced Settlements 
The evaluation of the settlement profile is carried out by the geotechnical engineering research 
group led by Prof. S. Rampello at the Sapienza University of Rome. The excavation operations are 
grouped into two main construction phases: 

• phase 1: mechanized excavation of the two tunnels and the station shaft; 
• phase 2: traditional enlargement necessary for the quay tunnels and the rail junction. 
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Figure 2: Settlement profile for phases 1 (left) and 2 (right), obtained from level 2 analyses (the 

color bar and the vertical axis indicate the value of the settlements in mm) 
Two distinct procedures are followed, referred to as level 1 and level 2 analyses. Level 1 

analyses are based on a semi-empirical approach that neglects the interaction between the soil and 
the building (free field). By contrast, level 2 analyses use FE numerical simulations where the 
ground is modeled as a continuous medium with non-linear behavior and the ground-building 
interaction is included. 

For example, Figure 2 shows the settlement profile at the foundation intrados obtained from the 
level 2 analyses, for phases 1 (left) and 2 (right). The maximum settlement value is almost equal 
to 31 mm. These mainly develop during phase 1 in the central area of the façade overlooking 
Venice Plaza and at the corner between this façade and that overlooking Piazza della Madonna di 
Loreto. Very small increments (less than 2 mm) are observed during phase 2. 
Finite Element numerical model 
To carry out the structural analysis of the building, a 3D FE model is created (Figure 3) by using 
the software MIDAS FEA NX [12].  

 
Figure 3: FE model of the building defined in MIDAS FEA NX 

Walls are modeled with 3- and 4-node shell elements based on the Mindlin-Reissner plate 
theory and a mixed formulation (Assumed Strain Elements with in-compatible modes [12]) that 
avoids shear locking issues. The foundation is modeled through tetrahedral 4-node solid FEs, based 
on a classical displacement formulation. Columns, pillars and beams are modeled through 2-node 
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frame elements, based on a force formulation. Given the uncertainty about the actual mechanical 
characteristics of the horizontal slabs, these and the stairs are included in the model only as loads 
and by applying equivalent rigid diaphragm constraints at the node of the FE mesh. 
Damage distribution assessment through linear elastic analyses 
In the linear elastic analyses, the structure behavior is studied by imposing at the foundation 
intrados the settlement vertical displacements. Hence, stress and strain distribution attained in the 
structural elements are analyzed. To quantitatively define the vulnerability of the structure against 
the settlements, the results are interpreted based on the criterion proposed by Burland et al. [3], in 
the version developed by Boscardin & Cording [4]. This evaluates the possible damage to the 
masonry from the principal tensile strains. Given the historical and architectural interest of the 
building, a more conservative definition of the damage levels than that provided by Boscardin & 
Cording is assumed as indicated in Table 1. 

Table 1: Adopted damage level classification 

Damage level Severity of the damage Tensile strain 
min max 

0 Negligible 0.0 4.0 10-4 
1 Very low 4.0 10-4 6.0 10-4 
2 Low 6.0 10-4 1.0 10-3 
3 Medium 1.0 10-3 2.0 10-3 
4 Severe 2.0 10-3 ∞ 

Figure 4 shows, for example, the deformed shape (left) and the distribution of the principal 
tensile strains (right) obtained by imposing the vertical displacements computed for phase 2 
through the level 2 analyses. These represent the worst condition for potential cracks in the 
masonry, although no significant difference is observed with respect to phase 1. Indeed, during 
phase 1, significant tensile strains arise in the main façades on Venice and Madonna di Loreto 
Plazas. These reach values up to 3.5×10-4 on the upper floors, corresponding to damage level 0, 
and 6.0×10-4 in very limited areas of the lower floors, corresponding to damage level 1. 

   
Figure 4: Deformed shape (left) and maximum tensile principal strains (right) obtained for 

phase 2 settlements (level 2 analyses) 
Nonlinear analyses 
To obtain a more accurate assessment of the damage patterns potentially occurring in the masonry, 
nonlinear static analyses are conducted. To limit the computational cost, a reduced model of the 
building is employed. This includes only the two façades on Venice and Madonna di Loreto Plazas 
mainly affected by the settlement effects and portions of the transverse walls, as reported in Figure 
5. Moreover, the foundation is not explicitly included in the model and the settlement 
displacements are directly imposed at the base of the walls. 
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Figure 5: Reduced model of the structure adopted for the nonlinear analyses 

To verify the accuracy of the reduced model, preliminary linear elastic analyses under the 
vertical settlements are conducted and the results are checked with those of the full model. 

In the nonlinear model, the SCM formulation [10,11] is assumed for the masonry and the 
following mechanical parameters are adopted: Young’s modulus E = 1714 MPa; Poisson ratio υ = 
0.15; compressive strength fc = -2.7 MPa and fracture energy density gc = Gc/h = 0.864 MPa; 
tensile strength ft = |fc|/10 ≃ 0.30 MPa and fracture energy density gf = Gf/h = 0.0035 MPa; crack 
band width h = 500 mm; and shear factor β = 0.01 [5]. 

Loads are applied to the structure in 3 successive phases, i.e. gravity loads are applied in a single 
step, assuming that these instantly act at the initial time of the analysis (phase 0); then the 
settlement vertical displacements are imposed, according to the two phases 1 and 2, by carrying 
out an incremental step-by-step analysis. Level 2 analyses values are considered. 

   
Figure 6: Maximum tensile strains in the Venice Plaza (left) and Madonna di Loreto Plaza 

(right) façades obtained at the final step of phase 2 
Tensile strain distributions for the last step of the analysis are reported in Figure 6. As expected, 

for gravity loads (phase 0), strains in the structure remain in the elastic limit, although the masts 
of the ground floor reach values close to this limit. During phase 1, the façade on Venice Plaza 
shows a significant increase of tensile strains in correspondence with its two vertical edges. Indeed, 
this mainly bends in its plane (see also Figure 4, left) with maximum vertical displacements in the 
middle part and minimum displacements at the edges (clamped-clamped-beam-like deformation). 
By contrast, the façade on Madonna di Loreto Plaza undergoes in-plane bending with maximum 
displacements near the tower and minimum displacements at the opposite edge (cantilever-beam-
like deformation); the maximum tensile strains are observed in the central part of the lower floors. 
During phase 2, there are no significant increases in the deformations, with maximum tensile strain 
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equal to 1.4×10-3, corresponding to a crack width of about 0.60 mm. These results confirm those 
obtained in the linear elastic analyses, showing a maximum damage level equal to 1 (very low). 
Summary 
This work presented the vulnerability assessment of the Assicurazioni Generali masonry building 
for the settlements induced by the tunneling operation required for the new Line C of the Rome 
underground. Linear elastic and nonlinear static analyses are conducted by employing a detailed 
macromechanical model. These showed that the damage risk against the excavation-induced 
settlement is negligible (damage level 0) in almost the entire structure and reaches very low values 
(damage level 1) in limited zones of the main façades on Venice and Madonna di Loreto Plazas. 
Hence, the tunnelling operations do not generate significant stress-strain states in the structures 
that require specific interventions or attention. 
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Abstract. In recent years, efforts have been made to compare equilibrium solutions of masonry 
domes obtained through different methods. The research summarized in the present paper focuses 
on the evaluation of the equilibrium of masonry domes in the context of the classical membrane 
theory, in comparison with more sophisticated finite element models. In particular, we consider 
solutions, with vanishing tensile stresses, for domes under gravity loads. The equilibrium problem 
is traced back to the equilibrium of a thrust surface under the assumption of no-tension material in 
the sense of Heyman (i.e., no tensile strength, infinite resistance in compression, and no slide along 
fracture lines). A finite difference discretization of the equilibrium equation is proposed and the 
obtained solution is compared with results from a nonlinear finite element analysis. The good 
agreement of the results shows that both finite difference and finite element approaches represent 
reasonable and reliable alternative tools. 
Introduction 
Masonry domes, widely used in monumental buildings, are great works of architecture and 
engineering with a long history dating back to the dawn of civilization. Their static behavior has 
been widely studied through different methods which can be broadly classified into equilibrium 
methods [1–3] and deformation methods [4–6]. The present work aims at comparing equilibrium 
solutions for masonry domes under gravity loads obtained by applying a membrane approach and 
a Finite Element (FE) analysis. For the sake of comparison, we will consider very simple examples 
for which a reliable membrane solution can be easily obtained and then used to validate the more 
sophisticated FE results. 

The paper is organized as follows. Section 2 presents the theoretical framework of the 
membrane approach and the Finite Difference (FD) algorithm used for the computations. Section 
3 focuses on the fully three-dimensional, nonlinear FE analysis. Section 4 presents the findings of 
the two numerical-based analyses, remarking on the substantial agreement between the two 
approaches. This highlights the consistency and robustness of the nonlinear FE analysis for 
masonry domes characterized by very reduced tensile strength, as emphasized in the concluding 
remarks in Section 5.  

Membrane approach and FD solution 
Let us consider a masonry dome subjected to its self-weight and assume its equilibrium may be 
written in agreement with Pucher’s approach to the classical membrane theory [7-10]. We define 
an axial-symmetric (with respect to the direction of the load) membrane as an unknown function 
𝑔𝑔 = 𝑔𝑔(𝑟𝑟), where 𝑟𝑟 is the radius of the membrane projection Ω on the support plane, orthogonal to 
the direction of the load. The generalized stresses along the meridian and parallel curves on the 
membrane are 𝑆𝑆𝑟𝑟𝑟𝑟 and 𝑆𝑆𝜃𝜃𝜃𝜃, respectively, and 𝑆𝑆11 and 𝑆𝑆22 are the corresponding projections on Ω. 
By introducing an unknown Airy’s stress function 𝜑𝜑 = 𝜑𝜑(𝑟𝑟) such that 
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𝜑𝜑′ = 𝑟𝑟 𝑆𝑆𝑟𝑟𝑟𝑟

�1+𝑔𝑔′2
= 𝑟𝑟𝑆𝑆11 ,    𝜑𝜑′′ = 𝑆𝑆𝜃𝜃𝜃𝜃�1 + 𝑔𝑔′2 = 𝑆𝑆22 , (1) 

the equilibrium along the direction of the load is given by the differential Pucher’s equation  

𝜑𝜑′𝑔𝑔′′ + 𝜑𝜑′′𝑔𝑔′ = 𝛾𝛾 𝑠𝑠 𝑟𝑟 �1 + 𝑔𝑔′2 , (2) 

where the prime symbol (′) denotes the derivative with respect to the membrane radius 𝑟𝑟, and 𝛾𝛾 
and 𝑠𝑠 stand for the specific weight of the masonry and the thickness of the dome, respectively. 

In the problem we are dealing with, the function 𝑔𝑔 is admissible if it corresponds to a membrane 
fully contained within the dome thickness and the function 𝜑𝜑 is admissible if leads to non-positive 
stresses. Since in Eq. (2) both 𝑔𝑔 and 𝜑𝜑 are unknowns, one can assign any tentative 𝑔𝑔0 or 𝜑𝜑0 
function and compute the other. Choosing 𝑛𝑛 + 1 not uniformly spaced points along the radius 𝑟𝑟 
on the platform Ω, we transform Eq. (2) in a set of 𝑛𝑛 + 1 algebraic equations with 2(𝑛𝑛 + 1) 
unknowns 𝑔𝑔(𝑖𝑖) and 𝜑𝜑(𝑖𝑖), 𝑖𝑖 = 0,1, … ,𝑛𝑛. In a finite difference fashion, to compute the discrete 
derivatives of functions we are dealing with, we use three-point stencils and adopt central 
differences for any point 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, forward difference scheme for the point 0, backward 
difference scheme for the point 𝑛𝑛, thus making as simple as possible the setting of the boundary 
conditions. 

To determine the solution to the discretized problem, a two-stage algorithm is implemented in 
Mathematica®, taking advantage of the possibilities of that high-level, general-purpose 
programming environment.  
Fully three-dimensional, nonlinear FE analysis 
Modelling, simulations, and FE analysis are performed by means of the FE package Ansys®, 
adopting the concrete constitutive model (CCM) for masonry, which uses the William–Warnke 
constitutive equations [11] with a failure surface which is smooth and convex with noncircular and 
no affine sections in the deviatoric plane. 

The performed analysis takes into account the geometric nonlinearities by means of an 
incremental approach based on a modified Newton-Raphson method [12-14]. An ad hoc algorithm 
is written in the Ansys Parametric Design Language (APDL) [15] to compute the coordinates of 
some points of the thrust surface on (any) vertical cross-section of the dome.  
Numerical results and method comparison 
In the following numerical applications, we consider here a hemispherical dome with a mean 
radius of 12.5 m, a constant thickness of 2 m, and self-weight 𝛾𝛾 = 16 kN/m3. 
 
Finite difference solution 
The FD solution of Eq. (2) is summarized in Figures 1a and 1b reporting the computed function 
𝜑𝜑(𝑟𝑟) and the stresses per unit length, respectively. We observe that at the end of the first stage of 
the FD algorithm, in the compressed part of the dome, the numerical solution is in agreement with 
the predictions of the classical theory of shells (dashed lines in Figure 1b), while at the end of the 
second stage, the generalized stresses tend to relax (see, in particular, the hoop stress and the 
horizontal thrust drawn, respectively, in red and black in Figure 1b).  
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(a) (b) 
Figure  1: (a) Stress function 𝜑𝜑(𝑟𝑟): FD solutions from the first (black) and second (gray) 

stages of the algorithm. (b) Generalized stresses 𝑆𝑆𝑟𝑟𝑟𝑟 (blue), 𝑆𝑆𝜗𝜗𝜗𝜗 (red), horizontal thrust 𝑆𝑆11 
(black), vertical thrust 𝑆𝑆𝑣𝑣 = 𝑆𝑆11 𝑔𝑔′ (gray), theoretical solution for hemispherical membrane 

(dashed lines): FD solutions from the first (dotted lines) and second (thick lines) stages of the 
algorithm 

Finite element solution 
For the FE model, we consider a Cartesian reference frame (0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3), with the origin 𝑂𝑂 
corresponding to the center of the projection of the dome onto the support plane 𝑥𝑥2 = 0, being 𝑥𝑥2 
the gravity direction. On account of the hemispherical symmetry of the analyzed problem, the 
computational effort in the analysis is reduced by considering only half of the dome, where         
𝑥𝑥1 = 0 is the cutting plane. The dome is loaded only by gravity loads and mechanical parameters 
of masonry, namely Young’s modulus, Poisson’s ratio, and density, are set as 𝐸𝐸 = 2GPa, 𝜈𝜈 = 0.1,     
𝜌𝜌 = 1630.99kg/m3. For the CCM, only the ultimate uniaxial tensile strength and the ultimate 
uniaxial compressive strength are assumed as failure parameters, set as 𝜎𝜎𝑡𝑡 = 1MPa and  𝜎𝜎𝑐𝑐 = −20 
MPa, respectively. Two models which differ in terms of boundary conditions are considered: 

 
Sample 1 discretized by means of 75, 896 SOLID65 linear tetrahedral elements, resulting in                      
15, 706 nodes with three translational degrees of freedom each, adopting the following boundary 
conditions are used in the simulations: 

• displacements along the direction 𝑥𝑥1 are prevented, i.e. 𝑢𝑢1 = 0, for all nodes which belong 
to the plane of equation 𝑥𝑥1 = 0; 

• displacements along the radial direction, i.e. along the lines from the origin of the axes 
are allowed, for all nodes which belong to the plane of equation 𝑥𝑥2 = 0; 

       • displacements along the direction 𝑥𝑥3 are prevented, i.e. 𝑢𝑢3 = 0, for all nodes which belong 
to the plane of equation 𝑥𝑥3 = 0. 

 
Sample 2 discretized by means of 264,800 SOLID65 linear tetrahedral elements, resulting in 
48,853 nodes with three translational degrees of freedom each. With the purpose of mimicking as 
accurately as possible the real boundary conditions of the dome, the drum is also partially modeled. 
The drum, 2.8 m high and 3.3 m wide, is fully-constrained at the base. Moreover, displacements 
along the horizontal direction 𝑥𝑥1 are prevented for all nodes which belong to the plane of equation 
𝑥𝑥1 = 0.  
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(a) Sample 1 

 

(b) Sample 2 
Figure 2: Nonlinear FE simulation of cracking 

 
The nonlinear FE simulation of cracking for the Sample 1 and Sample 2 are reported in Figures 

2a and 2b, respectively. We can observe that the two samples exhibit a fairly similar cracking 
evolution with the development of typical meridian cracks due to the masonry weakness to sustain 
hoop stresses. The cracking arises at the springing subsequently propagating vertically upwards 
toward the crown (Sample 1 and Sample 2) and downwards into the drum (Sample 2) and arresting 
at the haunches, as expected [16]. Figure 3 reports a superimposition of the thrust surface cross-
section obtained by means of the membrane approach and the two FE samples. We emphasize that 
the lines computed from FE solutions are in agreement with the thrust surface cross-section 
obtained with the membrane approach, by imposing the initial point of the thrust line at the crown 
of the dome and the final point at the springing of the dome coincident with the corresponding 
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points evaluated with FE simulations. We argue that the comparison shows the reliability of the 
performed FE analysis. 

 

 

Figure 3: Superposition of the thrust surface to the half cross-section of the dome: membrane 
approach (dashed line) vs. FE approach (solid black line) 

 
Conclusions 
In the present contribution, two thrust surfaces in the thickness of a simple hemispherical masonry 
dome, under its self-weight, are computed: one integrating the Pucher’s equilibrium equation 
through a finite difference approach, the other obtained from a more sophisticated constitutive 
model accounting for damage and smeared crack implemented into a finite element model. The 
solution from the membrane Pucher’s approach, applied to a very simple example, is here assumed 
as the benchmark to assess the FE results. However, while the membrane approach is flexible 
enough to solve a large class of problems, its FD discretization becomes cumbersome in the case 
of complex geometries. In such cases, finite element models are instead suitable. In this respect, 
the utility of a Pucher-based solution represents a simple and physically significant benchmark for 
the FE model characterized by a large number of parameters that need to be carefully set up. In 
fact, the agreement between the thrust surface cross-section obtained with the nonlinear elastic 
analysis and the membrane approach demonstrates the reliability and usefulness of the proposed 
FE approach. 
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Abstract. We provide closed-form expressions to compute the path-dependent work performed 
by generalized rate-independent hysteretic forces, simulated by using a brand-new model 
denominated Vaiana-Rosati Model (VRM). In particular, such expressions are valid over a generic 
generalized displacement interval. Furthermore, we provide a closed-form expression for 
evaluating the dissipated energy associated with the work done by a rate-independent hysteretic 
force when a full cycle of periodic generalized displacement is applied.  
Introduction 
In structural dynamics, the problem of evaluating the amount of mechanical energy dissipated by 
rate-independent hysteretic mechanical systems and materials plays a crucial role since such an 
issue plays a paramount role in vibrations control. In particular, with reference to the seismic 
protection of structures and objects contained in them [1], the evaluation of the dissipated energy 
is necessary for the modeling and design of isolation bearings [2-4] and energy dissipation devices 
[5].  

The complexity of the nonlinear response exhibited by rate-independent hysteretic mechanical 
systems strongly influences the shape of generalized force-displacement hysteresis loops, which 
can be symmetric or asymmetric. Over the years, many researchers have proposed 
phenomenological models for evaluating the generalized force by means of different types of 
equations. 

As regards the simulation of symmetric hysteresis loops, the Bouc-Wen model [6-7] and its 
subsequent extensions [8] are the most employed differential models. On the other hand, non-
differential models, such as algebraic or transcendental ones, have been recently formulated by 
Vaiana et al. [9]. As far as the simulation of asymmetric hysteresis loops is concerned, it is possible 
to employ modified versions of the Bouc-Wen model [10] or, alternatively, recently developed 
models belonging to the generalized class proposed by Vaiana et al. [11].  

In general, hysteresis phenomena are so complex that it is quite complicated to describe them 
by means of a single model. Conversely, Vaiana and Rosati [12] have recently proposed a 
preliminary formulation of a novel rate-independent hysteretic model capable of simulating a wide 
range of hysteresis loops in a unified manner. This model provides a closed-form expression to 
evaluate the output variable, thus allowing for significant advantages in terms of computational 
efficiency [13-14].  

In particular, in this paper, after a short description of the Vaiana-Rosati model, we illustrate 
the closed-form expressions that have been derived to compute the incremental generalized work 
performed by an hysteretic force; on the basis of this result, we derive the closed-form expression 
for the evaluation of the dissipated energy associated with a full hysteresis loop.  
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Figure 1: VRM formulation: curves , , ,u lc c c c+ − , (a) and incremental generalized work 
associated with each curve (b).  

 
Brief Review of the VRM  
In this section, we briefly describe the Vaiana-Rosati Model (VRM). The model can accurately 
simulate the response of a great variety of rate-independent hysteretic mechanical systems and 
materials. In particular, it can reproduce the complex hysteretic behavior characterized 
by asymmetric, pinched, S-shaped, and flag-shaped hysteresis loops, or by a combination of them, 
providing closed-form expressions for the computation of the generalized rate-independent force. 
Moreover, the model allows for uncoupled modeling of the generic loading and unloading phases 
thanks to a set of parameters that can be simply calibrated due to their clear mechanical meaning 
and direct relationship with experimental loops. 

Fig. 1a shows a typical hysteresis loop that the VRM can reproduce. The generalized rate-
independent force rif , during a generic loading phase ( )0u > , can be evaluated as: 
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whereas, during the generic unloading one ( )0u < , it can be computed as: 
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In Eq. (1), c+ and uc  describe, respectively, the generic loading curve and the upper limiting curve, 
which have the following expressions: 

( ) ( )
( )2

2 3

 1
1 1 1 0

4 1,    2 ,
1

ju u uu u
j bu

c u u e k u f e e
e

αβ α

γ γ

γβ β γ
α

+ + ++ + +

+ +

+
− + − ++ + + + + + + −

+− −

 = − + − + + − −  +
 (3) 

( ) ( )
2

2 3

1
1 1 1 0

4 2 ,
1

u
u bu

c u e k u f
e

β

γ γ

γβ β γ
+

+ +

+
+ + + + +

− −
= − + − + +

+
  (4) 

whereas, in Eq. (2), c− and lc  define, respectively, the generic unloading curve and the lower 
limiting curve; their expressions read: 

( ) ( )
( )  

2

2 3

1
1 1 1 0

4 1,   2 ,
1

ju u uu u
j bu

c u u e k u f e e
e

αβ α

γ γ

γβ β γ
α

− − −− − −

− −

−
− − + +− − − − − − − −

−− −

 = − + − + − + −  +
  (5) 
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( ) ( )
2

2 3

1
1 1 1 0

4  2 .
1

u
l bu

c u e k u f
e

β

γ γ

γβ β γ
+

− −

−
− − − − −

− −
= − + − + −

+
  (6) 

The parameters ( )0 1 2 1 2 3 0 1 2 1 2 3, , , , , , , , , , , , , , ,b bk f k fα β β γ γ γ α β β γ γ γ+ + + + + + + + − − − − − − − −  that appear 
in the expressions of the generalized rate-independent hysteretic force, represent the set of eight 
parameters that control the generic loading (unloading) phase and need to be calibrated from 
experimental or numerical tests. Concerning the internal variable ( )j ju u+ − characterizing the 
generic loading (unloading) phase, its expression is reported in Vaiana and Rosati [12], whereas 

( )u u+ − is an internal model parameter expressed as a function of ( )α α+ − .  
 

Generalized Work and Dissipated Energy 
In the sequel, we show that the closed-form expressions for the generalized rate-independent 
hysteretic force, described in the previous Section, allow us to derive closed-form expressions for 
the evaluation of the area under the four curves characterizing the VRM (Fig. 1b) as:  

( )
   

.f

i

u

ri riu
W f u du= ∫  (7) 

In fact, the quantity in Eq. (7) represents the path-dependent work performed by the generalized 
force rif  over a generic generalized displacement interval ,  i fu u   , and will be referred to as 

generalized rate-independent hysteretic work riW . The path-dependent work will be first derived 
for the four curves defining the model; subsequently, the relevant expressions will be used to 
evaluate the closed-form expression of the energy dissipated in a full hysteresis loop. 

 
Incremental Generalized Work 
 

The closed-form expressions of the incremental generalized rate-independent hysteretic work 
associated with the four VRM curves are obtained by recalling Eqs. (1) and (2) and using them in 
Eq. (7). In this way, during the generic loading phase ( )0u > , the generalized work is: 

if
        

,if
i j

ri
ju

u u uW
W

u uW

+ ++

+

 ≤ <= >
 (8) 

whereas, in the generic unloading phase ( )0u < , it can be computed as: 

if
        

,if
j i

ri
jl

u u uW
W

u uW

− +−

−

 < ≤= <
 (9) 

where ( )uW W +  represents, on the basis of Eq. (7), the area under the curve ( )uc c+  over a generic 

generalized displacement interval ,  i fu u   , whereas ( )lW W −  is the area under the curve  

( )lc c− over a generic generalized displacement interval ,  f iu u   , as shown in Fig. 1b. 

To evaluate the expressions of , , , andu lW W W W+ − , it is more convenient to rewrite the 
expressions of the four functions defining the curves, as the sum of terms that depend, respectively, 
upon suitable subsets of the model parameters, namely: 

( ) ( ) ( ) ( )1 2 1 2 3 0 , , , , , u a b c bc u c c c k fβ β γ γ γ+ + + + + + + + + += + +  (10) 

( ) ( ) ( ) ( ) ( )1 2 1 2 3 0,   , ,  , , , j a b c b dc u u c c c k f cβ β γ γ γ α+ + + + + + + + + + + + + += + + +  (11) 
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( ) ( ) ( ) ( )1 2 1 2 3 0 , , , , , l a b c bc u c c c k fβ β γ γ γ− − − − − − − − − −= + +  (12) 

( ) ( ) ( ) ( ) ( )1 2 1 2 3 0,  , , ,  , . j a b c b dc u u c c c k f cβ β γ γ γ α− − − − − − − − − − − − − −= + + +  (13) 

Thus, the expressions of anduW W + can be derived by integrating Eqs. (10)-(11) over ,  i fu u   : 

( ) ( )      
   ,f f

i i

u u

u u a b c a b cu u
W c u du c c c du W W W+ + + + + += = + + = + +∫ ∫  (15) 

( ) ( )      
,     ,f f

i i

u u

j a b c d a b c du u
W c u u du c c c c du W W W W+ + + + + + + + + + += = + + + = + + +∫ ∫  (14) 

where the terms , , , anda b c dW W W W+ + + +  are given by: 

( ) ( )2 21
1  

2

,f iu u
a f iW e e u uβ ββ β

β
+ +

+
+ +

+= − − −  (18) 

( ) ( )

( )
2 3 2 3

1
2 2

2 ln 1 2ln 1
2 ,

f iu u

b f i

e e
W u u

γ γ γ γ

γ
γ γ

+ + + +− − − −

+ +
+ +

    + +       = − + − 
 
 

 (19) 

( ) ( )2 2
0  ,

2
b

c f i f i
kW u u f u u
+

+ += − + −  (20) 

( )
( ) ( ) 2

1 .j j f i
u u u u u

d f iW e u u e e eα α α αα
α

+ + + + + + +− − − −+ +

+
 = − + −
 

 (21) 

It is important to note that Eq. (18) assumes finite values only if 2 0.β + ≠  Similarly, Eq. (19) is 
defined only if 2 0.γ + ≠  However, if 2 0β + =  it turns out to be 0,ac+ =  and, consequently, 0.aW + =  
Similarly, if 2 0γ + =  then 0bc+ = and 0.bW + =  Eq. (21) does not present the same problem for 

0α + =  since, according to the conditions indicated by Vaiana and Rosati [12], this parameter 
needs to be always greater than zero. Similarly, the expressions of andlW W −  are obtained by 

integrating Eqs. (12)-(13) over ,  ifu u   ; the relevant expressions , , , anda b c dW W W W− − − − , are 
omitted for brevity. 
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Figure 2: Dissipated energy associated with asymmetric (a), pinched (b), S-shaped (c), flag-

shaped (d) hysteresis loops and two combinations of them (e)-(f), simulated by the VRM.  
 

Energy Dissipated in a Full Hysteresis Loop 
 

Finally, the closed-form expression of the energy dissipated in a full hysteresis loop is obtained by 
summing the areas under the four curves (Fig. 1b). Recalling Eqs. (10)-(13), the energy dissipated 
in a full loop dE  can be obtained, by exploiting the additivity rule of definite integrals, as: 

( ) ( )            
       ,i j i j

i i i i

u u u u

d a b c d a b c du u u u
E c c c du c du c c c du c du

− + + −

+ + − −

+ + + + − − − −= + + + + + + +∫ ∫ ∫ ∫  (22) 

where all the quantities appearing in Eq. (22) can be calculated using the general expressions 
of the incremental work previously calculated, paying attention to set the proper displacement 
interval. Fig. 2 shows the values of the dissipated energy dE , calculated using Eq. (22), for 
different hysteresis loops simulated by the VRM and obtained upon application of a full cycle of 
harmonic (sinusoidal) generalized displacement. 
Conclusions  
We have exploited one of the peculiar features of the VRM, that is, the analytical expressions 
assumed for the functions ruling the rate-independent hysteretic behavior, to derive closed-form 
formulas providing the path-dependent work done by an arbitrary rate-independent hysteretic 
force. Furthermore, analytical expressions of the energy dissipated in a full hysteresis loop have 
been explicitly computed. They represent the prerequisite to model the evolution of the hysteretic 
loop shape as a function of the energy dissipated in previous loading histories of cyclic nature, an 
issue that will be pursued in forthcoming papers.  
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Classification and modeling of uniaxial rate-independent hysteresis 
phenomena: some preliminary results 
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Abstract. In this paper, we propose a preliminary classification of complex generalized force-
displacement hysteresis loops, that is, asymmetric, pinched, S-shaped, flag-shaped hysteresis loops 
or those obtained as arbitrary combination of them, that generally characterize the nonlinear 
response of mechanical systems and materials. Subsequently, we present a preliminary formulation 
of a novel phenomenological model capable of reproducing such complex hysteresis phenomena 
and we illustrate the different types of hysteresis loop shapes that can be simulated. Finally, we 
perform an experimental verification of the proposed model by adopting some experimental 
hysteresis loops retrieved from the literature. 
Introduction 
The nonlinear response exhibited by mechanical systems and materials may be characterized by 
generalized force-displacement hysteresis loops having quite complex shapes such as the 
asymmetric [1], pinched [2], S-shaped [3], flag-shaped [4] ones, or those obtained as arbitrary 
combination of them [5]. 

Many uniaxial phenomenological models have been formulated and proposed in the literature 
to reproduce the above-described hysteresis loops [6-9]. Typically, such models require the 
numerical solution of a differential equation to evaluate the output variable, can be only adopted 
to reproduce a specific type of hysteresis loop shape, employ the same set of parameters to simulate 
both loading and unloading phases, and adopt parameters that not always have a clear theoretical 
or experimental significance. 

With the aim of developing a unified approach for the modeling of complex rate-independent 
hysteretic behavior, we first present a preliminary classification of hysteresis phenomena and then 
we illustrate a preliminary formulation of a novel model that has been derived on the basis of a 
generalized class of uniaxial phenomenological models proposed by Vaiana et al. [10-14].  

Such a model offers a series of advantages with respect those currently available in the literature 
since it i) employs closed-form expressions to evaluate the output variable, ii) allows one to 
simulate the generic loading phase by using a set of parameters different from the one adopted for 
the generic unloading one, iii) needs a simple identification procedure because of the clear meaning 
characterizing the adopted parameters, and iv) can be easily implemented in a computer program.  

After the model formulation, we briefly describe the different types of hysteresis loops that can 
be reproduced and we show its capability to simulate complex hysteresis phenomena that 
characterize the experimental response of some mechanical systems and materials retrieved from 
the literature. 
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Figure 1. VRM: curves (a) and internal variables (b) characterizing a generic hysteresis loop. 

Classification of Complex Uniaxial Hysteresis Phenomena 
Mechanical systems and materials, typically employed in the aerospace, civil, and mechanical 
engineering fields, may exhibit uniaxial rate-independent hysteretic behavior characterized by 
quite complex generalized force-displacement hysteresis loops. In particular, the latter may be 
asymmetric, pinched, S-shaped, flag-shaped, or an arbitrary combination of them.  

As proposed by Vaiana et al. [10,11], a generalized force-displacement hysteresis loop can be 
described by means of four different curves: a generic loading curve, a generic unloading curve, 
an upper limiting curve, and a lower limiting curve. 

By looking at the analytical properties of the two limiting curves, it is possible to classify the 
hysteresis loops into four main categories: 
 hysteresis loops limited by two straight lines; 
 hysteresis loops limited by two curves with no inflection point; 
 hysteresis loops limited by two curves with one inflection point; 
 hysteresis loops limited by two curves with two inflection points. 
In the sequel, we propose a novel model, denominated Vaiana-Rosati Model (VRM), that is 

capable of simulating the above-described complex hysteretic behavior by using parameters 
having a clear theoretical and/or experimental interpretation. 
Proposed Model 
Fig. 1a presents a typical generalized force-displacement hysteresis loop that can be reproduced 
by the proposed VRM. In particular, during a generic loading phase, the generalized force f  is 
evaluated as: 

( ) ( )
( )

,    if   
,   

         if   ,    
j j

j

u j

c u u u u
f u u

c u u u

+ + +

+ +

+

 <= 
>

 (1) 

whereas, during a generic unloading phase, it is obtained as: 

( ) ( )
( )

,    if   
,

         if   .
j j

j

l j

c u u u u
f u u

c u u u

− − −

− −

−

 >= 
<

 (2) 

in which u  is the generalized displacement, that is, the input variable of the model. 
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Figure 2. Types of hysteresis loop shapes simulated by the VRM (part 1). 

In Eqs. (1) and (2), c+  and c−  represent, respectively, the generic loading and unloading curves, 
evaluated as: 

( ) ( )
( )12

1 1 1 0
2 3

4 1, 2 ,
1

u u uu j u
j bu

c u u e k u f e e
e

αβ α

γ γ
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+ + + ++ − + − + + ++ + + + + + + −
++ +− −

 
= − + − + + − − 

 +
 (3) 
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( )12
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2 3
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u u uu j u
j bu

c u u e k u f e e
e

αβ α

γ γ

γβ β γ
α

− − − −− − − + + − −− − − − − − − −
−− −− −

 
= − + − + − + − 

 +
 (4) 

whereas uc  and lc  are, respectively, the upper and lower limiting curves, computed as: 

( ) ( )
12

1 1 1 0
2 3
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1

u
u bu

c u e k u f
e

β

γ γ

γβ β γ
++

+ + + + +
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1 1 1 0
2 3

4 2 .
1

u
l bu

c u e k u f
e

β

γ γ
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 (6) 

Finally, ju+  and ju−   represent the internal variables having expressions: 
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Figure 2. Types of hysteresis loop shapes simulated by the VRM (part 2). 

where Pu  and Pf  are the coordinates of a generic point P  belonging to c+  or c− , as illustrated in 
Fig. 1b.  

Finally, the following quantities ( )0 1 2 1 2 3 0 1 2 1 2 3, , , , , , ,  , , , , , , ,b bk f k fα β β γ γ γ α β β γ γ γ+ + + + + + + + − − − − − − − −  
represent the eight model parameters governing the generic loading (unloading) phase, whereas 

( ) u u+ −  is an internal model parameter, whose expression will be presented in a future paper. 
Fig. 2 presents several types of hysteresis loops that can be simulated by using the VRM (the 

parameters are omitted for brevity); it is possible to note that the hysteresis loops illustrated in: 
 Figs. 2a-c are limited by two straight lines; 
 Figs. 2d-f are limited by two curves with no inflection point; 
 Figs. 2g-l are limited by two curves with one inflection point; 
 Figs. 2m-o are limited by two curves with two inflection points. 
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Figure 3. VRM experimental verification: asymmetric (a) and pinched (b) hysteresis loops. 

Table 1. VRM parameters adopted to simulate the hysteresis loops in Fig. 3. 

Figure ( )sgn u  bk  0f  α  1β  2β  1γ  2γ  3γ  

3a + 16 2.3 14 0 0 0 0 0 
 − 4 2.1 24 0 0 0 0 0 

3b + 3.5 0.70 100 0 0 0.12 300  0.035 
 − 0.0 0.85 90 0 0 0.21 160 -0.025 

Experimental Verification 
Fig. 3a (3b) compares the asymmetric (pinched) experimental hysteresis loops, characterizing the 
cyclic response of a spring connector (steel bolted flange plate connection) tested by Filiatrault 
and Kremmidas [1] (Schneider and Teeraparbwong [2]), with those simulated by using the VRM 
parameters listed in Table 1. 

Note that in Table 1 the parameters governing the generic loading (unloading) phase are the 
ones put in the row where the sign of the generalized velocity u , given by the second column, is 
positive (negative). 

Looking at Fig. 3 it is possible to observe a satisfactory agreement between the experimental 
and simulated responses and, consequently, the capability of the model to accurately reproduce 
quite complex hysteresis loops is verified. 
Conclusions 
A preliminary classification of complex hysteresis phenomena has been presented together with a 
preliminary formulation of a novel uniaxial phenomenological model. Such a model can simulate 
different types of hysteresis loops, as shown in Fig. 2, and is capable of accurately reproducing 
complex experimental hysteresis responses, as illustrated in Fig. 3.   

In future papers, the model will be employed to perform nonlinear dynamic analyses of 
mechanical systems and materials typically employed in the field of aerospace, civil, and 
mechanical engineering [15-16]. 
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Abstract. The classical model of viscoelastic body is reconsidered. As well known the 
deformation response of a material is termed viscoelastic when it does not depend only on the status 
of the material in the considered time, but also on its deformation history. Furthermore, the system 
is dissipative: such dissipative nature induce the use of viscoelastic materials in devising anti-
seismic dissipators. Aiming to model new and innovative materials different forms of the 
relaxation modulus which characterises the response of the material are considered. Cases of a non-
classical relaxation modulus are studied. Thus, a relaxation modulus which may be unbounded or 
less regular or modified to describe a material whose mechanical response is changed when the 
material with time, this phenomenon is usually termed ”aging” are investigated. Finally, the 
viscoelastic response can be controlled on devising magneto-viscoelastic materials via injection of 
micro or nano particles magnetically sensible. 
Introduction 
The model of viscoelastic body, according to Fabrizio and Morro [18, 2] are the background for the 
present investigation. The viscoelastic body is assumed homogeneous and isotropic so that the 
dependence on the spatial variable can be omitted. Conversely, the dependence with respect to 
time is not only via the present time, but also through the whole deformation history of the material. 
Accordingly, the quantities of interest are: 
E = E (t) strain tensor 
T = T (t) stress tensor 
G = G (t) relaxation modulus 
G0 = G (0) initial relaxation modulus 
wherein no space dependence is indicated; these quantities are connected via the constitutive 
assumptions 

 

  
 

or equivalently, when Et(τ ) denotes the strain past history 
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Classical problem: regular kernel 
The previous assumptions imply that, in the case the relaxation functions satisfies all the written 
regularity requirements, the problem, termed classical, in the one-dimensional case can be written 
as 

 
where, respectively, u  and f  denote the displacement and the external force which takes into ac-

count also the history of the material and, hence, is not zero. In addition, in the one-dimansional 
case, the tensor G is represented by a real valued function. The problem is assigned prescribing the 
following initial and boundary conditions: 

 

Then, the existence and uniqueness result by Dafermos [17] can be applied. The relaxation 
modulus is the quantity, in this model, whose properties describe the behaviour of the material 
under investigation. The classical requirements on the relaxation modulus, the kernel in the integro-
differential equation (3) are 

 
Hence, G enjoys the fading memory property that is 

  
whose physical meaning is that the effects very far in the past are negligible. In the following a 

list of different generalisations are given: they are devised to describe different materials for which 
the classical assumptions on the relaxation modulus cannot be adopted. The assumptions (5), which 
correspond to G continuous and differentiable positive valued with a negative derivative for all 
positive times, approaching to zero as t goes to infinity. In the case G twice differentiable 
thermodynamical compatibility implies also that 

 
Non classical problems: Singular Kernel and “aging” 
When we consider the case of a relaxation modulus lim

t→0
G(t) = +∞. In this case [11, 4] as well the 3-

dimensional generalisation [6], the problem cannot be formulated via (3) since both G(0) is not defined 
and Ġ ∉ L1 , hence a different approach is adopted. Specifically, approximated problems are introduced 
and, via a suitable limit procedure, existence and uniqueness of the solution of an initial boundary value 
problem is proved [11]. 
On the other hand, another generalisation which is suggested by applications consists in taking into 
account the fact that, in general, the response of the material changes over time due to the natural 
deterioration of the material itself. These effects are studied in [15, 16] an overview is given in [5]. 
Magneto-viscoelastic materials 
The model we adopted to describe the interaction between the viscoelastic body and an external 
magnetic field goes back to in [19] later revisited in [1], coupling between viscoelasticity and 
magnetisation. 
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Regular kernel 
The regular kernel problem, which corresponds to consider the viscoelastic solid characterised by 
a relaxation function which satisfies the classical assumptions is studied in [12], in the one 
dimensional case and in [14] in the three dimensional case. The one-dimensional problem reads 

     
where Ω = (0, 1) and m = (0, m1, m2), denotes the magnetization vector, orthogonal to the 

conductor, since u = (u, 0, 0), when both quantities are written in IR3. In addition, Λ is a linear 
operator defined by Λ (m) = (0, m2, m1), the scalar function u is the displacement in the direction 
of the conductor itself, here identified with the x−axis and λ is a positive parameter. In addition, 
the term f represents an external force which also includes the deformation history up to t = 0. 
Letting ν be the outer unit normal at ∂Ω, initial and boundary conditions are given as follows 

 

        
Under the assumptions  
G(t) X C2(0, T),  u0 X H1

0 (Ω),   u1 X L2(Ω),  m0 X H1(Ω)  and f X L2(Ω × (0, T)), 

the existence and uniqueness of the solution to the problem given by (7)-(8), is proved in [12]. The 
corresponding 3-dimensional problem is studied in [14]. 
Non classical problems: Singular Kernel and “aging” 
The same problem, when the relaxation function is assumed to be unbounded at the initial time t 
= 0, that is coupling, now, the singular viscoelastic behaviour with the magnetisation effects is 
studied in [9] wherein a singular viscoelastic behaviour is coupled with the magnetic filed. Again, 
the introduction of suitable approximated problems and a limit procedure, allow to prove [9] 
existence of the solution of an initial boundary value problem. 

A different generalisation is considered in [10] wherein the one-dimensional viscoelasticity model 
is modified to take into account the so called aging effects. The term aging is adopted to indicate that 
the response of the material is not unchanged with time. That is, if a long term use of the material is 
considered, then the response of the viscoelastic material is, in general, different from the initial one, 
after a long time. To model this behaviour the relaxation function is assumed to depend on the two time 
variables t and τ not only through their difference as in the classical model, see formulae (1) and (2) 
but we consider G a function of the two different time variables t and τ here the two time variables are 
independent. The regular magneto-viscoelasticity problem with aging in [10] is proved to admit an 
unique solution. 
Conclusions 
The wide variety of applications of viscoelastic materials for instance in the area of the study of 
attenuators which are devised to possibly prevent damages via dissipation of extra energy in the 
case of seismic events as mentioned in [3]. 

On the other hand, the more and more widely spread use of magnetically sensible particles for 
instance in gels which can be modelled as viscoelastic materials induces to further investigate this 
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subject, see, for instance, [21], [22] and [23] to have an idea of the different kinds of applications 
which go from rheology to biomedical applications. 
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Abstract. Cable-driven parallel robots are a type of parallel manipulators where rigid links are 
replaced by actuated cables. Although in many cases dynamic models that neglect the cables mass 
and elasticity are employed to simulate the robot behavior and test the control approach to be used, 
there are several situations in which their effect cannot be disregarded, especially when large span 
cables are used, and the cable mass density generates important cable sagging. This work proposes 
a dynamic model for planar cable-driven parallel robots with 3 degrees-of-freedom considering 
cables mass and elasticity. Furthermore, the effect of using control approaches based on massless 
inelastic cables dynamic models on robots with non-negligible cable mass and elasticity is finally 
assessed. 
Introduction 
Cable driven parallel robots (CDPR) are a special kind of parallel manipulators where rigid links 
are replaced by cables. By controlling the cables length, the position and orientation of the end-
effector (EE) can also be controlled. These robots offer several advantages as the potential to cover 
large working areas and a very good power to weight ratio [1,2]. On the other hand, they also 
present disadvantages, one of them related to the complexity of the robot dynamic model. One 
common dynamic model used to analyze the dynamic behavior of CDPRs considers massless, 
inelastic cables, as in [3]. In this model, cables are considered as straight strings that transmit 
directly the cable tension generated by the winches to the end-effector, significantly reducing the 
complexity of the model. However, in some situations, these models do not represent the dynamic 
behavior of the robot with the required level of accuracy. These scenarios include large robots 
where, due to the cross-section and length of the cables, the cables mass cannot be neglected [4]. 
Static analyses were already performed by means of a geometrically exact model proposed in [5]. 
In this work, a dynamic model that considers cable mass and elasticity is proposed for planar 
CDPRs with 3 degrees-of-freedom (DOF) and n cables. The model proposed in this work is derived 
from a more comprehensive 3D model developed by the same authors of the present work in [6] 
where all the modeling details can be found. The model consists of a set of partial differential 
equations with boundary conditions modeling the cables behavior coupled with ordinary 
differential equations (ODE) that model the EE. A methodology for obtaining a solution to the 
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system is proposed, it is validated through numerical simulations and the influence of the cable 
mass is assessed in two case-study. 
Nonlinear parametric modeling 
Mechanical formulation 
Let us consider 𝑠𝑠𝑖𝑖 ∈ [0, 𝐿𝐿𝑖𝑖(𝑡𝑡)] (𝑖𝑖 = 1, … ,𝑛𝑛) the arclength of the unstretched configuration, 𝐿𝐿𝑖𝑖(𝑡𝑡) 
is the total unstretched length and 𝑙𝑙𝑖𝑖(𝑡𝑡) the linear distance between the boundaries of the i-th cable. 
Vectors 𝒙𝒙𝑖𝑖 = [𝑦𝑦𝑖𝑖  𝑧𝑧𝑖𝑖]⊤represent the positions of the cable origins in the robot structure w.r.t. the 
fixed reference frame �𝒆𝒆𝑦𝑦, 𝒆𝒆𝑧𝑧� located at 𝒙𝒙1 ≡ 𝟎𝟎. The vector 𝒓𝒓𝑖𝑖(𝑡𝑡) =  𝑹𝑹𝑥𝑥�𝜃𝜃𝑥𝑥(𝑡𝑡)� ⋅  𝒓𝒓𝑖𝑖0 represents 
the position of the i-th cable attachment point to the end-effector (EE) w.r.t the fixed reference 
frame �𝒆𝒆𝑦𝑦, 𝒆𝒆𝑧𝑧� while 𝒓𝒓𝑖𝑖0 is the vector describing the EE geometry in the mass-fixed local axes 
�𝒃𝒃𝑦𝑦(𝑡𝑡),𝒃𝒃𝑧𝑧(𝑡𝑡)� centered in the EE center of mass 𝑂𝑂𝑀𝑀, while 𝜃𝜃𝑥𝑥(𝑡𝑡) is the rotation angle about the 
axis 𝒆𝒆𝑥𝑥 ≡ 𝒃𝒃𝑥𝑥 orthogonal to the working plane, and 𝑹𝑹𝑥𝑥 is the rotation matrix around the x-axis. The 
position of 𝑂𝑂𝑀𝑀 can be calculated as 

𝒑𝒑𝑀𝑀(𝑡𝑡) = 𝒑𝒑𝑀𝑀,𝑖𝑖(𝑡𝑡) − 𝒓𝒓𝑖𝑖(𝑡𝑡) + 𝒙𝒙𝑖𝑖(𝑖𝑖 = 1, … ,𝑛𝑛).          (1) 
The position of the point on the i-th cable is given by the vector 𝒑𝒑𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡) w.r.t.  𝒙𝒙𝑖𝑖. The strain 

state of the i-th cable can be described by introducing the stretch vector 𝝂𝝂𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡) obtained as 

𝝂𝝂𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡) =
𝑑𝑑 
𝑑𝑑𝑠𝑠𝑖𝑖

𝒑𝒑𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡).          (2) 

The vector of the cable axial force can be expressed as: 𝒏𝒏𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡) = 𝑁𝑁𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡)𝝂𝝂𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡)/𝜈𝜈𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡), 
where 𝑁𝑁𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡) = 𝐸𝐸𝐸𝐸(𝜈𝜈𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑡𝑡) − 1) represents the cable tension, being 𝐸𝐸𝐸𝐸 the cable axial 
stiffness.  
Nondimensional form 
The distance 𝑙𝑙0,1 = 𝑙𝑙1(0) is adopted as characteristic length while the characteristic frequency 

ω𝑐𝑐 = �𝐸𝐸𝐸𝐸/�ρ𝐸𝐸 𝑙𝑙0,1
2 � is adopted to nondimensionalize the time. The following nondimensional 

parameters can be introduced 

λ0,𝑖𝑖 =
𝑙𝑙0,𝑖𝑖

𝑙𝑙0,1
, 𝑥𝑥𝚤𝚤� =

𝑥𝑥𝑖𝑖
𝑙𝑙0,1

, �̅�𝑟𝑖𝑖0 =
𝑟𝑟𝑖𝑖0

𝑙𝑙0,1
, 𝑟𝑟𝚤𝚤� =

𝑟𝑟𝑖𝑖
𝑙𝑙0,1

 

𝒑𝒑�𝑀𝑀 =
𝒑𝒑𝑴𝑴
𝑙𝑙0,1

,  𝒑𝒑�𝑖𝑖 =
𝒑𝒑𝑖𝑖
l0,1

,𝒏𝒏�𝑖𝑖 =
𝒏𝒏𝑖𝑖

𝜌𝜌𝐸𝐸  𝜔𝜔𝑐𝑐2  𝑙𝑙0,1
2 ,  τ = ω𝑐𝑐 ⋅ 𝑡𝑡          (3) 

λ𝑖𝑖(τ) =
𝑙𝑙𝑖𝑖(τ)
𝑙𝑙0,𝑖𝑖

,  Λ𝑖𝑖(τ) =
𝐿𝐿𝑖𝑖(τ)
𝑙𝑙𝑖𝑖(τ) ,  σ =

𝑠𝑠𝑖𝑖
𝐿𝐿𝑖𝑖(𝑡𝑡)

,  (𝑖𝑖 = 1 …𝑛𝑛). 

 
By defining (⋅)′ ≔ 𝑑𝑑

𝑑𝑑σ
(⋅) and (⋅)̇ ≔ 𝑑𝑑

𝑑𝑑τ
(⋅), as the derivatives in terms of the nondimensional 

arclength σ and time τ , respectively, the stretch vector can be then calculated as ν𝑖𝑖(σ, τ) =
𝒑𝒑𝚤𝚤′� (σ, τ)/�Λ𝑖𝑖(τ)λ𝑖𝑖(τ)λ0,𝑖𝑖�. Due to the definition of ω𝑐𝑐, it turns out that the 𝑖𝑖-th axial force is given 
in nondimensional form as 𝑁𝑁𝚤𝚤� (σ, τ) = (ν𝑖𝑖(σ, τ) − 1); therefore, the corresponding vector of the 
nondimensional axial force can be written as 

𝒏𝒏𝚤𝚤� (σ, τ) =
1

Λ𝑖𝑖(τ)λ𝑖𝑖(τ)λ0,𝑖𝑖

(ν𝑖𝑖(σ, τ) − 1)
ν𝑖𝑖(σ, τ) 𝒑𝒑𝚤𝚤′� (σ, τ).          (4) 

 
where ν𝑖𝑖 = �|ν𝑖𝑖|�. Finally, the equation of motion of the 𝑖𝑖-th cable in nondimensional form reads 

𝒏𝒏𝚤𝚤′� (σ, τ)
Λ𝑖𝑖(τ)λ𝑖𝑖(τ)λ0,𝑖𝑖

+ 𝒇𝒇𝚤𝚤� (σ, τ) = 𝒑𝒑�𝚤𝚤̈ (σ, τ) + 𝑐𝑐𝚤𝚤� 𝒑𝒑�𝚤𝚤̇ (σ, τ) (𝑖𝑖 = 1, … ,𝑛𝑛),          (5) 
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where 𝑐𝑐𝚤𝚤� = 𝑐𝑐𝑖𝑖/(ρ𝐸𝐸1ω𝑐𝑐). The nondimensional distributed load, calculated as 𝒇𝒇𝚤𝚤� = 𝒇𝒇𝑖𝑖/
�ρ𝐸𝐸1ω𝑐𝑐

2𝑙𝑙0,1�, is here considered to be  the only cable self-weight, therefore 𝒇𝒇𝚤𝚤� = −γ 𝒆𝒆𝑧𝑧, where γ =
𝑔𝑔/�ω𝑐𝑐

2 𝑙𝑙0,1� and 𝑔𝑔 = 9.81 𝑚𝑚/𝑠𝑠2 is the gravity acceleration. Furthermore, the kinematic boundary 
conditions associated with Eq. (5) can be written in nondimensional form as  

𝒑𝒑𝚤𝚤� (0, τ) = 0    (𝑖𝑖 = 1, … ,𝑛𝑛),         (6) 
 

𝒙𝒙𝚤𝚤� + 𝒑𝒑𝚤𝚤� (1, τ) − 𝒓𝒓𝚤𝚤� (τ) = 𝒑𝒑�1(1, τ) − 𝒓𝒓�1(τ)   (𝑖𝑖 = 2, … ,𝑛𝑛),          (7) 
 
while the nondimensional form of the EE balance equations can be written as  

−�𝒏𝒏𝚤𝚤� (1, 𝜏𝜏)
𝑛𝑛

𝑖𝑖=1

− μ γ 𝒆𝒆𝑧𝑧 = μ  �𝒑𝒑�1̈(1, τ) − 𝒓𝒓�1̈(τ)� ,        (8) 

−��𝒓𝒓𝚤𝚤� (τ) × 𝒏𝒏𝚤𝚤� (1, τ)�⋅ 𝒆𝒆𝑥𝑥

𝑛𝑛

𝑖𝑖=1

= 𝐽𝐽μ�  �̈�𝜃𝑥𝑥(τ),            (9) 

 
respectively, where μ = 𝑀𝑀/�ρ𝐸𝐸1 𝑙𝑙0,1� and 𝐽𝐽μ� = 𝐽𝐽𝑀𝑀�1/�ρ𝐸𝐸1 𝑙𝑙0,1

3 ��, being M and 𝐽𝐽𝑀𝑀 the end-
effector mass and mass moment of inertia, respectively. 
 
Discretization procedure 
The discretization technique based on the Galerkin method is adopted to reduce the space-
dependence of the cables equations of motion so as to reduce them into a set of ordinary differential 
equations (ODEs), in τ. In this work 𝑚𝑚 + 1 trial functions are chosen so as to satisfy the kinematic 
boundary conditions (6) and (7); therefore, the approximate solution of Eq. (5) is given by the 2-
by-1 vector 𝒑𝒑𝚤𝚤� (σ, τ) (𝑖𝑖 = 1, … ,𝑛𝑛) expressed as the linear combination of the 𝑚𝑚 + 1 trial functions 
as 

𝒑𝒑𝚤𝚤� (σ, τ) = 𝒒𝒒𝑖𝑖,0(τ) σ + �ϕ𝑖𝑖,𝑗𝑗(σ)
𝑚𝑚

𝑗𝑗=1

 𝒒𝒒𝑖𝑖,𝑗𝑗(τ), (10) 

where ϕ𝑖𝑖,𝑗𝑗(σ) = diag�𝑠𝑠𝑖𝑖𝑛𝑛(𝑗𝑗πσ), 𝑠𝑠𝑖𝑖𝑛𝑛(𝑗𝑗πσ)� is the 𝑖𝑖𝑗𝑗-th 2-by-2 diagonal matrix collecting the  
𝑗𝑗-th trial functions and  𝑞𝑞𝑖𝑖,0 and 𝑞𝑞𝑖𝑖,𝑗𝑗 are the vectors collecting the unknown generalized coordinates. 
Since 𝑝𝑝𝚤𝚤�(0, τ) = 0,  Eq. (10) satisfies (6), whereas, to satisfy Eq. (7), the following relationship 
must hold: 

𝒒𝒒𝑖𝑖,0(τ) = 𝒒𝒒1,0(τ) − 𝒓𝒓1��� + 𝒓𝒓𝚤𝚤� − 𝒙𝒙𝚤𝚤� ,  (𝑖𝑖 = 2, … , 𝑛𝑛), (11) 
since 𝒑𝒑𝚤𝚤� (1, τ) = 𝒒𝒒𝑖𝑖,0. Therefore, only one out of 𝑛𝑛 vectors 𝒒𝒒𝑖𝑖,0(τ) is an effective set of unknown 

coordinates. By now substituting (10) into (5) one obtains the following unbalanced residual of 
the equations of motion 

𝜼𝜼𝚤𝚤� (σ, τ) =
1

Λ𝑖𝑖2λ𝑖𝑖2λ0,𝑖𝑖
2 �

(ν𝚤𝚤� − 1)
ν𝚤𝚤�

𝒑𝒑𝚤𝚤′� �
′

+ 𝒇𝒇𝚤𝚤� − 𝒑𝒑�𝚤𝚤̈ − 𝑐𝑐𝚤𝚤� 𝒑𝒑�𝚤𝚤̇     (𝑖𝑖 = 1, … ,𝑛𝑛), (12) 

where ν𝚤𝚤�  corresponds to ν𝚤𝚤�  in terms of the approximate solution. The unbalanced residuals can 
be minimized by ensuring that they are orthogonal in the nondimensional domain [0,1] to the trial 
functions adopted in the discretization. Finally, the approximate form of the vector-valued balance 
equations of the end effector can be obtained by substituting Eqns. (10) and (11) into Eqns. (8) and 
(9). The resulting set of ODEs is solved taking a direct approach, i.e., the force applied to the 
cables is considered the input while the EE trajectory/orientation and the cable shapes are the 
outputs. In this sense, the values of Λ𝑖𝑖(𝑡𝑡) are assigned by means of Λ𝑖𝑖(τ) = 1 − �|𝒏𝒏𝚤𝚤� |�. To perform 
the time-integration of the ODEs, the system of algebraic equations resulting from the evaluation 
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of the governing equations of motion at τ = 0 and considering zero initial acceleration and velocity 
is solved to obtain the initial values 𝒒𝒒𝑖𝑖,𝑗𝑗(0). The initial values of Λ𝑖𝑖(0) are computed so that the 
fulfill the equilibrium of the EE. 
Simulation results and influence of the cable mass 
To assess the impact of the cable mass in the behavior of a CDPR under real operational conditions, 
the following procedure is employed. First, a position control approach in the Cartesian space is 
designed using a very simple dynamic model for the robot, that assumes massless, inelastic cables, 
for simulating its behavior. Then, employing the same controller, the behavior of the robot is 
simulated using the dynamic model exposed and solved by the procedure described in the previous 
Sections. The control architecture is shown in Fig. 1, where (𝒑𝒑𝑀𝑀,𝜃𝜃𝑥𝑥)∗ and (𝒑𝒑𝑀𝑀,𝜃𝜃𝑥𝑥) stand for the 
desired and the simulated EE trajectory, respectively. The redundancy of the actuation, i.e., the 
conversion between the desired EE acceleration ��̈�𝒑𝑀𝑀, �̈�𝜃𝑥𝑥� generated by the controller to the 
corresponding cable forces applied to the robot (𝑇𝑇), is solved by means of the well-known 
Improved Closed Form proposed by Pott [7]. 
 

 
Figure 1. Block diagram of the control architecture 

 
The PID gains are set by trial-and-error so that the position error committed with the massless 

cable model is less than 10mm. The set of ODEs is solved in Simulink using the classical Runge-
Kutta (ODE4) method, with a sampling time of 1ms. The cable characteristics are 𝐸𝐸𝐸𝐸 =
150360 (N) and ρ𝐸𝐸 = 4.19 ⋅ 10−2 (kg/m) that correspond to those employed in [8]. An over-
constrained CDPR with 4 cables and 3 DOF is considered. For the first case of study the robot 
frame is a rectangle of sizes 40 × 10 (m) and the EE geometry corresponds to a square of 
0.5 × 0.5 (m). In case of study 2, the robot frame and EE are scaled by 1/4. The EE mass is 𝑀𝑀 =
20 kg and its inertia 𝐽𝐽 = 0.833 (kg⋅m2). The cable tension limits used for solving the redundancy 
by the Improved Closed Form are [500,4000] (N). The employed trajectory is a circumference 
and the time evolution of 𝒑𝒑𝑀𝑀∗  is generated by the interpolation algorithm detailed in [9]. For case 
of study 1 the radius is 𝑟𝑟 = 2.5 (m) which is scaled proportionally for case of study 2. The 
maximum values for the EE linear speed, acceleration and jerk are, respectively 𝑣𝑣 = 12 (m/s), 
𝑎𝑎 = 27 (m/s2) and 𝑗𝑗 = 122 (m/s3), while for the second case these values are 𝑣𝑣 = 3 (m/s), 𝑎𝑎 =
6.9 (m/s2) and 𝑗𝑗 = 30.6 (m/s3), which correspond to the same angular velocity of the EE 
describing the circumference in both cases. Fig. 2 shows the desired trajectory and the real one 
obtained for both cases of study. The legends MSC and MC stand for the results obtained with the 
massless and mass cable dynamic models, respectively. Analogously, Fig. 3 shows the tracking 
error and Fig. 4 shows the cable tension distributions generated. 
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(a) Case 1 (b) Case 2 
Figure 2. Position tracking 

  

(a) Case 1 (b) Case 2 
Figure 3. Tracking error 

  

(a) Case 1 (b) Case 2 
Figure 4. Cable tension distribution 

 
In the case of study 1, it can be observed that using the controller designed considering a 

dynamic model with massless cables, yields to non-negligible differences between the expected 
and the real behavior of the robot, which is simulated by means of the proposed dynamic model 
when considering cable mass and elasticity. The tracking performance suffers a great deterioration 
as the maximum tracking error during the trajectory grows from less than 1 cm to more than 20 
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cm. Furthermore, the real cable force distribution presents an important change compared to the 
expected one, with considerable oscillations and values in the lower limit. On the other hand, we 
can see how that difference between the expected and the real behavior is considerably less in the 
case of study 2, as the robot size is 4 times smaller, therefore, cables total weight is reduced and 
therefore its effect on the robot dynamics, as expected. 
Conclusions 
In this work, a dynamic model for a planar CDPR with 3 DOF and n cables is proposed taking into 
account the effect of cables mass and elasticity. The system of partial differential equations 
corresponding to the cables motion is formulated, together with the boundary conditions imposed 
by the robot geometry and the ordinary differential equations that model the EE movement. A 
methodology based on the Garlekin discretization method is proposed to solve the system. Finally, 
the model is validated under a closed-loop position control strategy in the Cartesian space. The 
effect of the cables mass is assessed by comparing the results obtained under the same control 
strategy using the proposed model and a typical massless model. It can be concluded that the 
geometry of the robot is a key aspect to consider when deciding the level of complexity required 
for the CDPR model to be employed in model-based control strategies. 
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Abstract. Within the framework of the second-order theory, some classical stability problems, 
whose critical load corresponded to dynamic instability, were considered in the paper [1]. The 
main focus was on systems with just one lumped mass. This idealization, together with the 
assumption of negligible axial strain and the adoption of the second-order theory, reduced the 
considered systems to a single Lagrangian coordinate. In this way, static methods could be applied 
to derive the analytical expression of the stiffness coefficient and to study the dynamic stability, 
starting with a well-known example, namely, a cantilever beam with a lumped mass at the free end 
subjected to a follower load [2]. In this paper, a new lumped mass system is studied: a straight-
axis beam with constant cross-sectional area and stiffness, mass-free, hinged at one end, simply 
supported at an intermediate point (with a sliding plane parallel to the beam axis) and with the 
other end free, where a lumped mass is present and a follower force is applied. As in the examples 
shown in [1], in this example the first asymptote of the stiffness coefficient corresponds to the 
critical load, due to divergence at infinity. It is shown that this critical load is equal to the buckling 
load due to divergence of an auxiliary structure, which differs from the original one in that the 
concentrated mass is replaced by a constraint that blocks the corresponding Lagrangian coordinate.  
Introduction 
A classical stability problem involving a straight-axis Euler Bernoulli beam without damping, with 
a concentrated mass 𝑀𝑀, inflecting in a plane, subjected to follower loads is discussed. No 
allowance is made for axial strain, and displacements are assumed to be small. This idealization 
reduces the system to a single Lagrangian coordinate 𝑢𝑢. Therefore, the equation of motion due to 
an initial perturbation can be written in the form: 

𝑀𝑀�̈�𝑢 + 𝐾𝐾𝑢𝑢 = 0                                                                                                                            (1) 

where the stiffness coefficient 𝐾𝐾 takes second-order effects into account. It follows that stability 
depends on the sign of the stiffness coefficient. If it is positive, the motion is oscillatory and 
bounded. If it is negative, the motion is unbounded and non-oscillatory (divergence). Since the 
system possesses just one Lagrangian coordinate, unbounded oscillatory motion (flutter) cannot 
occur. In fact, a dynamical system that can be schematized with a lumped mass constrained by a 
linear spring and for which motion is governed by Eq. 1 is a conservative system with total energy 
ℰ (kinetic plus potential) equal to 

ℰ = 1
2

 𝑀𝑀�̇�𝑢2 + 1
2

 𝐾𝐾𝑢𝑢2                                                                                                                           (2) 
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which is conserved during the motion. The stability of such a system can therefore be studied 
statically by using Dirichlet’s theorem and then going on to determine the sign of 𝐾𝐾. If 𝐾𝐾 >  0 the 
potential energy in the initial undeformed configuration is minimum and the system is stable 
whereas if 𝐾𝐾 <  0 the potential energy in the initial undeformed configuration is maximum and 
the system is unstable. 

In [1] systems depicted in Fig. 1a, 1b and 1c have already been studied. Referring, for 
simplicity, to the system in Fig. 1a, the dependence of the stiffness coefficient on the applied load 
is nonlinear, due to the adopted mass modeling, so the change of sign of the stiffness coefficient 
may occur due to the presence of an asymptote. As the compressive load slowly increases from 
zero, the stiffness coefficient increases and consequently the vibration frequency increases. When 
the load tends to the critical value, the stiffness coefficient tends to infinity and the corresponding 
mass displacement tends to zero [2]. If the load is slightly higher than the critical load, the other 
branch of the function is involved and the stiffness coefficient is negative, corresponding to non-
oscillatory unbounded motion. 

This phenomenon is named divergence at infinity [3]. It is a dynamic instability, since it 
depends on the mass properties of the structure, and it can occur in systems that possess just one 
Lagrangian coordinate and are subjected to follower loads. In these cases, divergence at infinity 
can be studied by analyzing the sign of the stiffness coefficient, i.e., although divergence at infinity 
is a dynamic instability, a static method can be applied. The phenomenon of divergence at infinity 
also occurs for the structures in Fig. 1b and 1c. 

In this paper, a new lumped mass system is studied: a straight-axis beam with constant cross-
sectional area and stiffness, massless, hinged at one end, simply supported at an intermediate point 
at a distance 𝑎𝑎 from the hinge and with the other end free in which there is a lumped mass and a 
follower force is applied (Fig. 2a). In the case of uniformly distributed mass, the system was 
studied by Zorii and Chernukha [4] and later by Elishakoff and Hollkamp [5]. 

Intuitively, for 𝑎𝑎 → 0 one should find the results already obtained in [1], while for 𝑎𝑎 →  𝑙𝑙 one 
should find again the Eulerian critical load. This implies (as indeed already pointed out in [4] and 
later in [5]) that there should exist a transition value 𝑎𝑎 = 𝑎𝑎∗ such that when 𝑎𝑎 < 𝑎𝑎∗ there is 
instability by divergence at infinity, while for 𝑎𝑎 > 𝑎𝑎∗ there is Eulerian instability by divergence. 
Other lumped mass systems have been studied (Fig. 2b and 2c) but not discussed here for brevity 
of exposition.  

 
Fig. 1: Cantilever beam with lumped mass subject to (a) a follower force 𝑃𝑃 at the free end, (b) to 
a follower force 𝑃𝑃 applied at an intermediate point, and (c) to a uniformly distributed follower 

force 𝑝𝑝. 
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Fig. 2: Beam hinged at one end, free at the other end, simply supported at an intermediate point, 
with a mass concentrated at the free end and subject to (a) a follower force 𝑃𝑃 at the free end, (b) 

a conservative force 𝑄𝑄 and a follower force 𝑃𝑃 at the free end, and (c) a uniformly distributed 
follower force 𝑝𝑝.  

Applying a static method to detect divergence at infinity 
Consider the example in Fig. 2a, i.e., a straight-axis beam of length 𝑙𝑙, with a constant cross-section 
and moment of inertia 𝐽𝐽, with no distributed mass, hinged at one end, simply supported at an 
intermediate point at distance 𝑎𝑎 from the hinge and with the other end free in which there is a 
concentrated mass 𝑀𝑀 and a follower force 𝑃𝑃 is applied. The stiffness coefficient 𝐾𝐾 is determined 
by using the direct method, that is, neglecting the mass and applying a transverse static force 𝐹𝐹 
acting transversely to the beam at the free end such as to produce a unit displacement in the 
direction of 𝐹𝐹. 

Having chosen, as shown in Fig. 2a, the hinged end as the origin of the 𝑧𝑧-coordinate along the 
axis of the beam and denoting by 𝐸𝐸 the Young’s modulus, the deflected curve 𝑣𝑣(𝑧𝑧), can be 
obtained by prescribing 

𝐸𝐸𝐽𝐽𝑣𝑣𝑖𝑖𝐼𝐼𝐼𝐼 + 𝑃𝑃𝑣𝑣𝑖𝑖𝐼𝐼𝐼𝐼 = 0  with  𝑖𝑖 = 1  for  0 ≤ 𝑧𝑧 ≤ 𝑎𝑎,   𝑖𝑖 = 2   for   𝑎𝑎 ≤ 𝑧𝑧 ≤ 𝑙𝑙                             (3) 

with boundary conditions: 

𝑣𝑣1(0) = 0,      𝑣𝑣1𝐼𝐼𝐼𝐼(0) = 0,        𝑣𝑣2(𝑙𝑙) = 0,        𝑣𝑣2𝐼𝐼𝐼𝐼(𝑙𝑙) = 0                                                    (4) 

and with the continuity conditions: 

𝑣𝑣1(𝑎𝑎) = 𝑣𝑣2(𝑎𝑎) = 0,      𝑣𝑣1𝐼𝐼(𝑎𝑎) = 𝑣𝑣2𝐼𝐼(𝑎𝑎),      𝑣𝑣1𝐼𝐼𝐼𝐼(𝑎𝑎) = 𝑣𝑣2𝐼𝐼𝐼𝐼(𝑎𝑎).                                                (5) 

By solving the equation of the deflected curve, it is possible to determine 𝐾𝐾: 

𝐾𝐾 = −𝐸𝐸𝐽𝐽𝑣𝑣2𝐼𝐼𝐼𝐼𝐼𝐼(𝑙𝑙) = 𝑃𝑃𝑃𝑃 ∙ 𝑎𝑎 sin(𝛼𝛼𝑎𝑎)
𝛼𝛼𝑎𝑎2 sin(𝛼𝛼𝛼𝛼)−𝛼𝛼𝑎𝑎𝛼𝛼 sin(𝛼𝛼𝛼𝛼)+𝛼𝛼 sin(𝛼𝛼𝑎𝑎)∙[cos(𝛼𝛼𝑎𝑎) sin(𝛼𝛼𝛼𝛼)−cos(𝛼𝛼𝛼𝛼) sin(𝛼𝛼𝑎𝑎)]

             (6) 
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with 𝑃𝑃2 =  𝑃𝑃/𝐸𝐸𝐽𝐽. Assuming 𝑐𝑐 =  𝑎𝑎/𝑙𝑙, Fig. 3 shows the dimensionless stiffness coefficient 
𝐾𝐾𝑙𝑙3/𝐸𝐸𝐽𝐽 as a function of 𝑃𝑃𝑙𝑙 for different 𝑐𝑐. For 𝑐𝑐 =  0 a well-known case is found [2]. In this case, 
asymptotes occur as 

tan(𝑃𝑃𝑙𝑙) = 𝑃𝑃𝑙𝑙                                                                                                                                     (7) 

and the first asymptote (divergence at infinity) corresponds to 𝐾𝐾𝑙𝑙3 𝐸𝐸𝐽𝐽⁄ = 20.1934. If 𝑐𝑐 =  1 
another well-known case is obtained: the pinned-pinned Euler rod to which corresponds the 
Eulerian critical load 𝐾𝐾𝑙𝑙3 𝐸𝐸𝐽𝐽⁄ = 9.8696. Analyzing the same graph as 𝑐𝑐 increases from zero to 
one, we move from instability by divergence at infinity to Eulerian instability by divergence. Such 
a transition occurs when 𝑐𝑐 =  0.5. 
 
Table 1: Critical loads for different values of 𝑐𝑐 for (a) the real beam, (b) the auxiliary beam, and 

(c) the real beam without lumped mass. 

𝑐𝑐 =
𝑎𝑎
𝑙𝑙
 

  

 

0 20.19342097 20.19342097 ∞ 
0.1 23.22477944 23.22477944 986.96044011 
0.2 27.05331941 27.05331941 246.74011003 
0.3 31.75504645 31.75504645 109.66227112 
0.4 36.79994680 36.79994680 61.68502751 
0.5 39.47841374 39.47841760 39.47841760 
0.6 27.41556778 36.79994680 27.41556778 
0.7 20.14204980 31.75504645 20.14204980 
0.8 15.42125688 27.05331941 15.42125688 
0.9 12.18469679 23.22477944 12.18469679 
1 9.86960440 20.19342097 9.86960440 

 
Comparing the critical load by divergence at infinity with the Eulerian critical load by 

divergence of an auxiliary structure. Consider 𝑐𝑐 = 0. As it is well known, Eq. 7 coincides with the 
equation that determines the Euler buckling load of a clamped-pinned beam. This coincidence is 
due to the fact that when the critical load is approached by slowly increasing the applied follower 
load, the stiffness coefficient tends to infinity (Fig. 3a) and the displacement of the free end tends 
to zero. This fact happens for all values of 𝑐𝑐 between 0 and 0.5, that is, when there is instability 
by divergence at infinity. A general hypothesis already highlighted in [1] is confirmed: when 
instability is due to divergence at infinity, if one considers an auxiliary structure, different from 
the original one in that the lumped mass is replaced by a constraint that blocks the corresponding 
Lagrangian coordinate, and if the critical load of this new structure is due to divergence, that is, it 
does not depend on the mass distribution, then it coincides with the critical load by divergence at 
infinity of the original structure. It is then noticed that for 𝑐𝑐 ≥  0.5 the critical load coincides with 
the Eulerian critical load of the massless beam. This circumstance is also noticed for the beams in 
Fig. 2b and 2c. Therefore, it can be assumed that, in general, if one wants to determine the dynamic 
critical load of a linear elastic structure subjected to follower forces in the small displacements 
regime, it suffices to determine the minimum critical load between the one determined with the 
auxiliary structure first introduced in Fig. 4a and the one determined statically (looking for 
equilibrium configurations other than the trivial) starting from the assigned structure in Fig. 4b. 
Table 1 shows the values of the critical loads thus deduced. It can be seen that for 0 ≤ 𝑐𝑐 ≤ 0.5 the 

b 

c 

a 
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correct critical loads are those of the auxiliary structure while for 0 ≤ 𝑐𝑐 ≤ 1  the correct critical 
loads are those derived statically from the actual structure. 

 

 
 
Fig. 3: Dimensionless stiffness coefficient 𝐾𝐾𝑙𝑙3/𝐸𝐸𝐽𝐽 versus 𝑃𝑃𝑙𝑙 when (a) 𝑐𝑐 =  0, (b) 𝑐𝑐 =  0.25, (c) 

𝑐𝑐 =  0.5, (d) 𝑐𝑐 =  0.75, (e) 𝑐𝑐 =  1. 
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Fig. 4: (a) Auxiliary structure, (b) real beam without lumped mass. 

 
Conclusions 
Within the second order theory, a static method was detected to determine the critical load due to 
divergence at infinity in systems subjected to follower loads where the mass is modelled just as a 
lumped mass. The critical load is determined statically by taking the minimum value between the 
Eulerian critical load of an auxiliary structure and the Eulerian critical load of the given structure. 
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Abstract. This study presents an original inelastic beam-like model for the simulation of the 
nonlinear dynamic behaviour of three-dimensional buildings subjected to earthquake loadings. 
The proposed model is defined as a step-wise shear only cantilever beam, whose segments have 
the same mechanical properties of the corresponding inter-storeys of the building. The inter-storey 
constitutive laws are calibrated by means of the results of a static nonlinear analysis performed on 
the 3D FEM model of the building. An inverse nonlinear static identification procedure allows 
obtaining an inelastic beam-like model equivalent to the more demanding 3D FEM model, related 
to a specific direction and under a precise distribution of horizontal loadings. Dynamic nonlinear 
analyses performed on this simplified model allow a drastic reduction of the required 
computational effort and time with respect to the more demanding 3D FEM model. The reliability 
of the proposed beam-like model is validated through numerical applications on an irregular multi-
storey RC frame representative of residential buildings in Catania designed to resist only gravity 
loadings.  
Introduction 
The simulation of the seismic response of multi-storey buildings is nowadays mostly performed 
by means of 3D FEM models and requires a relevant computational effort. In some contexts, such 
as preliminary design or seismic vulnerability assessment at urban scale, simplified models are 
anyway more desirable since they allow reducing the required computational burden. 

Several MDOF simplified models have been presented in the scientific literature for the 
evaluation of both linear and nonlinear dynamic response of multi-storey buildings and particular 
interest has been devoted to beam-like equivalent models. Most of these studies deal with linear-
elastic models [1, 2, 3, 4, 5, 6, 7].  

Since the response of buildings subjected to seismic loads is predominantly inelastic, some 
researchers have proposed simplified inelastic equivalent MDOF models. In the context of beam-
like models Kuang and Huang [8] modelled a wall-frame structure with uniform stiffness as an 
equivalent continuum system consisting of a combination of a flexural cantilever and a shear 
cantilever. In the latter case, a bilinear hysteretic model is used for the material properties of 
flexural and shear cantilevers. Ragni et al. [9] proposed a displacement-based method, particularly 
devoted to the seismic design of steel frames equipped with dissipative braces, by using an 
equivalent continuous beam-like model where flexural deformability and shear deformability are 
related to columns and diagonals of the bracing system respectively.  

In the present paper an original inelastic beam-like model endowed with shear deformability 
only is presented. A cantilever beam with along axis multi-step discontinuous variations of the 
cross section, each uniform beam segment representing a building inter-storey, is considered. The 
calibration of the nonlinear shear-displacement relationship of each uniform beam is obtained by 
means of a pushover analysis performed, along a considered direction, on a FEM model of the 
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analysed building. The displacement time history at each storey, as well as the inter-storey drifts, 
can be then obtained by means of the equivalent beam model. The proposed beam-like model has 
a number of degrees of freedom equal to the number of floors and therefore allows a drastic 
reduction of the computational burden with respect to the full FEM model. Therefore, it could be 
very useful in the seismic vulnerability assessments procedures that require several nonlinear 
dynamic analyses such as those expressed in terms of probability of failure by means of fragility 
curves. The numerical applications here reported refer to a reinforced concrete case study and 
show the comparison between the response time histories to an assigned seismic accelerogram of 
both a nonlinear FEM model and the proposed equivalent beam allowing highlighting the good 
accuracy of the described procedure.  
The proposed inelastic beam-like model 
In this section a new shear-only cantilever beam-like model, suitable to simulate the seismic 
inelastic response of a 3D framed building, is presented. The beam properties allow representing 
the inhomogeneous and the inelastic properties of the building along its height, assumed variable 
from one floor to the other. The mass of the beam-like model is assumed to be consistent with the 
actual mass distribution of the 3D structural model, and can be concentrated at the floor levels as 
well as, when required, partially distributed along the height. 

Nonlinear constitutive laws are assumed to represent the inter-storey inelastic behaviour of the 
building. The beam-like model is calibrated considering a pushover analysis on the full 3D FEM 
model to reproduce the nonlinear behaviour of the three-dimensional building along a specific 
loading direction including torsional effects. It is worth highlighting that the inelastic beam model 
will exhibit a constitutive law that rigorously depends not only on the load direction but also on 
the adopted distribution of forces. Different load distributions have been tested in the numerical 
applications but only one of them has been reported in the following for the sake of brevity.  

The beam element is divided into a number Nf sub-beam shear deformable elements whose 
length hi is equal to the inter-storey height. The characterisation of the inelastic response of each 
i-th uniform beam sub-element can be defined by an appropriate uniaxial inelastic constitutive law, 
in terms of shear force Ti and inter-storey drift ∆si. Fig. 1.a and 1.b summarise the equivalent shear 
beam-like model approach described so far. 

The equivalence between the considered building and the corresponding beam-like model is 
enforced by calibrating the latter to predict the same pushover curve obtained by performing 
nonlinear static analysis on the 3D FEM model in a specific direction and under a precise 
distribution of horizontal loadings. Therefore, the tangent shear stiffness of each inter-storey beam 
segment (which provides the same inter-storey displacements obtained by the 3D FEM model) is 
calculated according to a step-by-step procedure. In particular, the inter-storey shear force is equal 
to the sum of the shear forces of the structural vertical elements (columns and walls) of the 
considered inter-storey, while the displacement is equal to the difference between the mean values 
of the displacements of the nodes situated at the top and at the bottom of the considered inter-
storey in the direction of loading. These values, collected for each step of the pushover analysis, 
allow drawing the nonlinear “inter-storey capacity curve” and relate the shear force to the 
corresponding relative displacement.  
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Figure 1 - a) Discretization of the equivalent beam-like model with nonlinear constitutive law of 

the i-th sub-element and b) the deflection of the equivalent beam under the considered load 
distribution 

 
In this study the inter-storey constitutive laws have been defined according to bilinear energy-

equivalent elasto-plastic models. In the numerical applications, reported in the next section, elasto-
plastic behaviour with kinematic hardening has been adopted. 

It is worth noting that the equivalent multi-degree-of-freedom beam-like model, as reported in 
Fig. 1, leads to the evaluation of all the floor displacements allowing modelling global as well as 
partial failure mechanisms. In Fig. 1, in each i-th inter-storey im  denotes the distributed mass, iM  
the lumped mass, yT  and uT  the yielding and ultimate shear force, respectively, and ys∆  and us∆  
the yielding and ultimate inter-storey drifts, respectively. 

The results reported in the following section show how the proposed inelastic beam-like model 
can be able to reproduce the nonlinear static and dynamic behaviour of an entire building with 
sufficient accuracy drastically reducing the required computational time.  
Numerical application 
In this section the proposed inelastic beam-like model is applied to a multi-storey RC frame 
representative of residential buildings designed to resist only gravity loads. A detailed description 
of the building can be found in [10].  

After being opportunely calibrated, as described in the previous paragraph, the proposed multi-
stepped beam was adopted for simulating the static and dynamic inelastic behaviour of the building 
and the results, in terms of static and seismic response, were compared to those obtained by means 
of the conventional 3D FEM model performed using the software SAP2000 v.23. 

The capacity curves depend on the applied distribution of forces, therefore in [10] different 
loading patterns have been taken into account in order to investigate the corresponding differences 
in predicting the inelastic responses. In the following, for the sake of brevity, only the force 
distribution associated with the fundamental natural mode is used. 

The forces in the FEM and in the beam-like models are applied to the center of gravity (centroid) 
of each floor of the building, separately in the x and y directions. The values of the applied forces 
from the bottom to the top floor are assumed as follows: [0.1712 0.3654 0.5809 0.8087 1.0000 
0.9502] in x direction; [0.1934 0.3828 0.5847 0.8114 1.0000 0.9466] in y direction. 

The results of the nonlinear static analysis performed on the FEM model have been obtained in 
terms of inter-storey capacity curves in both x and y directions. The obtained inter-storey capacity 
curves have been transformed into equivalent bilinear elasto-plastic force-displacement laws with 
positive kinematic hardening. The equivalence has been obtained by imposing the equality 
between the areas below the nonlinear and bilinear capacity curves and assuming as initial inter-
storey stiffness the tangent to the origin of the inter-storey capacity curve. 

The stiffness values of each beam segment, assumed as initial stiffness in the successive 
nonlinear analyses, the inelastic limits and the hardening parameters for each beam segment are 
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reported in Table 1. In Fig. 2 only the inter-storey inelastic equivalent force-displacement laws in 
x direction are reported, analogous curves have been obtained in y direction. 

Once each inter-storey nonlinear behaviour has been defined, it is possible to perform nonlinear 
pushover analyses by making use of the beam-like model. 

 
Table 1 - Initial stiffness, inelastic limits and hardening parameters for each beam segment 

Beam 
segment 

Height 
h [m] 

Initial stiffness 
R [N/m] ∙ 10^8 

Yielding force 
Fy [N] ∙ 10^5 

Post yielding stiffness 
RT [N/m] ∙ 10^6 

x y x y x y 
1 4.30 2.532 2.664 12.907 11.748 2.757 8.067 
2 3.30 2.033 2.286 11.569 9.820 4.390 10.653 
3 3.30 1.646 1.853 10.253 8.705 3.796 8.708 
4 3.30 1.263 1.358 8.727 7.565 2.658 7.003 
5 3.30 1.086 1.160 6.550 5.906 1.372 5.181 
6 3.30 1.008 1.084 2.953 2.679 21.823 21.300 

 

 
Figure 2 - Inter-storey capacity curves (CapCurve in black), the corresponding Back-Bone 

curves (red) and the extended Back-Bone without limits of the ductile behaviour (BackBoneEx 
dashed in red) in x direction 

 
The nonlinear pushover analyses of the equivalent beam-like model consider the same 

horizontal load distribution adopted for the FEM model but refer to simplified inter-storey 
constitutive laws. The forces are applied on the beam axis at the floor level and are proportionally 
increased until conventional values of 0.25 m or 0.2 m top displacements are obtained, respectively 
in x and y directions.  

For each considered direction, the capacity curves representative of the global behaviour of the 
building have been retrieved by considering the above-described beam-like models and expressed 
in terms of base shear force F and top floor displacement U. In Fig. 3.a-b the comparisons between 
the global capacity curves, obtained by means of the FEM and the beam-like models in x and y 
directions, are reported showing a satisfactory agreement.  
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a) b) 
Figure 3 - Capacity curves in a) x and b) y direction 

In the following the beam-like model is adopted to predict the nonlinear dynamic response of 
the considered building by means of nonlinear dynamic analyses. Aiming to simulate 
representative seismic inputs that may occur on the Italian peninsula, nonlinear dynamic analyses 
were performed by considering the real seismic records in the x and y directions that occurred in 
L’Aquila (2009). 

The reliability of the nonlinear dynamic response of the beam-like model was evaluated by 
comparing the time histories of the displacements of the centre of gravity at each floor in the 
considered direction. In the FEM model, the displacements of the centre of gravity have been 
calculated as the mean values of the four corner nodes of the same floor. Fig. 4 reports the time 
histories, expressed in terms of floor level displacements Ui with i=1, …,6, in x and y directions 
compared to the results of the FEM model, for L’Aquila earthquake. 

 

    
a)                                                                           b)  

Figure 4 - Dynamic response to L’Aquila earthquake in a) x and b) y directions obtained by 
means of the beam-like (red curve) and FEM (black curve) models 

Due to the planar irregularity of the building the results are slightly different in x and y direction, 
anyway it can be seen that the proposed inelastic beam model is able to reproduce the nonlinear 
dynamic behaviour of the entire building with a good accuracy. The proposed beam-like model 
allows reducing drastically the computational burden, in fact, the computational time required by 
the beam-like model for each dynamic nonlinear analysis is about 60 times lower than the one 
required by a FEM model. 
Conclusions 
An original inhomogeneous and inelastic beam-like model suitable for the evaluation of the 
nonlinear dynamic response of multi-storey buildings subjected to seismic excitations is here 
presented. The proposed model is conceived to be representative of the nonlinear behaviour of the 
building when subjected to a prescribed distribution of horizontal forces in a specific direction. 
The beam-like model is calibrated on the results of pushover analyses performed on a FEM model 
of the entire building when subjected to an assigned horizontal load distribution. The equivalent 
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beam-like model allows reproducing the nonlinear dynamic response of the building with a drastic 
reduction of the computational burden compared to the full FEM model. The model has been 
validated with reference to a 6-storey reinforced concrete structure, representative of residential 
buildings designed to resist only gravity loads. The results obtained for the beam-like model, in 
terms of response time histories to a recorded earthquake, have been compared to the 
corresponding full FEM model, showing a very good agreement. Considering its drastically 
reduced computation effort, the use of the presented beam-like model could be particularly 
advantageous for simplified seismic vulnerability approaches at urban scale and in the seismic 
assessment analyses expressed in terms of statistical probability of failure such as the fragility 
curves. 
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Abstract. Within the general framework of frequency-domain topology optimization of Multi 
Input-Multi Output (MI-MO) dynamic systems, suitable norms of the input/output transfer matrix 
are introduced as possible merit functions to be minimized. Among them, the by now classical 
𝐻𝐻∞-norm (i.e. the supremum of the maximum singular value over the whole frequency range), and 
the so-called nuclear norm (i.e. the sum of all the positive singular values are considered. Heuristic 
motivations are given that suggest which norm should one choose according to the practical 
objective to be pursued alongside a few numerical examples on topology optimization of 2D 
linear-elastic multiload SI-SO and MI-MO dynamic systems.   
Introduction and Motivation 
Topology optimization of dynamical systems presents a few peculiarities among which the most 
important ones may be listed as follows: 
• Time versus frequency domain approaches. This preliminary choice gives rise to two different 

families of solving approaches that do not share much but, possibly but not certainly, the final 
result. As a matter of fact, time domain approaches lead to optimal designs that depend 
strongly on the specific choice of the time-dependent loading functions [1]. On the other side, 
frequency domain methods work on the frequency response function that is expected to enjoy 
a few desirable features, at least in the frequency range of interest. 

• Focusing the attention on frequency-domain approaches, [2] minimizes the dynamic 
compliance of the system via an incremental frequency approach that operates at low or high 
value of the excitation frequency whereas [3] sets the problem as a minimum 𝐻𝐻∞-norm of the 
frequency response function, in a sense broadening to open-loop systems the well-established 
𝐻𝐻∞-norm-based active control strategy in a closed-loop feedback framework.  

From a practical point of view, (for SI-SO systems) the 𝐻𝐻∞-norm of the frequency response 
function is the peak of the function itself and is therefore crystal clear the motivation behind the 
adoption of such a design approach. However, looking at the methodology from a more algebraic 
perspective is likely to shed new light onto the method itself and opens the way to a few potentially 
useful extensions that are in fact the object of this contribution. The idea is then to define a novel 
goal function that depends on a few singular values (and not only on the first one as is the case 
when the minimization of the 𝐻𝐻∞-norm is pursued). Mutatis mutandis, there are similarities with 
those eigenvalue optimization strategies that, at least to overcome the singularity of the min-max 
eigenvalue problem, introduce a goal function that depends on a few eigenvalues, see e.g. [4]. By 
so doing, eigenvalue crossing in the design space is no longer an issue, loss of regularity does not 
show up and standard gradient-based approaches are shown to work properly. 

Having in mind a MI-MO rectangular frequency-response matrix, the usefulness of its Singular 
Value Decomposition (SVD) for a full understanding of the dynamic features of the system is 
highlighted next. The physical meaning of the singular values and associated left and right singular 
vectors is described along with the algebraic relation between singular values and 𝐻𝐻∞-norm. 
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Reference is made to [5, 6] for a comprehensive exposition of such concepts from an algebraic as 
well computational point of view.  
The Singular Value Decomposition 
To start off, a formal definition of SVD of a rectangular, possibly non-symmetric, matrix is given 
next. 

Singular Value Decomposition. Let 𝐺𝐺 be an 𝑚𝑚 by 𝑛𝑛 (possibly complex valued) matrix. Two 
sets of singular vectors exist such that: 

• 𝑛𝑛 right singular vectors 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 are orthogonal to each other in ℝ𝑛𝑛; 
• 𝑚𝑚 left singular vectors 𝑢𝑢1, … ,𝑢𝑢𝑚𝑚 are orthogonal to each other in ℝ𝑚𝑚; 
• left and right singular vectors are connected by an “eigen-like” relation 𝐴𝐴𝑣𝑣 = σ𝑢𝑢 that 

may be written component wise as 
 
   𝐺𝐺𝑣𝑣1 = σ𝑢𝑢1, … ,𝐺𝐺𝑣𝑣𝑟𝑟 = σ𝑟𝑟;    𝐺𝐺𝑣𝑣𝑟𝑟+1 = 0, … ,𝐺𝐺𝑣𝑣𝑛𝑛 = 0,                                              (1) 
 
where 𝑟𝑟 is the rank of 𝐺𝐺 and one may show that there exist 𝑟𝑟 non-negative singular 
values that are usually cast in descending order: σ1 ≤ σ2 ≤ ⋯ ≤ σ𝑟𝑟 . 
 

The singular value decomposition of 𝐺𝐺 finally reads: 
 
   𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇.                   (2) 
 
More explicitly, the matrix 𝐺𝐺 may be written as a finite sum of rank-1 matrices as: 
 
   𝐺𝐺 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 = σ1𝑢𝑢1𝑣𝑣1𝑇𝑇 + ⋯+ σ𝑟𝑟𝑢𝑢𝑟𝑟𝑣𝑣𝑟𝑟𝑇𝑇 .               (3) 
 
The following two propositions show a few reasons why the first singular values (and not only the 
largest one) are worth being investigated. 

Theorem of Eckart-Young. Let 𝐺𝐺𝑘𝑘 = σ1𝑢𝑢1𝑣𝑣1𝑇𝑇 + ⋯σ𝑘𝑘𝑢𝑢𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇 be the rank-𝑘𝑘 SVD approximant to 
𝐺𝐺. Then 𝐺𝐺𝑘𝑘 is the overall best rank-𝑘𝑘 approximant to 𝐺𝐺, i.e. 

 
   �|𝐺𝐺 − 𝐺𝐺𝑘𝑘|� ≤ �|𝐺𝐺 − 𝐵𝐵|�  ∀𝐵𝐵 with rank 𝑘𝑘.                                                                          (4) 

 
On the properties and computation of the second-largest and further singular values. The 

solution of the Problem: 
 
   𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥

�|𝐺𝐺𝑥𝑥|�
�|𝑥𝑥|�

 under the condition 𝑣𝑣1𝑇𝑇𝑚𝑚 = 0,             (5) 

 
is σ2 at 𝑚𝑚 = 𝑣𝑣2.  

Matrix Norms, Singular Values and 𝑯𝑯∞-Norm of a Transfer Function Matrix 
Let 𝑝𝑝 be the design variable vector (that contains the element densities in a topology optimization 
framework) and 𝐺𝐺(𝑖𝑖ω,𝑝𝑝) the frequency response matrix function. For the sake of introducing a 
few key concepts in algebra of non-square and non-symmetric matrices, it is convenient to fix both 
the frequency ω and the design variable vector 𝑝𝑝, say ω = ω∗ and 𝑝𝑝 = 𝑝𝑝∗,  so that 𝐺𝐺∗ = 𝐺𝐺(𝑖𝑖ω∗, 𝑝𝑝∗) 
is any complex-valued rectangular matrix.  

The 2-norm of a matrix 𝐺𝐺∗. The “largest growth factor” concept [5] appears to be the most 
natural to introduce the norm of a transfer function matrix that governs the input/output relation of 
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a dynamical systems. In a more analytic format we may also refer to matrix norms induced by 
underlying (and previously defined) vector norms. One may write 

 
   �|𝐺𝐺∗|� = 𝑠𝑠𝑢𝑢𝑝𝑝

𝑣𝑣≠0

�|𝐺𝐺∗𝑣𝑣|�
�|𝑣𝑣|�

 ,                                                                                                                  (6) 

 
where each vector norm at the right hand side induces a corresponding matrix norm at the left hand 
side. If the 2-norm is used, one may show that 
 
   �|𝐺𝐺∗|�

2
= σ1,                                                                                                                            (7) 

 
i.e. the 2-norm of a matrix is its largest singular value. If now the dependence of 𝐺𝐺∗ on the 
frequency 𝜔𝜔 is recovered, one may quickly realize that the 𝐻𝐻∞-norm of a frequency-response 
matrix (that from an engineering point of view is the maximum amplification factor over the whole 
frequency axis, i.e. the “largest growth factor”) is defined as the supremum of the first singular 
value of 𝐺𝐺(𝑖𝑖ω,𝑝𝑝∗) with respect to the whole frequency axis, i.e. 
 
   �|𝐺𝐺(𝑖𝑖ω,𝑝𝑝∗)|�

∞
= 𝑠𝑠𝑢𝑢𝑝𝑝

ω∈(0,∞)
σ1(ω).                                                                                              (8) 

 
It is interesting to note that the 𝐻𝐻∞-norm of a matrix transfer function is in fact a 2-norm maximized 
over the frequency axis. From a numerical point of view, computing the 𝐻𝐻∞-norm is quite a hard 
task as is the evaluation of the frequency at which the norm itself is attained. Alongside the 𝐻𝐻∞-
norm that depends exclusively on the largest (first) singular value, two more norms are 
theoretically suitable as goal functions when optimizing the topology of dynamical systems, i.e. 
the Frobenius norm and the Nuclear (the one adopted herein) norm that are respectively defined 
as: 
 
   �|𝐺𝐺|�

𝐹𝐹
= �σ12 + σ22 + ⋯+ σ𝑟𝑟2,    �|𝐺𝐺|�

𝑁𝑁
= σ1 + σ2 + ⋯+ σ𝑟𝑟 .           (9) 

 
Numerical Studies 
Input data. As for the geometry of the problems investigated herein reference is made to Fig. 1 that 
also shows loads and constraints. By now standard aspects of topology optimization such as the 
SIMP idealization to handle intermediate materials, the nonlocal filters that are adopted to avoid 
checkerboarding, the finite elements that are used to derive the discrete version of the problem, 
not to mention the numerical scheme that is used to solve the optimization problem may be found 
in [7] among others and are not explicitly described herein. 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 405-410  https://doi.org/10.21741/9781644902431-66 

 

 
408 

 
Figure 1 – The two-loaded beam: overall representation and symmetric problem 

The problems under investigation. Three different optimization problems are considered and 
solved that are best defined referring to the so-called descriptor state-space formulation that reads: 

 

   �𝐸𝐸�̇�𝑚  =  𝐴𝐴𝑚𝑚 +  𝐵𝐵 𝑢𝑢
𝑦𝑦 =  𝐶𝐶𝑚𝑚 +  𝐷𝐷 𝑢𝑢 ,                                                                                                             (10) 

 

where Eq. 10.1 is in fact the equation of motion in which 𝑚𝑚 is the state vector that piles nodal 
displacements and velocities, 𝑢𝑢 is the load vector, 𝐸𝐸 is the descriptor (mass) matrix. 𝐴𝐴 is the 
structural matrix that depends on the stiffness and damping matrices, and 𝐵𝐵 is a topological matrix 
that distributes the loads to the degrees-of-freedom. Equation 10.2 is classically referred to as 
output equation and in fact 𝑦𝑦 is the output vector that encompasses all the quantities that the 
optimization process should explicitly take care of (i.e. minimize). What is actually minimized is 
a suitable norm of the transfer-function matrix 𝐺𝐺(𝑠𝑠) that defines the Laplace-domain input/output 
relation 𝑌𝑌(𝑠𝑠) = 𝐺𝐺(𝑠𝑠)𝑈𝑈(𝑠𝑠) that may be shown to be equivalent to Eq. 10 and is graphically 
interpreted by the block in Fig. 2.  

 
Figure 2 – Input-output Laplace-domain version of the system dynamics. 

Given the system dynamics of Eq. 10.1, the specific optimization problem is fully defined by: 

− The choice of the output vector 𝑦𝑦 through a proper selection of the matrices 𝐶𝐶 and 𝐷𝐷. At 
this regard both single-output and multi-output systems may inherently be handled by the 
proposed formulation. It should be noted that both single-output and multi-output cases 
give rise to a scalar minimization problem since a suitable norm of the resulting transfer 
function is the actual goal function that is minimized. Alternative approaches of vector 
minimization in a Pareto framework are left to future investigations.  

− The selection of a proper matrix norm that is expected to address from a system-theoretic 
point of view the engineering goals that are expected to be reached by the designer. 

Given this general scenario, the following optimization problems are considered. 
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1. Dynamic compliance 𝐻𝐻∞-norm minimization (SI-SO). The two loads 𝑃𝑃(𝑡𝑡) and 𝑄𝑄(𝑡𝑡) are 
supposed to belong to the same load combination (Single-Input), whereas the output is the 
so-called dynamic compliance [3]; 

2. The two loads 𝑃𝑃(𝑡𝑡),  𝑄𝑄(𝑡𝑡) and the dual displacements 𝑢𝑢𝑣𝑣(𝐴𝐴), 𝑢𝑢𝑣𝑣(𝐵𝐵) define a 2-inputs, 2-
outputs (MI-MO) transfer function of which the 𝐻𝐻∞-norm is minimized; 

3. Same as previous Problem 2 (MI-MO) but for the choice of the system norm to be 
minimized. A weighted version of the nuclear norm is chosen, i.e. 𝑚𝑚1𝜎𝜎1 + 𝑚𝑚2𝜎𝜎2. 

Main results are briefly showcased next. 

Problem 1: dynamic compliance 𝐻𝐻∞-norm minimization. Figure 3 shows the optimal topology 
that solves the classical dynamic compliance problem along with the maximum-singular-value vs 
frequency curve (that for SI-SO systems is the same as the amplitude of the frequency response). 
The value of the goal function at convergence is 7.36 dB that is attained for ω = 0.28 rad/s. 
 

 
Figure 3 – Design case 1 – Optimal topology and maximum singular value vs frequency 

 
Problem 2: 𝐻𝐻∞-norm minimization of the 2×2 transfer function. Figure 4 shows the optimal 

topology that solves the MI-MO min 𝐻𝐻∞-norm problem along with the maximum-singular-value 
vs frequency curve. The value of the goal function at convergence is 15.52 dB that is attained for 
𝜔𝜔 = 0.048 rad/s. 

 
Figure 4 – Design case 2 – Optimal topology and maximum singular value 

Problem 3: Nuclear-norm minimization of the 2×2 transfer function. Figure 5 shows the optimal 
topology that solves the MI-MO min 𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑟𝑟 −norm problem along with the maximum-singular-
value vs frequency curve. The value of the goal function at convergence is 53.87 dB that is attained 
for 𝜔𝜔 = 0.028 rad/s. 
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Figure 5 – Design case 3 – Optimal topology and maximum singular value 
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Abstract. The governing equation of the dynamics of the planar inextensible Euler-Bernoulli arch 
with multiple damage is tackled in this study by employing the distributional approach. Precisely, 
the presence of impairments is modelled via cracks that can be effectively embedded in the 
governing equation by means of the Dirac’s delta generalised functions. The governing equation 
is defined over a unique integration domain. The proposed integration strategy leads to closed form 
expressions of the displacement mode shapes maintaining the size of the problem as that of the 
undamaged arch regardless the number of cracks located along the span. The latter advantage 
avoids the enforcement of continuity conditions at the discontinuous sections. The proposed 
solution extends the integration procedure proposed in the static context to the vibration analysis 
and allows determining the modal characteristics of damaged circular arches. The versatility of the 
obtained closed form solution allows a straightforward execution of parametric analyses and is 
here adopted to evaluate the sensitivity of the eigenproperties of the multi-cracked circular arch to 
the change of meaningful geometric and mechanical parameters. 
Introduction 
The static and dynamic behaviour of the arches was studied by the researchers both in the linear 
and nonlinear context by means of different approaches over the years, such as limit analysis, 
Finite Element analysis and the Discrete Macro-Element Model. Arches may present circular 
shape [1] or a variable curvature [2, 3], and are often studied considering only the flexural 
deformability, neglecting both shear and axial effects. With regard to damaged arches, the presence 
of impairments is usually tackled with concentrated models [4]. The concentrated damage can be 
modelled according to various strategies, and in this paper the well-known equivalent spring model 
[5] is adopted. This leads to the insertion of a rotational spring with constant stiffness in each 
cracked section, allowing dealing with linear governing equations.  

Many studies analysed the in-plane or out-of-plane vibrations of damaged circular arches [6, 7, 
8] . The presence of concentrated cracks along the axis of straight or curved beams requires the 
subdivision of the element into uniform sub-elements connected by a rotational spring. Therefore, 
it is necessary to enforce continuity conditions or, alternatively, the assemblage of finite elements, 
thus increasing the computational burden. Alternatively, several authors proposed new approaches 
which require solely the enforcement of the external boundary conditions irrespectively of the 
number of internal cracks. These solutions are available for both the static and dynamic behaviour 
of multi-cracked straight beams [9, 10], whilst solutions for curved beams are limited to the static 
problem only [11]. 

In this paper, a free vibration six order differential governing equation of a multi-cracked 
circular inextensible Euler-Bernoulli arch is presented, and the associated closed form solution of 
the vibration modes is derived by means of the application of the Laplace transform. It is worth 
highlighting that the equation of motion is defined over a unique integration domain, even if in 
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presence of multiple cracks, and the evaluation of the natural frequencies requires the enforcement 
of six boundary conditions only, as in the continuous arch case. The proposed solution is 
numerically validated by comparing the natural frequencies and the mode shapes of a multi-
cracked circular arch with the results obtained by means of a finite element model in which the 
cracks are modeled by means of equivalent internal rotational springs. Some parametric studies 
referred to multi-cracked Euler arches with variable intensity or position of the concentrated crack 
are also presented and discussed.  
Closed-form integration of the free vibration equation of the multi-cracked circular arch 
The differential equation governing the in plane free vibrations of a Euler-Bernoulli circular arch 
with radius r  in presence of n  concentrated cracks, is presented in this section, and the relevant 
closed form solution in terms of mode shapes is obtained. 

The integration domain is represented by [ ]1 2,o oϑ ϑ ϑ∈ , being ϑ  a zenithal angular coordinate, 
and 1 2,o oϑ ϑ  the left and right end cross sections, respectively. The kinematics of the arch involves 
the following components depending on the angular coordinateϑ  and the time t : the radial 

( ),ru tϑ  and tangential ( ),tu tϑ  displacements, as well as the rotation of the centroidal axis ( ),tϕ ϑ
. For the case of inextensible Euler-Bernoulli arch model, the following kinematic constraints 
among the bending curvature ( , )tχ ϑ , ( , )tϕ ϑ , ( , )ru tϑ  and ( , )tu tϑ  hold:  

( ) 1 1, ( , ) , ( , ) ( , ) , ( , ) ( , ) ( , )I I II
t r t tt t u t u t t u t u t

r r
χ ϑ ϕ ϑ ϑ ϑ ϕ ϑ ϑ ϑ = = = − +   (1) 

where the Roman numbers superscripts indicate derivatives with respect to ϑ . Considering an 
Euler-Bernoulli circular arch characterized by n double-edge concentrated cracks, assumed to be 
always open, at cross sections , 1,...,i i nϑ = , its free vibration motion is ruled by the following sixth 
order governing equation, expressed in terms of tangential displacement ( , )tu tϑ : 

( )
6 4 2 4 2 2 3

6 4 2 2 2 3
1

2 1 ( , ) ( ) 0
n

t i i
ir

mr u t r t
EJ t

ϑ ϕ δ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑ=

    ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − + ∆ + − =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∑  (2) 

where the rotary inertia has been neglected in the dynamic equilibrium and denoting with m  
the distributed mass. The presence of n  concentrated cracks implies rotation discontinuities 

( )i tϕ∆  at the cracked cross-sections , 1,...,i i nϑ = . These singularities are taken into account in the 
summation in Eq. 2, characterized by sequences of n  occurrences of first and third derivatives of 
Dirac’s deltas. This strategy allows preserving the definition of the governing differential equation 
over the entire domain [ ]1 2,o oϑ ϑ ϑ∈  as already proposed in the static case [11]. The governing free 
vibration equation provided by Eq. 2 can be reformulated as follows: 

( ) ( ) ( )
6 4 2 2 3

4
6 4 2 2 3

1
2 1 ( )

n
I III

t i t i t i i
i

µ φ ϑ λ φ ϑ φ ϑ δ ϑ ϑ
ϑ ϑ ϑ ϑ ϑ ϑ

− −

=

    ∂ ∂ ∂ ∂ ∂ ∂ + + + − = + + −     ∂ ∂ ∂ ∂ ∂ ∂    
∑

 (3) 

where the frequency parameter 4 2 4
rmr EJµ ω=  is introduced and the tangential displacement 

( , ) ( )sint tu t tϑ φ ϑ ω=  is expressed as the product of two functions, namely ( )tφ ϑ , depending solely 
on the non-dimensional angular coordinate ϑ , and a harmonic function sin tω , being ω  the radial 
frequency. Analogously, the unknown rotation discontinuities ,( ) sini it tϕϕ φ ω∆ = ∆ , appearing in 
Eq. 2, can be expressed in terms of the tangential displacement mode shape ( )tφ ϑ as follows: 
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( ) ( ),
i I III

i t i t irϕ

λ
φ φ ϑ φ ϑ− − ∆ = − +   (4) 

where eq
i r iEJ r Kλ =  represents the dimensionless crack compliance related to the stiffness of 

the equivalent rotational spring. 
The closed form solution of Eq. 3 can be retrieved by means of the application of Laplace 

transform, leading to the expression of the tangential displacement mode shape as follows: 

( ) ( )
6

1 1
( ) ( ) ( )

n
I III

t k k i t i t i i
k i

C h hφ ϑ ϑ λ φ ϑ φ ϑ ϑ− −

= =

 = + + ∑ ∑  (5) 

where: 

36
( )

5 3 4
1

, 1, ,6;

, 1, ,

( )

( ) ( )
6 8 2(1 )

k

ik

k

k k
i i

k k k k

k

i n

h e

h e U

α ϑ

α ϑ ϑ

ϑ

α αϑ ϑ ϑ
α α µ α

−

=

=

 
= 

 

=

+
= −

+ + −∑




 (6) 

( ) ( )

( ) ( )

5 3 4 4 2 4
5 3 4

3 2

1 2 (1 ) (0) 2 1 (0)
6 8 2(1 )

2 (0) 2 (0) (0) (0)

I
k k k k t k k t

k k k

II III IV V
k k t k t k t t

C α α µ α φ α α µ φ
α α µ α

α α φ α φ α φ φ

= + + − + + + − ++ + −

+ + + + + + 

 (7) 

being , 1, ,6k kα =   the roots of the sixth order polynomial 

( )4 6 4 4 2 4( ; ) 2 1p s s s sµ µ µ= + + − +  that can be inferred in closed form. 
The solution, as it stands in Eq. 5, does not provide an explicit expression for the tangential 

displacement mode shape ( )tφ ϑ  since it depends on the values of its first and third distributional 
derivatives ( )I

tφ ϑ  and ( )III
tφ ϑ , evaluated at iϑ− . The latter can be expressed in explicit form and 

substituted into Eq. 5, providing the following explicit expression of the tangential displacement 
mode shape function: 

6

1
( ) ( )t k k

k
C fφ ϑ ϑ

=

= ∑  (8) 

where the functions ( )kf ϑ , 1, ,6k =  , are defined by the following expressions: 

, ,
1

( ) ( ) ( ) ( ) ( )
n

k k i I k i III k i i
i

f h g g hϑ ϑ λ ϑ ϑ ϑ− −

=

 = + + ∑  (9) 

and the terms , ( )D k ig ϑ− , 0, ,..., , 1, ,6D I V k= =  , are defined by the following expressions: 

1
( ) ( )

, , ,
1

( ) ( ) ( ) ( ) ( )
i

D D
D k i k i m I k m III k m m i

m
g h g g hϑ ϑ λ ϑ ϑ ϑ

−
− − − − −

=

 = + + ∑ . (10) 

The radial displacement and rotation mode shape functions can be easily obtained, in view of 
the solution provided in Eq. 8, by means of the kinematic constraints expressed by Eq. 1. Each of 
the two end cross-sections provides three boundary conditions depending on the kinematic and 
mechanical conditions of the restraint. It has to be pointed out that the proper integration constants 
are the values of the derivatives of tφ  at 0ϑ =  of the arch denoted as ( ) (0)D

tφ , D indicating the 
order of the derivative 0, , ,D I V=  , appearing in Eq. 7. The latter are to be determined according 
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to specified boundary conditions dependent on the external constraints acting on the circular arch 
getting rid of the dependency of the frequency parameter 4µ  appearing in Eq. 7. 

Numerical applications 
Double cracked arch (FEM comparison) 
In this sub-section an application regarding a clamped-clamped double cracked full circular arch 
(the angular span of the arch is 180°) is reported, aiming at validating the proposed closed-form 
solution. The radius of the axis of the arch is r = 2 m, the cross section is rectangular with a base 
b = 40 mm and a height h = 50 mm. The mass density is equal to ρ = 7850 kg/m3, whilst the 
Young’s modulus is E = 210000 MPa. The two cracks are localised in two sections placed at 

1 / 4ϑ π= −  and 2 / 6ϑ π=  with respect to the axis of symmetry of the arch, and with intensity 
parameters 1 0.0289λ =  and 2 0.0833λ = , respectively . The intensity parameters are related to 
crack depth/cross section height ratios 1 20.3, 0.5β β= = , according to the model proposed in [12]. 
The analytical natural frequencies and modes of vibration have been obtained by means of the 
proposed model and compared to the results obtained by means of a FEM model implemented in 
the software environment SAP2000 in accordance with the assumptions of infinite axial and shear 
stiffness and where the cracks have been modeled by considering an equivalent rotational spring 
for each cracked cross section. The first three natural frequencies for the damaged configuration 
of the arch are shown in Table 1, whilst the first three displacement mode shapes for the proposed 
(dashed black line) and the FEM (solid grey line) models have been reported in Fig. 1.  

 

 
Figure 1 - First three mode shapes of the double cracked circular arch 

 

Table 1 - Modal frequencies comparison 
 Mode 1 Mode 2 Mode 3 
Proposed model  12.7331 Hz 28.4654 Hz 52.4530 Hz 
FEM model  12.7372 Hz 28.4786 Hz 52.4725 Hz 

 
The agreement between the proposed and the FEM models, both in terms of frequency and 

mode shapes, is excellent. The subtle differences might be due to the discretized approach of the 
FEM model compared to the proposed continuous approach. 

Parametric study  
In this sub-section a parametric study is presented considering a clamped-clamped full circular 
arch with three cracks (at the two ends and at the midspan sections) with increasing intensities. 
The crack intensity parameters λ  assume for all the cracks the following values: 0, 0.2, 0.4, 0.6, 
0.8, 1, 2, 3, 4, 6, 8, 10. Furthermore, in view of the parametric nature of the study the cross section 
of the arch has not been specified, hence the crack intensity parameters can be related to specific 
crack depths in accordance with the case study at hand. 
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In Fig. 2 the variation of the frequency parameter 4µ  against the crack intensity parameter λ , 
for the first two vibration modes, is reported. In the same Figure, the frequency parameters 4µ  for 
a clamped-clamped and a three-hinged full circular arch are also reported for comparison.  

 

   
Figure 2 - Frequency parameter against the crack intensity parameter for the first and second 

mode of vibration 
The results obtained in terms of frequency parameter show a monotonic trend as the value of 

intensity parameter increases, as expected. Furthermore, it can be observed that the frequency 
parameter is equal to the value of the clamped-clamped arch for 0λ =  and tends to the value of 
the three-hinged arch for higher values of the intensity parameter.  
Conclusions 
This work presented a free vibration six order differential governing equation of a multi-cracked 
circular inextensible Euler-Bernoulli arch and the associated closed form solution in terms of mode 
shapes. The proposed governing equation is defined over a unique integration domain regardless 
of the number of cracks, and the evaluation of the natural frequencies requires the enforcement of 
six boundary conditions only at the two ends of the arch, as in the continuous arch case, avoiding 
the introduction of continuity conditions at the cracked sections. The proposed procedure was 
validated by comparison with numerical solutions obtained with a classic FEM approach and the 
closed form solution was used for a representative parametric study.  
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Abstract. This paper presents a reduced model to describe the nonlinear dynamic behavior of 
Stockbridge dampers. The proposed model is based on the classic Bouc-Wen hysteretic law and 
requires the identification of a small number of model parameters. The proposed formulation is 
used within an extended version of the classic Energy Balance Method to assess the role of the 
damper nonlinearities in mitigating aeolian vibrations of a reference overhead transmission line. 
Introduction 
Conductors and guard wires in overhead transmission line (OHL) are prone to vortex-induced-
vibrations, also known as aeolian vibrations in the electrical engineering community. Whenever 
not properly controlled, aeolian vibrations can induce wear damage and fatigue failures of the 
cables. Stockbridge dampers are often used to mitigate the severity of such vibrations. Stockbridge 
dampers are characterized by a markedly nonlinear dynamic response, which is related to the 
intrinsic properties of their components, namely the hysteretic bending behavior of messenger 
cables. 

This paper presents a reduced model to describe the non-linear dynamic behavior of one of such 
dampers. The proposed model, which is based on the classic Bouc-Wen hysteretic law, is then 
used within an extended version of the classic Energy Balance Method (EBM) [1] to assess the 
role of the damper nonlinearities in mitigating aeolian vibrations of a transmission line.  
The Stockbridge damper model 
As it is schematically depicted in Fig. 1, Stockbridge dampers are made of a metallic clamp, two 
inertial bodies and a short metallic strand, also known as “messenger cable”. The messenger cable 
is typically made of a straight core wire, which is surrounded by one or two concentric layers of 
helical wires. The clamp allows to rigidly connect the damper to OHL conductors and guard wires. 
Vibrations of the clamp set in motion the two branches of the messenger cable, which behave as 
two uncoupled cantilevers with lumped translational and rotational masses attached to their end 
sections. 

 

 
Figure 1. Geometry and inertial properties of a Stockbridge damper. Masses and centroidal 

mass moments of inertia are denoted respectively as Mdi and IGi (i = 1, 2). 
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The dynamic response of Stockbridge dampers is markedly non-linear and hysteretic, due to 
frictional dissipation of energy localized on the contact surfaces between adjacent wires of the 
messenger cable. Non-linearity may be in principle exploited to increase the range of frequencies   
over which the damper can effectively mitigate aeolian vibrations. Only few models, however, can 
be found in the literature that specifically address the issue of the characterization of the nonlinear 
dynamic response of Stockbridge dampers [2-7]. Most of these formulations are based on 
computationally expensive strategies to model the hysteretic behavior of the messenger cable and 
/or require the identification of a significant number of parameters from experimental tests. A 
remarkable exception, within this context, is the model initially proposed by Pivovarov and 
Vinogradov [2]. The messenger cable is herein modelled as an equivalent single-degree-of-
freedom (SDOF) system, with restoring forces defined through the phenomenological hysteretic 
model proposed by Bouc [8]. The model of Pivovarov and Vinogradov has been recently re-
considered by Foti et al. [7], which adopted a formulation of the Bouc-Wen model based on a 
minimal set of parameters [9].  

As a major drawback, SDOF phenomenological models only allow to reproduce the dynamic 
response associated to the translation of the masses attached at the end sections of the messenger 
cable. In the present work, the formulation proposed by Foti et al. [7] is generalized to account for 
the rotational motion of the damper masses. 

To keep the presentation of the model as straight as possible, let us herein focus on the special 
case of symmetric Stockbridge dampers (i.e. md1=md2=md, IG1=IG2=IG, l1=l2=ld, eG1=eG2=eG - see 
Fig. 1) subject to a pure vertical translation of the clamp. Details on the general case of non-
symmetric dampers subject to a combined rotational and translational motion of the clamp can be 
found in [10].  

The force Fd exerted by the damper on the cable (cable-damper interaction force) can be 
expressed as: 

𝐹𝐹𝑑𝑑  =  (2𝑚𝑚𝑑𝑑  +  𝑚𝑚𝑐𝑐) �̇�𝑣c  +  2𝑚𝑚𝑑𝑑 �̈�𝑢1 –  2 𝑚𝑚𝑑𝑑 𝑒𝑒𝐺𝐺  �̈�𝑢2  (1) 
where mc is the mass of the clamp, vc is the velocity of the clamp, u1 and u2 are, respectively, 

the relative displacement of the centroid with respect to the clamp and the rotation of the rigid 
body attached at each end of the messenger cable (see also the formulation presented in [3]).  

The dynamics of the two degrees-of-freedom u1 and u2 is assumed to be approximately 
described by the following decoupled equations of motion: 

𝑀𝑀𝑖𝑖  ü𝑖𝑖  + 𝐹𝐹𝑖𝑖  =  𝑄𝑄𝑖𝑖, 𝑖𝑖 = 1,2  (2)  
where the generalized masses Mi read: M1 = md and M2 = IG + md eG

2; the generalized external 
forces Qi read: Q1 = - md �̇�𝑣c and Q2 = md eG �̇�𝑣c; and the generalized restoring forces Fi are described 
through the following equations: 

�
𝐹𝐹𝑖𝑖  =  𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖 𝑢𝑢𝑖𝑖  +  �𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 –  𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖�𝑢𝑢0,𝑖𝑖 𝑧𝑧𝑖𝑖

𝑢𝑢0,𝑖𝑖 �̇�𝑧𝑖𝑖  = �̇�𝑢𝑖𝑖  –  |�̇�𝑢𝑖𝑖|𝑧𝑧𝑖𝑖
   (3) 

where zi is a non-dimensional hysteretic variable with values in the range [-1, 1], while kmin,i 
kmax,i and u0i are the parameters of the model. On the overall, hence, the total number of parameters 
of the proposed model that need to be identified from experimental tests is equal to six (three for 
each degree-of-freedom of the masses). 
The Energy Balance Method 
The technical approach currently adopted to assess the severity of aeolian vibrations relies on an 
application of the Energy Balance Method (EBM), e.g. [1]. Without loss of generality, the EBM 
will be presented in this section with reference to a taut cable of length l, suspended to rigid 
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horizontal supports and equipped with a single Stockbridge damper. The damper is assumed to be 
attached at a distance xd from one of the supports.  

The EBM is based on the assumption of steady-state mono-modal vibrations of the cable. For 
each vibration frequency f, the single-peak antinode vibration amplitude ymax is obtained by 
imposing the balance between the average power per vibration cycle imparted by the wind to the 
cable (Pw) and the one dissipated in the coupled cable-damper system, that can be expressed as: Pc 
+ Pd, where the term Pc accounts for the internal dissipation within the cable (also known as cable 
“self-damping”), while Pd is the average power per vibration cycle dissipated by the damper. The 
equation, hence, reads: 

𝑃𝑃𝑤𝑤 (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓) – 𝑃𝑃𝑐𝑐(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓) – 𝑃𝑃𝑑𝑑(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓)  =  0, for any 𝑓𝑓  (4) 
The wind input power Pw is typically obtained from wind-tunnel tests. Empirical results for 

laminar wind conditions can be expressed in the following general form: 
𝑃𝑃𝑤𝑤
𝑙𝑙

 =  𝐷𝐷4𝑓𝑓3fnc(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

 ) (5) 

where D is the diameter of the cable and “fnc” is a nonlinear function of the non-dimensional 
vibration amplitude ymax/D. Different expressions have been proposed in the literature for the 
function “fnc” (see e.g. [1, 11]) along with correction coefficients that allows to modify Eq. (5) to 
account for the effect of turbulence (see e.g. [12]). Without loss of generality, the present work 
will focus only on laminar wind conditions and will adopt the definition of “fnc” recommended in 
[11]. 

The cable self-damping Pc can be modeled by means of both empirical and theoretical 
expressions (see e.g. [13] for a detailed discussion on this topic). Without loss of generality, in the 
present work the theoretical expression derived by Foti and Martinelli [13] under the assumption 
of micro-slip conditions on the contact surfaces between adjacent wires of the vibrating cable will 
be adopted: 

𝑃𝑃𝑐𝑐
𝑙𝑙

 =  128𝜋𝜋
5𝛾𝛾3𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒

3 𝑐𝑐0𝜇𝜇
  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

3 𝑓𝑓7

𝑅𝑅4
 (6) 

where T is the tensile force (approximately assumed as constant along the cable span); 𝛾𝛾, RTS 
and EImax,ef are, respectively, the mass per unit of length, the Rated Tensile Strength (RTS) and the 
maximum bending stiffness of the cable; the coefficient c0 is a construction parameter that only 
depends on the geometry of the cable cross section; and 𝜇𝜇 is the friction coefficient adopted to 
describe the contact conditions between the wires of the cable (see [13] for further details). 

The power dissipated by the damper, Pd, reads: 

𝑃𝑃𝑑𝑑  =  ½ cos(ζ)|𝑍𝑍𝑑𝑑|𝑣𝑣𝑐𝑐2 (7) 

where |Zd| and ζ are, respectively, the module and phase of the mechanical impedance function 
(Zd) of the damper. By adopting the classic undamped taut string model to describe the cable 
vibrations, the clamp velocity vc can be related to the vibration frequency f and antinode vibration 
amplitude ymax through the equation: 

𝑣𝑣𝑐𝑐  =  𝑓𝑓 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  �sin�2π𝑓𝑓
Ω1

  (1 − α)�� (8) 

where α = xd/l and Ω1 is the fundamental circular vibration frequency of the bare cable, i.e. 

Ω1  =  1
𝑙𝑙 �

𝑅𝑅
𝛾𝛾
. Substitution of Eqs. (5)-(8) in the balance equation (4) yields a non-linear algebraic 

equation that can be solved to get the maximum expected nondimensional aeolian vibration 
amplitude ymax/D as a function of the vibration frequency f. 
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It is worth noting that the procedure described up to this point applies as presented strictly to 
linear dampers i.e., in other terms, to dampers whose dynamic behavior can be characterized by a 
single impedance function. Whenever dealing with nonlinear damper models, the impedance 
function of the damper will depend on the motion amplitude in addition to the frequency, hence 
an iterative approach is required. 
Example of application 
The proposed modeling strategy is applied to investigate the aeolian vibrations of a benchmark 
OHL span already studied elsewhere (see e.g. [7, 14]). The length of the span is 450 m and the 
cable is a ACSR Bersfort 48/7 conductor (diameter D=35.6 mm, mass per unit of length 𝛾𝛾=2.375 
kg/m, Rated Tensile Strength RTS=180 kN, c0 =0.139, 𝜇𝜇 =0.3). The cable is strung at T=0.4RTS. 

A single symmetric Stockbridge damper that was experimentally tested by Sauter [15] is 
assumed to be present at the 1% of the span (i.e. at the non-dimensional arc-length coordinate 
𝛼𝛼=xd/l=0.01). Geometrical and inertial parameters of the damper are fully reported in [10, 15]. 
Sauter [15] performed sweep tests on a shaker at two different constant values of the clamp 
velocity: vc=50mm/s and vc=200 mm/s. From these tests the parameters of the proposed non-linear 
model of the damper were identified to match the experimental data obtained for the clamp velocity 
vc=200 mm/s. The identified model parameters are: kmin,1 = 2000 N/m, kmax,1 = 8000 N/m, u0,1 = 
0.002 m, kmin,2 = 68.5 N/m, kmax,2 = 275 N/m, u0,2 = 0.0075 rad.  

The required simulations were performed by applying a sinusoidal motion of the clamp with a 
frequency sweep from 0 to 100 Hz during a total duration of 200 s. The non-linear equations of 
motion of the damper were then numerically integrated. 

Fig. 2 shows the matching between experimental results and the damper model output in terms 
of the real part of the damper impedance function. The predictions of the proposed damper model 
match very well the experimental results, not only for the clamp velocity vc=200 mm/s, used in the 
identification process, but also for vc = 50mm/s. 

Fig. 3 shows the comparison of the OHL aeolian vibration amplitude computed with a linear 
model of the damper (Fig. 3a) and with a nonlinear model of the same (Fig. 3b). The vibration 
amplitude of the OHL without the damper is reported as well for comparison purposes. As it can 
be appreciated, the damper (no matter the model) is effective in the range of frequency 
approximately 10-20 Hz. The curve for the nonlinear damper model tends to follow the curve 
associated to higher vibration velocites at the lower end of the cited frequency range, while it 
follows the lower velocity one at the higher ends. 

 

 
Figure 2. Absolute value of the real part of the impedance function of the identified model of the 

damper, compared to the experimental values in [15]. 
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Figure 3. (a) Nondimensional vibration amplitudes of the line with and without linear damper 

strung at T= 0.4RTS. (b) Same for nonlinear damper. 
Conclusions 
A novel model for the nonlinear dynamic response of Stockbridge dampers has been presented. 
The model is based on a classic Bouc-Wen hysteretic law, and depends on a small number of 
physical parameters that can be identified from dynamic tests. A procedure to account for the 
Stockbridge damper nonlinear response on the assessment of aeolian vibrations of OHL has been 
briefly presented. Even though only one damper and one line has been considered in this work, 
numerical results suggest that an appropriate linear model is adequate to get meaningful estimates 
of vibrations amplitudes. Availability of a practical nonlinear model of the Stockbrigde damper 
paves the way to enhanced integrated design strategies of the dampers and the overhead lines that 
fully exploit the damper nonlinearities. 
References 
[1] EPRI Electric Research Power Institute, Transmission Line Reference Book: Wind-Induced 
Conductor Motion, 2006. 
[2] I. Pivovarov, O.G. Vinogradov, One application of Bouc’s model for non-linear hysteresis, 
Journal of Sound and Vibration, vol. 118, no. 2, pp. 209–216, 1987. https://doi.org/10.1016/0022-
460X(87)90521-9 
[3] F. Foti, L. Martinelli, Hysteretic Behaviour of Stockbridge Dampers: Modelling and 
Parameter Identification, Mathematical Problems in Engineering, 2018, article id: 8925121. 
https://doi.org/10.1155/2018/8925121 
[4] S. Langlois, F. Legeron, Prediction of aeolian vibration on transmission-line conductors using 
a nonlinear time history model - Part I: Damper model, IEEE Transactions on Power Delivery, 
vol. 29, no. 3, pp. 1168–1175, 2014. https://doi.org/10.1109/TPWRD.2013.2291361 
[5] N. Barbieri, R. Barbieri, R. A. da Silva, M. J. Mannala, and L. D. S. V. Barbieri, Nonlinear 
dynamic analysis of wire-rope isolator and Stockbridge damper, Nonlinear Dynamics, vol. 86, no. 
1, pp. 501–512, 2016. https://doi.org/10.1007/s11071-016-2903-1 
[6] X. Luo, L. Wang, and Y. Zhang, Nonlinear numerical model with contact for Stockbridge 
vibration damper and experimental validation, Journal of Vibration and Control, vol. 22, no. 5, pp. 
1217–1227, 2014. https://doi.org/10.1177/1077546314535647 
[7] F. Foti, V. Denoël, L. Martinelli, F. Perotti, A stochastic and continuous model of aeolian 
vibrations of conductors equipped with stockbridge dampers, Proceedings of the International 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 417-422  https://doi.org/10.21741/9781644902431-68 

 

 
422 

Conference on Structural Dynamic , EURODYN, 2020, 1, pp. 2088–2102. 
https://doi.org/10.47964/1120.9169.20304 
[8] R. Bouc, “Modèle mathèmatique d’hystérésis” Acustica, vol. 21, pp. 16–25, 1971. 
[9] F. Ikhouane, J. Rodellar, and J. E. Hurtado, “Analytical characterization of hysteresis loops 
described by the Bouc-Wen model”, Mechanics of Advanced Materials and Structures, vol. 13, 
no. 6, pp. 463–472, 2006. https://doi.org/10.1080/15376490600862830 
[10] F. Bogani and A. Sosio, Modellazione di dissipatori Stockbridge per la mitigazione delle 
vibrazioni eolica dei cavi sospesi, Politecnico di Milano (MSc. Thesis), Milano, Italy, 2021. 
[11] G. Diana et al., “Modelling of aeolian vibrations of a single conductor plus damper: 
assessment of technology”, Electra, vol. 223, pp. 28–36, 2005. 
[12] M.L. Lu, The effect of turbulence on the wind power imparted to a vibrating conductor, (2003) 
11th Conf. Wind Engineering, Lubbock, Texas (U.S.), June 2-5. 
[13] F. Foti, L. Martinelli, An enhanced unified model for the self-damping of stranded cables 
under aeolian vibrations, Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182, 
pp. 72–86. https://doi.org/10.1016/j.jweia.2018.09.005 
[14] C. Gazzola, F. Foti, L. Martinelli, F. Perotti, An appraisal of modelling strategies for assessing 
aeolian vibrations of transmission lines, Lecture Notes in Mechanical Engineering, 2020, pp. 
1522–1534. https://doi.org/10.1007/978-3-030-41057-5_123 
[15] D. Sauter, Modeling the dynamic characteristics of slack wire cables in Stockbridge dampers, 
Technische Universitat Darmstadt (Dissertation), Darmstadt, Germany, 2003. 
 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 423-428  https://doi.org/10.21741/9781644902431-69 

 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

423 

Explicit expressions of the eigenfrequencies of damaged frames 
CANNIZZARO Francesco1,a *, CADDEMI Salvatore1,b, CALIO’ Ivo1,c and 

IMPOLLONIA Nicola1,d 
1 Department of Civil Engineering and Architecture, University of Catania, via Santa Sofia 64, 

95123 Catania, Italy 
a.francesco.cannizzaro@unict.it, b salvatore.caddemi@unict.it, c ivo.calio@unict.it,  

d nicola.impollonia@unict.it 

Keywords: Cracked Frame, Dynamic Stiffness Matrix, Wittrick and Williams Algorithm, 
Explicit Solutions 

Abstract. The presence of damage can strongly affect the residual carrying capacity and the 
dynamic properties of frame structures. The uncertainty in the position and intensity of damage 
implies the difficulty in adopting for practical purposes deterministic analyses, which rigorously 
require complicated calculations. In this paper, multi-cracked frames are studied considering the 
crack positions as deterministic whereas the intensities are uncertain. Explicit, although 
approximated, formulas of the main modal parameters as a function of the damage intensities are 
proposed. The latter expressions, which extend a previous study on beam-like structures, are built 
on the basis of detailed analyses, here computed combining the Dynamic Stiffness Matrix (DSM) 
approach with an efficient solution employing the distribution theory to treat the presence of 
cracks, and applying the Wittrick and Williams algorithm. An extremely low number of 
configurations of the frame is adopted to build the approximated solution is adopted. The proposed 
explicit formulas, which are duly verified for several meaningful cases, are then applied for the 
dynamic analysis of multi-cracked frames. 
Introduction 
The adoption of explicit expressions for the solution of structural problem can be very useful in 
many fields of engineering problems, e.g. when different design solutions have to be assessed 
according to the change of one or more parameters (parametric design), or when sensitivity 
analyses are needed. In addition, explicit expressions can be easily exploited for solving inverse 
problems. When closed form solutions have been obtained, the exact parametric expressions can 
be directly applied without running many numerical simulations. However, there is a wide variety 
of structural problems for which only numerical solutions are available, then the employment of 
re-analysis can become cumbersome and practically impossible to pursue. In such cases the 
availability of explicit solutions can be a powerful tool. 

Within this framework, and with regard to free vibrations of damaged beams, in this paper a 
methodology to provide explicit although approximated expressions of the eigenfrequencies of 
damaged frames is proposed.  

Damaged frame structures are here treated as continuous Euler-Bernoulli models and therefore 
handled with the Dynamic Stiffness Matrix (DSM) approach [1]. Damage is often assumed as an 
uncertain parameter [2], since its presence in structures is often hidden and, even when its presence 
is known, its intensity is hard to quantify. The presence of damage is considered with concentrated 
patterns, which is approximately realistic, especially for an early damage detection. The modelling 
of concentrated damage is usually approached with the so called equivalent rotational hinge model 
[3] where cracks correspond to rotational springs connecting two chunks of 1D elements. The 
stiffness of the spring is calibrated according to the crack depth following various strategies [4]. 
To optimize the required effort, in this study cracks are treated by means of a distributional 
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approach rather than enforcing continuity conditions. This approach was successfully adopted for 
a wide variety of problems [5,6] and is able to provide closed form solutions as a function of the 
boundary conditions only, irrespectively of the number of along-axis discontinuities. For the 
specific case at hand, both the dynamics of multi-cracked beam [7] and frame [8], were already 
solved. 

Indeed, when a structure is treated as a continuous system a frequency equation is inferred and 
then numerically solved to find its roots. One of the strategies that proved to be particularly 
effective in the frequency equation solution is the Wittrick and Williams (WW) algorithm [9], 
usually combined with the DSM. 

This work aims at an explicit evaluation of the eigenfrequencies of damaged frames by 
considering deterministic crack locations, whereas a model of uncertainty for their severities is 
accounted for. The eigenfrequencies are approximated with a simple but effective explicit 
expression, calibrated on a limited obtained of reference solutions obtained combining the DSM 
with the WW algorithm for specific damage configurations. The proposed procedure represents a 
nontrivial extension of a previous study conducted on damaged beams [10]. This explicit solution 
can be applied to systems with multiple cracks and can be both employed to assess the response 
variability in direct problems and for damage detection purposes. In spite of the reduction of the 
computational effort for the parametric analysis with respect to a classic approach, it is shown how 
the proposed procedure is able to retrieve with good accuracy the results obtained with the DSM 
approach. A numerical application on a cracked portal frame exploring the potentiality of the 
method is presented, and the accuracy of the proposed methodology is evaluated. 
The DSM approach for the multi-cracked Euler-Bernoulli beam 
Reference solutions of the eigenfrequencies of multi-cracked frames are here obtained by means 
of the approach proposed in [7]. Each beam of a frame, characterised by length L, mass per unit 
length m, Young’s modulus Eo, moment of inertia Io, n cracks (where the i-th crack is located at 
the dimensionless abscissa ξi and is characterized by intensity λi, to be related to the crack depth 
according to one of the models available in the literature [5]). The Euler-Bernoulli multi-cracked 
beam model can be elaborated to infer the corresponding planar 4x4 DSM as a function of the 
frequency parameter 4 2 4( )o omL E Iα ω= , irrespectively of the number of cracks along each beam 
as follows [8]: 

*

2 * * ˆ

ˆ ˆ
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where 0, , , , 1, , 4P I II III k= =  . The values ( )P
iS α , obtained by evaluating the P-th 

derivative of the function ( ),iS α ξ  at the dimensionless abscissa 1ξ = , are finally given, together 

with the terms ( )kiε α  and kib , by: 
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Once the global dynamic stiffness matrix of the entire structure is derived, the evaluation of the 
eigenfrequencies can be conveniently obtained via WW algorithm by evaluating the number J of 
natural frequencies that are lower than a specified dimensional frequency value ω*. J is the sum of 
two terms J=Jk+Jo. Jk is the number of negative eigenvalues of the global dynamic stiffness matrix 
evaluated at ω*. Jo is the sum of the number Jr of vibration frequencies lower than ω* of the generic 
r-th beam with both ends clamped. Considering the number Nb of beams that compose the system, 

Jo can be obtained that 
1

bN

o r
r

J J
=

=∑ . It is worth noting that Jr can be either evaluated by means of 

closed form expressions for undamaged beams or, alternatively, with substructuring approach. 
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Explicit approximate approach for the evaluation of the modal parameters  
The procedure summarized in the previous section, although optimized with regard to the 
numerical algorithm and the size of the problem, significantly increases its computational burden 
when a considerable number of damage configurations are analyzed. In this section an 
approximated explicit formulation is proposed to assess the variability of the eigenfrequencies of 
a damaged frame with deterministic crack locations and uncertain intensities. The procedure is an 
extension of a study previously applied to cracked beams [10]. The generic crack severity λi is 
treated as a variable parameter ranging in the interval , iiiλ λ λ ∈    and expressed as ,i o i iλ λ β= +

, where [ ],i i iβ λ λ∈ −∆ ∆  being ∆λi the deviation amplitude and λo,i a reference damage intensity. 
The damage configuration of the frame is associated to the crack severities vector 

[ ]1 2, ,..., ,...i nλ λ λ λ=λ , considering the cracks located in one or more beams of the frame. In order 
to provide an approximated evaluation of the eigenfrequencies for a generic damage configuration 
of the frame, the correspondence between exact and approximated computations of the considered 
eigenfrequency parameter ( )4

pα λ  is enforced for 2n significant configurations associated to the 
following damage intensity distributions  

1, ,,1 ,2 , , 1 , ,2 2, ,, ,..., ,... ; , ,..., ,... , ,..., ,...;s o o oo o o o i no s o oo n s s nλ λ λ λ λ λ λ λ λ λ λ λ   = =    =  λ λ λ  (5) 

with s=1,…,n. The interpolating formula proposed in [11] and already employed in [12] for the 
inversion of matrices, is adapted for the case at hand providing an estimation of frequency 
parameters as functions of the damage configuration in the form: 
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being 4
,o pα  the p-th eigenfrequency of the reference damage distribution , ,1 2, , ,..., no o o oλ λ λ =  λ

, whereas ap,i, bp,i represent a set of coefficients obtained enforcing the correspondence between 
exact and approximated frequency parameters for the 2n damage configurations in Eq. (5): 
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Numerical applications 
The accuracy of the approximated solution is tested on the cracked steel portal frame reported in 
Fig. 1 [13], composed of two columns of length Lc=800 mm and a beam of length Lb=1000 mm. 
Constant 40x8 mm rectangular cross section for all the elements, Young’s modulus E=2*105 
N/mm2, mass density per unit volume m=7.849*10-9 N s2/mm4, have been assigned. Here, the 
crack is located at a dimensionless abscissa 1 0.05ξ = of the left column (40 mm from the clamp), 
considering a variable crack severity with reference intensity λo,1=0.1 and deviation amplitude 
∆λ1=0.1. 
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Figure 1 – Investigated damaged portal frame [14]. 

In Fig. 2 the comparisons between reference and approximated frequency parameters are shown 
for the first four frequencies; all the terms are normalized by the corresponding reference value. 
The continuous lines correspond to the exact properties, whereas the dashed lines are relative to 
the approximated solution. In Fig. 3 the corresponding relative errors are reported.  

(a) (b) 

(c) (d) 
Figure 2 – (a) First, (b) second, (c).third and (d) fourth mode shape in terms of displacement 

(left) and rotation (right) of the investigated portal frame in the reference damage configuration 

(a) (b)  
Figure 3 - Comparison between reference and approximated frequency parameter (a) and 

relative error (b) 
For the first two frequencies the discrepancy between exact and approximated values is almost 
unappreciable (maximum error lower than 0.002%), while for third and fourth frequencies it is 
higher but always lower than 0.4%. 
Conclusions 
An explicit although approximated expression for the eigenfrequency of damaged frames was 
proposed in this study. The damaged was modelled via cracks with known position and uncertain 
severity, thus the frequencies are expressed as functions of the damage intensities. The proposed 
expressions, which are inspired to the Sherman and Morrison formula, are calibrated on reference 
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results obtained combining the construction of the Dynamic Stiffness Matrix of multi-cracked 
Euler-Bernoulli beams with a formulation which takes advantage of the distributional theory with 
the Wittrick and Williams algorithm; a limited number of reference damage configurations is 
employed to calibrate the approximated solution. Validation of the proposed formulas, which can 
be exploited for damage identification problems as well as for sensitivity analyses, was provided 
for the first four frequencies with regard to a single cracked frame. The accuracy of the proposed 
approximated solution is satisfactory and assures a considerable computational advantage. 
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Abstract. Strong seismic excitations can induce considerable displacements in base-isolated 
structures. These may in turn cause damage to the isolation system or impacts against adjacent 
structures in the event of an insufficient seismic gap. A strategy of reducing displacements can be 
achieved through the interposition, between the isolated structure and adjacent structures, of 
deformable and dissipative devices, called bumpers. In this paper, the response of single-degree-
of-freedom (SDOF) base-isolated systems subjected to sine excitations and whose displacements 
are limited by optimally designed bumpers are analyzed, the bumpers being designed according to 
an optimal design criterion.  
Introduction 
One of the most widely used strategies for passive control of the dynamic response of sensitive 
structures and equipment is base isolation. This strategy consists of interposing a highly 
horizontally deformable element between the base floor  and the structure (or equipment), so that 
the period of the system is increased significantly resulting in a reduction of the transmitted 
acceleration. However, strong earthquakes can cause large displacements at the isolated floor level, 
exceeding its limit deformation, or induce impacts with adjacent elements. Rigid impact causes 
significant increases in acceleration and floor drifts that can cause serious damage to both structural 
and nonstructural elements [1].  

 An effective strategy to reduce and control the adverse effects due to large isolation floor 
displacements is the interposition of deformable and dissipative devices, called bumpers. Various 
experimental investigations have been conducted by the authors on the influence of bumpers on 
the dynamic response of single-degree-of-freedom (SDOF) systems subjected to sine base 
excitation [2-4]. From these studies, it was observed that the parameters governing the impact 
between system and bumper can be identified by three elements: gap (distance between mass and 
bumper), stiffness and damping of the bumper. The authors, moreover, based on the experimental 
investigations defined a numerical model that allowed the identification of optimality relations 
between bumper stiffness, bumper damping coefficient and gap, reducing the design of such a 
control strategy to a single parameter [3-7]. 

This paper analyzes the response obtained from a numerical model of SDOF system constrained 
by two bumpers, arranged symmetrically on both sides of the mass of the system with an initial 
gap, subjected to sine excitation. The design of bumpers is done in accordance with the optimality 
relationship [6] and the optimal design curve [7]. The absolute maximum values of the response 
in absolute mass acceleration and relative mass displacement are represented as a function of 
frequency ratio and for six initial gaps. All results shown are represented in dimensionless terms 
so that they can be generalized. 

The text is organized as follows: the first paragraph introduces the model and its equations of 
motion; the second paragraph explains the optimal design criterion that is used to identify the 
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parameters governing the impact; the third paragraph reports the results of the numerical analysis; 
and finally, the fourth paragraph reports the conclusions and possible future developments of the 
work. 
Model and equations of motion 
The model adopted in the numerical analyses is shown in Fig. 1. The figure represents a vibro-
impact single-degree-of-freedom (SDOF) system that consists of a mass 𝑀𝑀, a damper 𝐷𝐷 and two 
deformable and dissipative obstacles, arranged symmetrically on both sides of the mass with an 
initial gap 𝐺𝐺0𝑗𝑗  (j=R right side, j=L left side) and denoted as right bumper 𝐵𝐵𝑅𝑅 and left bumper 𝐵𝐵𝐿𝐿, 
respectively. The damper and the bumpers are modeled by a linear elastic element, with stiffness 
𝐾𝐾 and 𝐾𝐾𝑗𝑗  (j=R,L), respectively, and a linear viscous dashpot, with damping coefficient 𝐶𝐶 and 
𝐶𝐶𝑗𝑗  (j=R,L), respectively, arranged in parallel. The system is subjected by a sine base acceleration 
𝐴𝐴𝑡𝑡(𝑡𝑡) = 𝐴𝐴𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝛺𝛺𝑡𝑡), where 𝐴𝐴𝐺𝐺  is the amplitude and 𝛺𝛺 in the circular frequency of this excitation. 
Finally, in figure 1 𝑢𝑢(𝑡𝑡) refers to the relative displacement of the mass with respect to the ground, 
and 𝑢𝑢𝑗𝑗(𝑡𝑡) (j=R,L) refers to the deformation of the bumper. 

The equations of motion were written in dimensionless form to make them as general as 
possible. The components of the equation were normalized with respect to 𝐹𝐹∗ = 𝑀𝑀𝜔𝜔2𝑢𝑢∗, which 
represents the maximum force in the SDOF system in free flight (without obstacles, FF): the 
quantity 𝑢𝑢∗ = 𝑢𝑢𝑠𝑠𝑡𝑡𝑅𝑅𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum relative displacement in FF, where 𝑢𝑢𝑠𝑠𝑡𝑡 =
𝐴𝐴𝐺𝐺/𝜔𝜔2 is the static displacement and 𝑅𝑅𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 = 1/(2𝜉𝜉�1 − 𝜉𝜉2) is the maximum value of the 
dynamic amplification factor 𝑅𝑅𝑑𝑑(𝜉𝜉,𝛽𝛽); while 𝜔𝜔 = �𝐾𝐾/𝑀𝑀 denotes the frequency of the system. 
The frequency ratio 𝛽𝛽 = 𝛺𝛺/𝜔𝜔 and the damping ratio 𝜉𝜉 = 𝐶𝐶/(2𝑀𝑀𝜔𝜔), are introduced and the 
dimensionless time 𝜏𝜏 = 𝜔𝜔𝑡𝑡 is defined. In the dimensionless equations, the quantities 𝑞𝑞 = 𝑢𝑢/𝑢𝑢∗ and 
𝑞𝑞𝑗𝑗 = 𝑢𝑢𝑗𝑗/𝑢𝑢∗ (j=R,L) are the dimensionless displacement of the mass and dimensionless 
deformation of the bumper, respectively. Similarly, the dimensionless gap is 𝛿𝛿0𝑗𝑗 = 𝐺𝐺0𝑗𝑗/𝑢𝑢∗ (j=R,L) 
and can take values comprised within the range 0 ≤ 𝛿𝛿0𝑗𝑗 ≤ 1. Finally, 𝑓𝑓(𝜏𝜏) = 2𝜉𝜉𝑞𝑞′(𝜏𝜏) + 𝑞𝑞(𝜏𝜏) is 
the damper dimensionless force, 𝑓𝑓𝑗𝑗(𝜏𝜏) = 2𝜉𝜉𝛾𝛾𝑗𝑗𝑞𝑞′𝑗𝑗(𝜏𝜏) + 𝜆𝜆𝑗𝑗𝑞𝑞𝑗𝑗(𝜏𝜏) with (j=R,L) ‒where 𝛾𝛾𝑗𝑗 = 𝐶𝐶𝑗𝑗/𝐶𝐶 
and 𝜆𝜆𝑗𝑗 = 𝐾𝐾𝑗𝑗/𝐾𝐾‒ as the dimensionless contact forces, and 𝑎𝑎𝐺𝐺 = 2𝜉𝜉�1 − 𝜉𝜉2 as the dimensionless 
amplification of the dimensionless sine excitation 𝑎𝑎𝑡𝑡(𝜏𝜏). 

Thus, the motion equations of the model can be written in the following dimensionless form: 

�
𝑞𝑞′′(𝜏𝜏) + 𝑓𝑓(𝜏𝜏) + 𝑓𝑓𝑗𝑗(𝜏𝜏) ∙ 𝜓𝜓1[𝛿𝛿𝑗𝑗(𝜏𝜏)] ∙ 𝜓𝜓2[𝑓𝑓𝑗𝑗(𝜏𝜏)] = −𝑎𝑎𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝜏𝜏

𝑓𝑓𝑖𝑖(𝜏𝜏) = 0
; ( 1 ) 

where it is assumed that if  the mass is in contact with the left bumper, then j=L and i=R, or if the 
mass is in contact with the right bumper, then j=R and i=L. In the equations the Heaviside 
functions 𝜓𝜓1 and 𝜓𝜓2 are defined as follows: 

contact      𝜓𝜓1�𝛿𝛿𝑗𝑗(𝜏𝜏)� = �
0, 𝛿𝛿𝑗𝑗(𝜏𝜏) > 0
1, 𝛿𝛿𝑗𝑗(𝜏𝜏) = 0   (𝑗𝑗 = 𝑅𝑅, 𝐿𝐿); ( 2 ) 

separation     𝜓𝜓2�𝑓𝑓𝑗𝑗(𝜏𝜏)� = �
0, 𝑓𝑓𝑅𝑅(𝜏𝜏) ≤ 0   𝑜𝑜𝑜𝑜   𝑓𝑓𝐿𝐿(𝜏𝜏) ≥ 0
1, 𝑓𝑓𝑅𝑅(𝜏𝜏) > 0   𝑜𝑜𝑜𝑜   𝑓𝑓𝐿𝐿(𝜏𝜏) < 0 ;  ( 3 ) 

where 𝛿𝛿𝑗𝑗(𝜏𝜏) (j=R,L) represents the gap function in terms of the dimensionless time 𝜏𝜏 and, if j=R, 
is equal to 𝛿𝛿𝑅𝑅(𝜏𝜏) = 𝛿𝛿0𝑅𝑅 + 𝑞𝑞𝑅𝑅(𝜏𝜏) − 𝑞𝑞(𝜏𝜏), and, if j=L, is equal to 𝛿𝛿𝐿𝐿(𝜏𝜏) = 𝛿𝛿0𝐿𝐿−𝑞𝑞𝐿𝐿(𝜏𝜏) + 𝑞𝑞(𝜏𝜏). In all 
the equations introduced the apex (′) denotes differentiation with respect to the dimensionless time 
𝜏𝜏. 

Because the bumpers are equal and arranged symmetrically on both sides of the mass 𝛾𝛾𝑅𝑅 =
𝛾𝛾𝐿𝐿 = 𝛾𝛾, 𝜆𝜆𝑅𝑅 = 𝜆𝜆𝐿𝐿 = 𝜆𝜆 and 𝛿𝛿0𝑅𝑅 = 𝛿𝛿0𝐿𝐿 = 𝛿𝛿0. 
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Fig. 1. Model of the vibro-impact system.                 Fig. 2. Optimal design curve of the bumper. 
 
Optimal design of the bumpers  
In order to optimize the control of the dynamic response of the system, the physical parameters 
governing the impact (gap 𝛿𝛿0, stiffness 𝜆𝜆 and damping 𝛾𝛾 of the bumper) to be adopted are obtained 
in relation to an optimal design criterion based on a relationship that links damping ratio 𝜉𝜉 of the 
system with parameters 𝜆𝜆 and 𝛾𝛾 of the bumpers [6], and on a curve in which bumper stiffness 𝜆𝜆 is 
identified in relation to the gap 𝛿𝛿0 [7].  

The optimality relationship is defined as follows: 
𝛾𝛾
𝜆𝜆 

= 1
2𝜉𝜉 

. ( 4 ) 

This relationship was obtained by a parametric analysis in which, for each investigated 𝛿𝛿0, and 
for fixed values of 𝜉𝜉 and of 𝛾𝛾, the value of 𝜆𝜆 was searched such that the peak acceleration of the 
mass in the primary resonance is minimized. This is possible because the bumper is fully exploited: 
the bumper has sufficient time to recover its deformation before the next impact, dissipating all 
the deformation energy accumulated up to then, and it does not remain inactive because the next 
impact occurs practically immediately after recovery.  

The optimality relationship (4) is independent of the gap and, through this relationship, it is 
possible to reduce the number of impact parameters from three, which in dimensionless terms can 
be identified as 𝛿𝛿0, 𝜆𝜆 and 𝛾𝛾, to two, since by choosing 𝜆𝜆 we obtain the value of the corresponding 
𝛾𝛾.  

With the introduction of the optimal curve an additional constraint is introduced, reducing the 
bumper design to one parameter, the dimensionless gap 𝛿𝛿0. The optimal design curve, shown in 
Fig. 2, associates to each 𝛿𝛿0 a pair of values 𝜆𝜆 and 𝛾𝛾 (Eq. 4), which minimizes the peak absolute 
acceleration of the mass in primary resonance and therefore the force acting on the mass. 

Looking at the red curve in figure 2, it is clear how the control over the response of vibro-impact 
system with a dimensionless gap 𝛿𝛿0 > 0.82, is ineffective. This is because, for these values of 𝛿𝛿0, 
the optimal stiffness ratio 𝜆𝜆 is so small that the presence of the bumpers is negligible. 
Analysis of numerical response 
In this paragraph, the numerical responses of the model characterized as follows are analyzed: the 
damping ratio of the damper is 𝜉𝜉 = 0.10, the bumper parameters 𝜆𝜆 and 𝛾𝛾 are designed in 
accordance with the optimality relationship (4) and the optimal design curve (Fig.2). The 
represented response quantities are dimensionless excursion of the absolute acceleration and of the 
relative displacement, of the mass, both normalized with respect to two different factors: 

𝜂𝜂𝑚𝑚1 = ∆𝛼𝛼
∆𝛼𝛼0

,  𝜂𝜂𝑚𝑚2 = ∆𝛼𝛼
∆𝛼𝛼𝑡𝑡

, 𝜂𝜂𝑑𝑑1 = ∆𝑞𝑞
∆𝑞𝑞0

,  𝜂𝜂𝑑𝑑2 = ∆𝑞𝑞
∆𝑞𝑞𝑡𝑡

, ( 5 ) 
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where 𝛼𝛼 = 𝑎𝑎𝑡𝑡 + 𝑞𝑞′′, the dimensionless quantities whit subscript (o) are related to the case of free 
flight in resonance (FF) and the dimensionless quantities whit subscript (t) are related to the 
ground. The excursion (𝛥𝛥𝑠𝑠, 𝑠𝑠 =  𝛼𝛼, 𝑞𝑞) was calculated as the difference between the maximum and 
minimum values recorded at steady state of each sub-frequency range. 

Figures 3 show the normalized quantities analyzed as a function of the frequency ratio 𝛽𝛽 and in 
the terms of six dimensionless gaps 𝛿𝛿0 = 1, 0.5, 0.3, 0.2, 0.1, 0, where 𝛿𝛿0 = 1 represents the FF 
and 𝛿𝛿0 = 0 the case of mass adjacent with bumper. 

The curves in Fig. 3a-3b represent the Pseudo-Resonance Curves (PRCs) of the dimensionless 
absolute acceleration of the mass, normalized in (a) with respect to the FF, and in (b) with respect 
to the ground. The black curves reproduce dimensionless excursion of the absolute acceleration of 
the mass in FF, subjected to the dimensionless sine excitation 𝑎𝑎𝑡𝑡. The curve 𝜂𝜂𝑚𝑚1𝐹𝐹𝐹𝐹(𝛽𝛽) starts from 
the value 𝜂𝜂𝑚𝑚1𝐹𝐹𝐹𝐹(0) ≃ 0.20 and then attains a peak at resonance, for 𝛽𝛽 = �1 − 2𝜉𝜉2 ≃ 0.99, equal 
to 1. Once the peak has been passed, for increasing 𝛽𝛽 the acceleration 𝜂𝜂𝑚𝑚1𝐹𝐹𝐹𝐹 tends to 0. The curve 
𝜂𝜂𝑚𝑚2𝐹𝐹𝐹𝐹(𝛽𝛽) starts from value 1 (𝛽𝛽 = 0), reaches the resonance peak at 𝛽𝛽 = �1 − 2𝜉𝜉2 = 5.12, and, 
for increasing values of  𝛽𝛽, 𝜂𝜂𝑚𝑚2𝐹𝐹𝐹𝐹 decreases tending to 0 for 𝛽𝛽 tending to infinity. The red dashed 
curves represented the cases with impact (thinner dashes imply smaller values 𝛿𝛿0). The study of  
Fig. 3a-3b shows that the curves 𝜂𝜂𝑚𝑚1(𝛽𝛽) are scaled by 𝑇𝑇𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, that is the maximum value of the 
resonance transmissibility, relative to curves 𝜂𝜂𝑚𝑚2(𝛽𝛽), so the comments will be unique for both two 
types of curves, with percentage changes. In Fig. 3a-3b, as 𝛿𝛿0 decreases, a reduction and a shift 
toward larger 𝛽𝛽 of the acceleration peaks are observed. The lowest value of the peak occurs in the 
case 𝛿𝛿0 = 0, where a 62% reduction of the maximum acceleration value is obtained with respect 
to FF. The other cases show a reduction of 48% for 𝛿𝛿0 = 0.1, 30% for 𝛿𝛿0 = 0.2, 22% for 𝛿𝛿0 = 0.3 
and 9% for 𝛿𝛿0 = 0.5. The 𝛽𝛽 of resonance increases from 0.99 in the FF to 1.02 for 𝛿𝛿0 = 0.5, 1.09 
for 𝛿𝛿0 = 0.3, 1.15 for 𝛿𝛿0 = 0.2, 1.24 for 𝛿𝛿0 = 0.1 up to 1.66 for 𝛿𝛿0 = 0. The dashed curves, for 
some values of 𝛽𝛽, overlap with the FF curve: this is because for those values of 𝛽𝛽 and for the value 
of 𝛿𝛿0 relative to that dashed curve, impact does not occur. The only case in which impact always 
occurs is the case of mass adjacent to bumpers (𝛿𝛿0 = 0), which, for 𝛽𝛽 > 1.25, reports larger 
accelerations than FF and, for  𝛽𝛽 > 1.52, larger than the other cases. For the other 𝛿𝛿0 investigated, 
the acceleration turns out to be greater than FF in a small range of 𝛽𝛽, between 1.04 and 1.72. 

Fig. 3c-3d shows the PRCs of the dimensionless relative displacement of the mass, normalized 
with respect to FF, in (c), and with respect to the ground, in (d). The black curves represent the 
dimensionless excursion of the relative displacement of the mass in FF, subjected to the 
dimensionless sine excitation 𝑎𝑎𝑡𝑡. The dimensionless displacement curve in FF 𝜂𝜂𝑑𝑑1𝐹𝐹𝐹𝐹(𝛽𝛽), reports 
the maximum at 𝛽𝛽 = �1 − 2𝜉𝜉2 ≃ 0.99, in which it takes value 1. For 𝛽𝛽 between 0, in which 
𝜂𝜂𝑑𝑑1𝐹𝐹𝐹𝐹(0) ≃ 0.20, and �1 − 2𝜉𝜉2, 𝜂𝜂𝑑𝑑1𝐹𝐹𝐹𝐹 grows as 𝛽𝛽 increases. Passing the peak value, for 
increasing 𝛽𝛽 the displacement 𝜂𝜂𝑑𝑑1𝐹𝐹𝐹𝐹 decreases, tending, in the limit, to the value 0. The 
dimensionless displacement in FF, 𝜂𝜂𝑑𝑑2𝐹𝐹𝐹𝐹(𝛽𝛽), reports the maximum in 𝛽𝛽 = 1/�1 − 2𝜉𝜉2 ≃ 1.01 
of intensity equal to 5.03. In the first range between 0 and 𝛽𝛽 relative to the maximum, 𝜂𝜂𝑑𝑑2𝐹𝐹𝐹𝐹 has 
an increasing monotonic trend, after which, as 𝛽𝛽 increases, it decreases tending, for infinite 𝛽𝛽, to 
the value 1 (maximum ground displacement). In contrast to 𝜂𝜂𝑑𝑑1𝐹𝐹𝐹𝐹, 𝜂𝜂𝑑𝑑2𝐹𝐹𝐹𝐹 at 𝛽𝛽 = 0 assuming zero 
value. 

The red dashed curves show the displacement responses of the impacted cases (thinner dashes 
imply smaller values of 𝛿𝛿0). Referring to Fig. 3c, the peaks of displacements, as 𝛿𝛿0 decreases, 
move toward larger 𝛽𝛽 and decrease. With respect to FF (𝛿𝛿0 = 1), 𝜂𝜂𝑑𝑑1 decreases by 90% for 𝛿𝛿0 =
0, by 69% for 𝛿𝛿0 = 0.1, by 55% for 𝛿𝛿0 = 0.2, by 42% for 𝛿𝛿0 = 0.3, and by 22% for 𝛿𝛿0 = 0.5, 
while the 𝛽𝛽 relative to these maximum values turns out to be 1.59, 1.19, 1.13, 1.09, and 1.03, 
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respectively. Each curve related to 𝛿𝛿0 ≥ 2 𝜉𝜉�1 − 𝜉𝜉2 (≃ 0.2) is initially coincident with the FF 
case, until 𝜂𝜂𝑑𝑑1, growing, reaches the value 𝛿𝛿0, causing the impact to occur because the 
displacement in FF is greater than the gap. Conversely, once the value of 𝛽𝛽 has been exceeded 
beyond which 𝜂𝜂𝑑𝑑1𝐹𝐹𝐹𝐹 ≤ 𝛿𝛿0, the curve for that value of 𝛿𝛿0 turns out to coincide with the FF case. 
The only curve that shows a single point of coincidence with free flight is the one related to 𝛿𝛿0 =
0, for 𝛽𝛽 = 1.75; this curve also, for 𝛽𝛽 < 1.75, shows smaller values than for FF, while for 𝛽𝛽 >
1.75 larger values, with a maximum increase of 28% in displacement value in FF case. The PRCs 
for the other values of 𝛿𝛿0 > 0 exhibit larger values than FF for 1.27 < 𝛽𝛽 < 1.72 with 𝛿𝛿0 = 0.1, 
for 1.18 < 𝛽𝛽 < 1.40 with 𝛿𝛿0 = 0.2, for 1.13 < 𝛽𝛽 < 1.27 with 𝛿𝛿0 = 0.3, and for 1.07 < 𝛽𝛽 < 1.15 
with 𝛿𝛿0 = 0.5 with maximum increases of 33% (for 𝛽𝛽 = 1.5), 24% (for 𝛽𝛽 = 1.3), 18% (for 𝛽𝛽 =
1.2), and 7% (for 𝛽𝛽 = 1.12). In Fig. 3c, as 𝛿𝛿0 decreases, there is, as in Fig. 3d, a shift to the right 
and a reduction of peak displacement whit respect to FF, but at different dimensionless frequencies 
𝛽𝛽 and with different percentage reduction: for 𝛿𝛿0 = 0 the peak is for 𝛽𝛽 = 2.04 with 68% reduction, 
for 𝛿𝛿0 = 0.1 the peak is for 𝛽𝛽 = 1.35 with 50% reduction, for 𝛿𝛿0 = 0.2 the peak is for 𝛽𝛽 = 1.22 
with 38% reduction, for 𝛿𝛿0 = 0.3 the peak is for 𝛽𝛽 = 1.15 with 28% reduction, and for 𝛿𝛿0 = 0.5 
the peak is for 𝛽𝛽 = 1.07 with 13% reduction. As observed in Fig. 3c-3d, the response for 𝛿𝛿0 = 0 
never coincides with the FF curve except at 𝛽𝛽 = 1.75. 

 
 

 

Fig. 3. PRCs of 
dimensionless 

acceleration: (a) PRC of 
ηa1(β); (b) PRC of 

ηa2(β); and PRCs of 
dimensionless 

displacement: (c) PRC 
of ηd1(β); (d) PRC of 
ηd2(β). The curves are 

related to different 
values of δ0: in black 
δ0=1 (FF), in dashed 

red δ0=0.5, 0.3, 0.2, 0.1, 
0 (lower thicknesses 
represent lower δ0). 

 
Conclusions and future developments  
In this paper, the numerical dynamic response of the SDOF system, subjected to sine excitation, 
constrained by two symmetrically arranged deformable and dissipative bumpers designed with 
optimality relation (4) and optimal design curve (Fig. 2) is analyzed. Six different values of the 
design parameter 𝛿𝛿0 (dimensionless gap) are considered: two extreme cases, 𝛿𝛿0 = 1, a touching 
condition between mass and bumpers representative of FF, and 𝛿𝛿0 = 0, a condition with mass 
adjacent to the bumpers; and intermediate cases, 𝛿𝛿0 = 0.5, 𝛿𝛿0 = 0.3, 𝛿𝛿0 = 0.2 and 𝛿𝛿0 = 0.1. 

The response quantities which have been analyzed are the absolute acceleration of the mass and 
the relative displacement of the mass with respect to the ground, normalized with respect to both 
(i) the peak values of acceleration and displacement in FF, and (ii) the peak values of base 
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acceleration and ground displacement. It was found that as 𝛿𝛿0 decreases, the maximum values of 
peak acceleration and displacement undergo greater reductions with respect to FF, reporting in the 
case 𝛿𝛿0 = 0 the greatest reductions (peak of acceleration reduced by 62% for both 𝜂𝜂𝑚𝑚1(𝛽𝛽) and 
𝜂𝜂𝑚𝑚2(𝛽𝛽), peak of displacement reduced by 90% for 𝜂𝜂𝑑𝑑1(𝛽𝛽), and by 68% for 𝜂𝜂𝑑𝑑2(𝛽𝛽)). However, the 
case 𝛿𝛿0 = 0 reports larger values of acceleration for 𝛽𝛽 > 1.52, compared with the other cases 
examined. A phenomenon of increased displacement, due to the presence of bumper, was also 
observed for some 𝛽𝛽 following the primary resonance in FF (1.08 < 𝛽𝛽 < 1.15 for 𝛿𝛿0 = 0.5, 
1.13 < 𝛽𝛽 < 1.27 for 𝛿𝛿0 = 0.3, 1.18 < 𝛽𝛽 < 1.4 for 𝛿𝛿0 = 0.2, 1.27 < 𝛽𝛽 < 1.71 for 𝛿𝛿0 = 0.1, 𝛽𝛽 >
1.72 for 𝛿𝛿0 = 0). This phenomenon is named bouncing-effect in the literature. 

These results show that the adoption of this optimal design criterion and an appropriate choice 
of the gap parameter 𝛿𝛿0 allow beneficial effects in mitigating the dynamic response to be gained. 
Thus, the need emerges to extend this study to cases of real dynamic actions, such as earthquakes, 
and evaluate the effects of appropriately designed dissipative and deformable bumpers on systems 
subjected to different seismic excitations.  
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Abstract. Clutch judder is a friction-induced self-excited vibration occurring in automotive 
drivelines, an NVH issue studied for more than forty years and attributed by the scientific 
community to three possible causes: stick-slip, negative gradient of the coefficient of friction and 
geometric disturbances. However, these explanations fail to describe the kind of judder studied in 
this contribution, arising in presence of an oscillating component (dither) in the clutch actuation 
pressure. The analysis of experimental data collected on a dual-clutch transmission mounted on a 
specific test bench suggested the presence of a parametric resonance, generated by the dither. A 
specific 4 degrees of freedom model was then developed, able to predict with good accuracy the 
unstable parametric region in which judder occurs and useful in the design stage. 
Introduction 
Among various NVH issues affecting automotive drivelines, the friction-induced self-excited 
vibration called clutch judder holds particular importance. 

To the best of the authors’ knowledge, the current scientific literature on the subject identifies 
three main factors responsible for clutch judder. In several cases, it is attributed to a negative 
gradient of the coefficient of friction between the clutch plates (in this case referred to as cold 
judder) [1-7]. In fact, if the friction coefficient decreases with increasing slip speed, the system 
becomes unstable in most operating conditions. The second identified factor is stick-slip [7-11], 
associated with the alternate sticking and slipping motion which occurs due to the discontinuity of 
the friction curve at very low relative speeds. Finally, the third factor is given by geometric 
disturbances in terms of both asperity on the disc surfaces and misalignments between the 
components of the transmission. In the first case, the asperities of the discs can give rise to hot 
spots and thermoelastic instability [12,13]. In the second case, the misalignments between some 
components of the transmission give rise to the periodic fluctuation of the clamp load and to the 
possible excitation of a frequency of vibration of the system [7,14]. 

Although it has been shown that clutch judder can have different characteristics and causes, the 
phenomenon here under analysis has not been investigated yet in the scientific literature. It occurs 
in dual-clutch transmissions of heavy vehicles (tractors), in which the clutch actuation pressure is 
made up of a constant main component plus a small oscillating component due to the vibration of 
the circuit valve (dither). The experimental data collected on a specific test bench, designed in 
partnership with CNH Industrial, show the onset of a cold judder (total absence of hot spots) at a 
frequency approximately equal to the dither frequency, as displayed in fig. 1. Furthermore, 
judder’s magnitude varies depending on whether odd or even gears are engaged. 
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Fig. 1 - Experimental data: clutch judder arises at a high slip speed. 

For a first qualitative investigation of this phenomenon, the authors developed a specific 3 
degrees-of-freedom (dofs) minimal model, which was studied by means of Floquet theory [15], 
identifying parametric excitation due to dither as a new and unexplored source of clutch judder. 
For fitting experimental data and predicting the occurrence of the phenomenon, models with 
increasing complexity are here proposed, considering a larger number of dofs.  
Methods 
The system under analysis consists of four electro-hydraulically actuated wet clutches, eight gear 
ratios and three reduction ranges, as represented in fig. 2. Two clutches engage odd and even gears, 
respectively, while the other two engage forward and reverse. To improve the response of the 
hydraulic valves, they are actuated by dithering the main signal, consisting of a constant main 
pressure component pm and an oscillating component pf. 

The hypothesis of parametric resonance as the cause of this kind of clutch judder was first 
assessed by the authors in [15], with the aid of a 3 dofs minimal model. Alongside the theoretical 
study of the phenomenon, an experimental campaign was conducted on a test bench. The input 
parameters selected for each test were the angular speed of the electric motor (replacing the engine 
of the tractor), the main actuation pressure, the dither (fluctuating) pressure (pf) and frequency (ωp) 
for each of the four clutches. Considering an adequate range of variation for ωp and pf, clutch 
engagements were performed for each pair (ωp, pf). The output parameter selected as an indicator 
for the occurrence of instability was the angular velocity upstream of the clutch (see fig. 1). After 
computing the relative spectrum of each experimental time history, the maximum value (peak) of 
each spectrum was reported on (ωp, pf) contour plots, as displayed in fig. 4b, which can be 
considered as potential and experimentally estimated stability charts. These charts showed that the 
essential model used in [15] cannot reproduce the identified unstable region. Therefore, models 
with higher complexity have to be considered. 
Results and discussion 
A 10 dofs model of the transmission is developed, as shown in Fig. 2. This model is described by 
a system of second order differential equations with time-periodic coefficients within the damping 
matrix.  

Stability can be studied by either the Monodromy Matrix Method (MMM), or the Harmonic 
Balance Method (HBM). Both methods are based on Floquet theory [16], with the difference that 
the computational cost of MMM lies in the integration of the equations of the system, while the 
computational cost of HBM lies in the solution of a quadratic eigenvalue problem [17,18,19]. 

As a result, stability maps are drawn, characterized by the presence of unstable tongue-shaped 
regions (Arnold tongues). The stability map of the 10 dofs model is quite complex, with Arnold 
tongues of different kinds, as displayed in fig. 3. Tongues 1, 2 and 3 are regions of ‘single-period 
instability, in which the system oscillates with a period equal to that of the parametric excitation 
(dither). On the other hand, in tongues 4 and 5 the unstable oscillation of the system has a double 
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period with respect to that of the parametric excitation, yielding a double-period instability. 
Finally, tongues  6, 7 and 8 are due to complex conjugate Floquet multipliers, coming out of the 
unit circle in the Argand plane [16], thus in general yielding non-periodic unstable solutions. 

 
Fig. 2 – Dual-clutch transmission under analysis and 10 dofs model. 

 
Fig. 3 – Stability map obtained with the 10 dofs model. 

Given that the experimental campaign identified only one region of single-period instability, as 
shown in Fig. 4b, this suggests that the adopted 10 dofs model can actually be simplified into a 
more convenient minimal model. The stability map in fig. 3 shows only two single-period tongues 
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at low frequencies (1 and 2), while the others are located at much higher frequencies (other single-
period tongues appear at frequencies outside the upper limit of the x-axis in fig. 3). 

Analyzing the model, it was found that the part of the transmission between the engine and the 
first gear wheel is the one that has a preponderant influence on unstable tongues 1 and 2. 

Therefore, an excellent compromise has been found with a 4 dofs minimal model in which all 
the components placed between the clutch damper (J2) and the clutch pack have been incorporated 
into a single rotating mass and a single torsional stiffness (fig. 4a). 
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Fig. 4 – Four dofs model (a) and comparison with the experimental stability chart (b). 
A very good correspondence was found between the theoretical stability map obtained with the 

4 dofs model, as shown in fig. 4b (single-period tongue superimposed on the experimental chart), 
adopting the data reported below fig. 4a. 

The equations of motion of the 4 dofs model shown in fig. 4a read: 
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where Ji are moments of inertia, kij are torsional stiffness coefficients, cij are internal damping 
coefficients, ci are external damping coefficients, Nc is the number of pairs of clutch plates, Rm is 
the mean radius of the clutch friction surfaces, p(t) is the actuation pressure, S is the area of action 
of p(t), Tc is the friction torque and µ is the friction coefficient. 

As a first approximation, the friction coefficient is considered linearly dependent on the relative 
speed of the clutch plates and is expressed as: 

0 4 3( ) ( )= + − 
gtµ µ µ θ θ  (4) 

The values adopted for the parameters in the 4 dofs model are reported below fig 4a. 
Sensitivity analysis showed that the experimentally identified single-period tongue is mainly 

influenced by the equivalent stiffness k24 and moment of inertia J4 of the components between the 
damper and the clutch. Furthermore, the damping coefficient of the clutch damper c12 has a great 
impact on the stability map because, if considering lower values, it gives rise to two combination 
regions which are symmetrical with respect to the identified single-period tongue, giving rise to a 
sort of tricuspid tongue. This tricuspid tongue is also visible in the map of the 10 dofs model, 
composed of unstable regions 6, 2 and 7: by reducing c12 the tips of tongues 6 and 7 are lowered 
and thus the unstable region broadens. 

Finally, it should pointed out that the adopted model does not take into account several aspects 
of the complexity of the real transmission, such as nonlinear effects and asymmetries, able to 
produce relevant modifications in the stability thresholds, as for instance ‘merging’ effects 
between adjacent instability tongues [18,19]. 
Summary 
The analysis of clutch judder on a dual-clutch gearbox for tractors has led to the identification of 
parametric resonance due to dither as a new possible cause for the onset of vibration. 

Models with different levels of complexity have been developed, and a 4 dofs minimal model 
was identified, able to predict with good accuracy the unstable parametric region in which judder 
occurs and representing a useful tool at the design stage.  
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Abstract. The dynamics of connecting elements should be identified to evaluate their effects on 
the assemblies where they are employed. In general, a linear analysis is sufficient to determine 
their dynamics. However, in some cases, their responses depend on the amplitude and frequency 
of the excitation, thus nonlinear analyses must be carried out. Following a modal approach, 
Nonlinear Normal Modes (NNMs) can be used. The aim of this work is to identify the NNMs of 
a set of nonlinear connecting elements properly designed to be considered as strongly nonlinear 
springs. These elements have been manufactured and tested to measure some of their NNMs. The 
time series of the oscillation on some points is recorded using a laser vibrometer for different 
amplitude and frequencies of excitation. Then, the Virtual Point Transformation (VPT) is used to 
reduce the obtained data on the two physical points through which the spring is connected to other 
subsystems. The procedure is repeated for each NNM and the modal basis of each element is 
expressed as function of the level of excitation. 
Introduction 
In the last decades the dynamic characterization of joints has become of fundamental importance 
[1]. Many works have been done to address the problem of bolted joints and lap joints to evaluate 
their effect in the dynamics of coupled systems. On the other hand, nonlinearities are employed in 
energy-harvesting applications [2] and in dynamic vibration absorbers [3]. Different studies are 
focused on the effects that nonlinear connections produce on coupled assemblies. In general, 
nonlinearities arise when the stiffness and damping properties of the connection depend on some 
parameters, like the exchanged force or the relative motion between the connected parts. Those 
dependencies are usually represented using nonlinear laws to approximate the dynamic behavior 
of the connection. However, in some cases those laws might not represent properly the dynamic 
behavior of the joint, thus providing misleading results. In those cases, an experimental 
characterization is the only way to correctly estimate the nonlinear behavior of the connection.  

The aim of this work is to characterize the dynamic behavior of a nonlinear element that can be 
coupled to any subsystem such that it can be regarded as a localized source of nonlinear 
phenomena. The connecting element considered in this work is suitably designed to exhibit a 
strong nonlinear behavior. It is derived from the one used in [4] but some adjustments in the design 
are performed to make it more robust and allow to couple/decouple it to/from the connected parts 
without affecting its dynamic behavior. Two connecting elements are assembled and tested, 
following the same procedure described in [5]. They are going to be used as nonlinear connecting 
elements to couple two beams and obtain an assembly like the one described in [4]. 
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Description of the Nonlinear Connecting Element  
In the current Section, the new design for the Nonlinear Connecting Element (NLCE) is presented. 
The connecting element is similar to the one described in [4]. However, some design aspects are 
improved to make the element more robust and ensure that the junction with other subsystems is 
localized. Fig. 1 shows the drawings of the NLCE and its 3D model.  

  

a) Design of the NLCE b) 3D model of the NLCE 
Fig. 1– Design of the NLCE; the dimensions are expressed in millimeters 

It is composed of three main parts: a C shaped element and a block element (referred as C-
element and Q-element hereinafter, respectively) connected through a 0.2 mm thick spring-steel 
sheet (referred as S-element). During the assembly a thermal cycle has been introduced to 
guarantee a pre-tensile stress on the S-element to avoid buckling phenomena. Fig. 2 shows the first 
three modes of vibration of the NLCE obtained by performing a linear modal analysis on ANSYS. 
These are modes of interest because there is a large deformation of the S-element that leads to a 
significant nonlinear behavior of the NLCE.  

   

a) First mode b) Second mode c) Third mode 
Fig. 2 – First three modes of vibration of the NLCE 

This design guarantees that once the NLCE is assembled, it can be treated as a unique 
subsystem, and can be jointed/disjointed to/from other subsystems making it robust and reliable 
for different tests. As it can be seen from Fig. 2, the three modes are associated with a relative 
motion between the C- and Q-element due to the deformation of the S-element. For this reason, it 
is possible to represent the dynamic behavior of the NLCE as the behavior of two masses connected 
through one longitudinal spring along the z-axis and two rotational springs acting along the x- and 
y-axis, respectively.  

Since the internal deformation of the C- and Q-elements is negligible, a Virtual Point 
Transformation (VPT) [6] can be applied on their measurement points to obtain the time response 
on VP-C and VP-Q shown in Fig. 1b. For a given measurement point, the VPT is expressed by: 
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where u=[ux, uy ,uz]T is the array containing the displacements in the local frame (x,y,z) of the 
measurement point accounting for the sensor orientation; q=[qX, qY, qZ, qθX, qθY, qθZ]T is the array 
containing the 6 DoFs of the virtual point in the global frame (X,Y,Z). Moreover, coefficients (rX, 
rY, rZ) represent the distances along the three axes between the measurement point and the virtual 
point; the matrix of coefficients ei,j with i=x,y,z and j=X,Y,Z represent the transformation matrix 
between the two frames and the vector of coefficients µi is the residual of displacements associated 
with the deformation. Note that, only the three DoFs q=[qZ, qθX, qθY]T are meaningful to 
characterize the dynamics of the NLCE and only the displacements along the z-axis are measured. 
Then, the VPT is performed to obtain qC and qQ. The deformation of the NLCE qN is:  
 

𝒒𝒒𝑵𝑵 = 𝒒𝒒𝑪𝑪 − 𝒒𝒒𝑸𝑸 (2) 
 
Since the NLCEs are suitably designed to be nonlinear, the resonance frequencies ωN vary for 
increasing levels of the excitation. Moreover, the response along the DoFs qN to harmonic 
excitation at a given resonance frequency can be nonlinear and contain super-harmonic 
components. Thus, each term qi(t) of qN can be approximated using a truncated Fourier series: 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) ≈ 𝑎𝑎0,𝑖𝑖 + �𝑎𝑎𝑘𝑘,𝑖𝑖

𝑛𝑛

𝑘𝑘=1

cos(𝑘𝑘𝜔𝜔0𝑡𝑡) + 𝑏𝑏𝑘𝑘,𝑖𝑖sin (𝑘𝑘𝜔𝜔0𝑡𝑡) (3) 

 
This allows to evaluate how the coefficients a0,i, ak,i and bk,i vary as the excitation level increases, 
highlighting the presence of super-harmonic components in the nonlinear modes of both NLCEs.  
Experimental tests 
Two NLCEs are manufactured and assembled following two different thermal cycles such that 
their dynamics are distinct. Both the NLCEs are tested following the same steps to obtain their 
linear and nonlinear behavior. In this Section the corresponding test procedures are described. The 
1D scanner laser vibrometer Polytec PSV-500 is used to measure the velocity of the grid of points 
shown in Fig. 3. 

   
Fig. 3 – Grid of measurement points of the NLCE: the green points are referred to the  

Q-element, the red points to the C-element and the blue points to the S-element 
Both the components are tested first using a low amplitude burst random excitation to estimate 

their linear behavior and then with increasing amplitude harmonic excitation signals to 
characterize their nonlinear dynamics [5]. In the linear tests, the Polytec software generates the 
excitation signal for the shaker (2025E Modal shaker, Modal Shop). In the nonlinear tests, instead, 
the Dewesoft acquisition system is used. The shaker is provided with an impedance head PCB 208 
that measures both the force and the acceleration at the excitation point.  
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Results of linear tests 
Fig. 4 shows the average spectrum of both NLCEs obtained by performing a linear test. This 
spectrum allows to localize the natural frequencies of the component in a given frequency range. 
The different thermal cycle followed for the second NLCE makes its natural frequencies higher 
than the first NLCE's. The dashed red lines in Fig. 4 highlight the frequencies of the modes of 
interest identified in the numerical model (Fig. 2) that are considered hereinafter. The resonance 
frequencies of the three modes are listed in Table 1. Fig. 5 shows the operational deflection shapes 
performing a Fast Scan analysis by exciting the NLCE with a harmonic force at the frequencies 
shown in Table 1. The obtained operational deflection shapes comply with the numerical results 
shown in Fig. 2. 

  

a) First NLCE b) Second NLCE 
Fig. 4 – Average spectra of the two NLCEs 

 

   

a) First mode b) Second mode c) Third mode 
Fig. 5 – Operational deflection shape of the three modes obtained through Fast Scan analysis 

 
Table 1 – Resonance frequencies of three modes of the two NLCEs 

 Resonance frequency 1st NLCE Resonance frequency 2nd NLCE Δ% 
First mode 28.3 Hz 38.4 Hz 35.7 
Second 
mode 

53.9 Hz 57.8 Hz 7.2 

Third mode 76.1 Hz 101.8 Hz 33.8 
Results of nonlinear tests 
Once the linear resonance frequencies of the modes of interest are found, it is possible to perform 
the nonlinear analysis to reconstruct the corresponding Nonlinear Normal Modes (NNMs). The 
measurement of the NNMs is carried out by setting the amplitude and by adjusting the frequency 
of the sinusoidal excitation to reach the resonance condition, i.e., when the velocity is in-phase 
with respect to the excitation force. Once the resonance condition is attained, the velocity of all 
the points in the grid is recorded and it is integrated to obtain the displacement time series. By 
setting several excitation levels, it is possible to find the corresponding resonance frequency, thus 
reconstructing the considered NNM. This procedure is repeated for the three modes of each NLCE, 
always starting from the low value of amplitude at the identified linear natural frequencies, listed 
in Table 1.  
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a) First NLCE b) Second NLCE 
Fig. 6 – Frequency-Force Plot of both NLCEs: -◊- first mode; -●- second mode; -x- third mode 

Fig. 6a and 6b show the resonance frequency of the three NNMs versus the excitation force for the 
first and second NLCE, respectively. Note that the resonance frequencies of the second NLCE are 
higher than those of the first one, especially for the first and third NNMs. As mentioned before, 
the internal deformation of the C- and Q-elements is negligible, thus Virtual Points can be 
introduced to describe their time response. According to the procedure described before, the 
analysis of the time response of VP-C and VP-Q allows to identify the mode shape of the NNMs 
associated with the deformation of the S-element. Fig. 7 shows the time responses of VP-C and 
VP-Q for the first NLCE along the three relevant DoFs (Z, θX, θY). These displacement signals are 
obtained applying an excitation force of about 12 N. It is evident that, for each mode, the time 
response along one DoF is predominant with respect to the others. Nevertheless, the other DoFs 
have a non-null contribution in the time response, thus they cannot be neglected when estimating 
the mode shape of the corresponding modes. For example, the time responses along the DoFs θX 
and θY of the first mode (Fig. 7 and 7g) show a non-negligible oscillation. Furthermore, it is 
possible to observe the presence of super-harmonic components. For this reason, the responses can 
be fitted using a Fourier series according to Eq. (3) truncated at n=4. Fig. 8 shows the variation of 
the Fourier coefficients for increasing levels of excitation on the three DoFs of each mode of the 
first NLCE. The results highlight that, for each mode, the contribution of the first harmonic of the 
response along one DoF is predominant with respect to all the other terms. Note that, for the first 
two modes, there is a non-negligible response for the other DoFs, while for the third mode only 
the DoF θY is involved. The Fourier fitting highlights that super-harmonic components are non-
negligible, especially in the non-predominant DoFs, e.g. DoF Z for the second mode and DoF θX 
for the first mode.  The results of the second NLCE are similar to those of the first NLCE but they 
are not shown for the sake of brevity.  

 

Fig. 7– Time response of VP-C (-) and VP-Q (-) of the first NLCE for F=12 N. 
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Fig. 8 – Fourier coefficients of the differential displacements for the three modes of the first 
NLCE: -a0; -◊ a1; -○- b1; -◊ a2; -○- b2; -◊ a3; -○- b3; -◊ a4; -○- b4. 

Summary 
In this work, the dynamic behavior of a pair of Nonlinear Connecting Elements is experimentally 
evaluated. A linear experimental modal analysis is performed and three linear normal modes of 
interest are identified. Subsequently, nonlinear tests are carried out to identify the corresponding 
nonlinear normal modes in terms of variation of resonance frequency and mode shape. Since the 
nonlinearity introduces super-harmonics in the resonant response of the system, their contribution 
has been evaluated in the nonlinear normal mode identification. The identification procedure 
carried out on two similar nonlinear connecting elements shows that a different pre-tensioning of 
the spring-steel sheet significantly affects the nonlinear dynamics of these systems. 
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Abstract. This paper presents the results of an extensive experimental campaign focused on the 
analysis of the dynamic interactions between an elastic structure and a non-Newtonian fluid. The 
structure is a circular cylindrical shell clamped in one end to a shaking table and in the other end 
to a heavy rigid disk. The shell has been investigated both in presence and absence of fluid. The 
fluid is a mixture of water and corn starch flour, commonly called Oobleck. The experiments were 
carried out at low and high vibrating energy, in order to clarify the influence of the fluid in different 
conditions: changing of modal properties, onset of complex dynamics when the fluid-solid 
transitions take place in the fluid. 
Introduction 
Fluid structure interaction (FSI) phenomena are of interest for several engineering fields as well 
as in medical science, and, of course in bioengineering or biomechanics. One can find countless 
examples of FSI problems in engineering, e.g. flutter of airplane wings, galloping in powerlines 
and bridge cables, supersonic panel flutter, pipes flutter, fully or partially filled tanks, heat 
exchangers.  In the field of Medical Sciences an important example is the human aorta, where the 
fluid is highly viscous and non-Newtonian and the artery wall is hyper-elastic, this is a combination 
of exceptionally difficult problems. 

At the end of the previous century (1983) Babcock [1] published an interesting review paper, 
where he counted, at that time, about 50,000 papers published on the topic of shell stability; he 
pointed out the attention on open topics such as post-buckling and imperfection sensitivity; 
dynamic buckling; plastic buckling; experiments. Further reviews, see Ref.[2-4], confirmed the 
need of further research on the dynamics and stability of shells, which is a topic not well 
understood. 

In the sixties and seventies a series of studies regarding dynamic shells instabilities were 
published. Further studies addressing the parametric excitation of thin circular cylindrical shells, 
using the Donnell’s shallow shell theory, can be found in Refs. [5-9]. More recent studies on 
dynamic instabilities of cylindrical shells considered more refined theories such as the Sanders-
Koiter theory [13-18] validated from lab experiments; in such series of studies it was clarified the 
role of axial loads generated by inertial effects on the onset of chaotic vibrations, very high 
amplitudes of vibration with associated extreme noise production. 

In order to have a comprehensive description of fluid structure interaction phenomena, models 
and applications, the reader is suggested to read the monumental work of Paidoussis [19], [20]; in 
such treatises the main fluid-interaction models are described as well as methods of analysis. 
Another interesting paper to be mentioned is a review published in 2003 by Amabili and Païdoussis 
[21], where more than 300 papers on the topic of nonlinear vibrations of shells with or without FSI 
were listed; among the deep and interesting comments on the literature the authors pointed out the 
attention on two aspects, we report their full sentences: “only 23 of the more than 350 papers 
discussed in the present review give experimental data on large-amplitude vibrations of complete 
shells”, “most of the papers reviewed are dedicated to various theoretical aspects of the problem, 
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with very few experimental results, although more experimental data are available for supersonic 
flutter of shells”. 
In the following, the bibliographic analysis is focused on FSI papers strictly related to the present 
study; it is worthwhile to stress that almost all studies deal with inviscid or Newtonian fluids. 

In the 1967 Chu & Kana [22] published a paper focused on nonlinear vibrations of partially 
filled tanks; the nonlinearity was attributed to free surface waves. In the 1979 Ramachandran [23] 
analyzed large amplitude nonlinear vibrations of circular cylindrical shells in contact with a dense 
fluid, no free surface was present. The study was theoretical using the Donnell’s shell theory and 
the potential theory for the inviscid incompressible fluid.  

Using a semi analytical model based on the Donnell shallow shell theory for the structure and 
the potential flow theory for the inviscid and incompressible fluid, Amabili et al. [24]-[29] 
published a series of papers where the effect of a quiescent or flowing heavy fluid was investigated. 
Further investigations focused on the interactions of circular shells with supersonic flows, 
compressible, annular and unbounded flows can be found in Refs. [30]-[34]; in such series of 
studies the presence of compressive forces was accounted for as well. 

In 2012 Girchenko et al studied numerically the interaction of a nonlinear viscous fluid, having 
a pseudoplastic nature, with a helical shell. They combined two commercial software FlowVision 
(finite volumes) and Simulia ABAQUS (finite elements). They showed the differences between 
Newtonian and Non-Newtonian flows in terms of stresses caused on the helical structure. Another 
study regarding FSI and non-Newtonian fluid was focused on arterial bypass [36], the effects of 
wall elasticity and non Newtonian rheology were investigated numerically through the commercial 
software ANSYS. 

An experimental study on the rheology and processing of solvent-free core shell “polymer 
opals”, see Ref. [37], analyzed an elastic shell grafted to hard colloidal polymer core particles in 
order to study the optical properties under deformation. 

In 2019 Wu et al. [38] presented a numerical study on interaction between elastic multilayered 
spheres and a non-Newtonian fluid. They analyzed gold nanospheres immersed in water and 
calculated theoretically the natural frequencies and the quality factors. 

The bibliographic analysis clearly shows that, even though a huge number of publications can 
be found about FSI problems, and many papers are available about non-Newtonian fluids, the 
interactions between vibrating structures and non-Newtonian fluids appear to be an almost 
unexplored field. 
Experimental setup and Specimen definition 
The studied structure is a polyethylene terephthalate (PET) shell, vertically placed, wedged in an 
aluminum base rigidly connected to the shaker at the bottom, and constrained at the top by a C-40 
steel disc, which is called top mass.  

The internal face of the shell was fixed to the external face of both the top mass and the 
basement by means of an instant cyano-acrylic glue. In addition, the lower end of the shell was 
secured to the basement via an aluminum ring, lying on the basement and tightened to it with 
screws. This ring was inserted to guarantee the interlocking constraint. The realized setup leads to 
a lower end of the shell solidary oscillating with the shaker, since the basement is anchored to the 
shaker horizontal plate with screws, whilst the top mass induces a rigid body motion at the upper 
end of the shell, preventing this end from moving freely. 

The material of the shell was chosen to be PET, since, as a polymer, it can reach high oscillation 
amplitudes without addressing plastic deformation phenomena [16]. The shell is a center-holed 
cylinder characterized by a length (L = 135 mm) greater than the diameter (D = 80 mm). 

The steel disc acting as a top mass is highly compact to avoid not wanted side effects, such as 
the spectral proximity of two vibration modes, especially the one to be excited (axial-symmetrical) 
and the tilt modes. 
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The tests were performed using a Dongling ES-340 shaker; a dynamic characterization of the 
shaker was realized in order to study the coupling with the shell. 

The accelerometer on the shaker plate was dedicated to the measurement of the excitation 
produced by the shaker on the system basement-shell-top mass. Three accelerometers were placed 
on the top face of the top-mass, close to its circular edge and angularly spaced by 120°. Each sensor 
was positioned with the X-axis tangent to the circular edge and the Z-axis perpendicular to the top 
mass face and pointing upward (opposite to the shell). The goal of these three sensors is to measure 
the acceleration of the disc in the Z-direction, i.e., the axial (along L) oscillation of the shell, since 
under non-linearity conditions this acceleration/oscillation is not directly linked to the shaker 
excitation which is measured via the accelerometer on the shaker plate. However, the realized 
setup also allows to detect possible rotations of the structure around axes lying on a plane 
perpendicular to L and passing through either the structure mass center (tilt modes) or the basement 
fixing (beam modes). The detection of these modes is performed by correlating the signal acquired 
in the three directions by the three accelerometers. 

The vibrometer and the telemeter are used for the study of the shell radial modes, namely 
possible vibrations of the shell along the radial direction (planes perpendicular to the shell length). 
As shown in Figure 3, the laser ray of both sensors focuses on points at half-length of the shell. 
Specifically, in order to obtain a proper refracted signal by the shell, needed for the vibrometer 
and telemeter measurements, a refractive sticker and a black mark were applied on the shell in the 
points where the rays imping the shell, respectively. The angle between the vibrometer and the 
telemeter was chosen to be 57°, because this value allows to avoid a redundancy in the 
measurements of the drift velocity (vibrometer) and the displacement (telemeter) of the shell wall 
in the radial direction for a wide range of possible radial modes which can be excited in the non-
linear dynamic regime. 

 

 
 
Figure 3 – a) Setup: (1) shaker, (2) shell, (3) measurement accelerometers, (4) telemeter and (5) 

control accelerometer on the shaker plate. b) Overall experimental setup. 
Nonlinear dynamic scenario 
Experiments are now carried out considering an empty and a fluid filled shell. The shell is now 
excited from the base, the excitation signal provided to the amplifier is harmonic with different 
amplitudes (0.01-0.08V) and frequencies (150-310Hz for the empty shell and 150-270Hz for the 
fluid filled shell).  

Figure 4 shows a bifurcation diagram obtained from Poincaré sections obtained by using a 
single signal (lateral displacement). The dynamic scenario is extremely rich, we observed different 
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sub-harmonic responses: ½, 1/3, ¼, 1/8 as well as quasiperiodic and chaotic dynamics in a very 
wide frequency range. For the sake of brevity bifurcation diagrams obtained by the other signals 
(accelerometers, Laser Doppler) and by changing the excitation levels are not reported for the sake 
of brevity. 

 
Figure 4: Bifurcation diagram of Poincaré maps: excitation level 0.06V, downward frequency 

sweep. 
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Abstract. This study presents a damage identification procedure in beams based on the use of 
beamforming algorithms, which are mostly utilized in inverse problems of source identification 
and image reconstruction. We choose the modal curvatures as observed quantities and compare 
the performance of the Bartlett beamformer, minimum variance distortionless response (MVDR) 
processor, and of a conventional objective function based on the modal curvatures. By means of a 
set of experiments, we show that the MVDR processor can overcome some of the difficulties 
encountered with other estimators, especially in cases of slight damage, or damage located between 
two sensors. 
Introduction 
Numerous studies have proven that the use of modal quantities is a very effective strategy to locate 
damage [1]. Among different modal quantities, modal curvatures stand out for their low sensitivity 
to environmental and operational conditions, and better performance in case of slight damage [2,3]. 
When solving the related inverse problem, it is important to apply a robust estimator (or processor), 
which may improve the quality of the solution, especially in the presence of disturbance due to 
operating conditions, noisy data, and modelling errors. 

The Minimum Variance Distortionless Response (MVDR) data processor [4], also named 
beamformer, is an estimator successfully applied in image-reconstruction techniques based on the 
wave response, for instance, to locate sources in oceans, but also to reconstruct the image of defects 
in plates and solids [5]. It is based on the comparison of modelled responses (replica vector) to 
data received by an array of sensors. Compared to other beamformers, the MVDR has proved its 
effectiveness in minimizing noise, thus providing images of very good quality. The use of the 
MVDR processor can be viewed as an approach to the solution of an inverse problem, with 
potential applications to a broader range of problems in which the forward solutions are 
computable and measurable, especially regarding the field of structural vibrations, where the use 
of such estimator has not received attention in the literature to date. We aim at applying the MVDR 
beamformer to damage identification in beams, using modal curvatures as measured response 
quantities. To this aim, we assess the performance of the MVDR processor in identifying damage 
in pseudo-experimental and experimental cases with different location and intensity. Comparisons 
of the MVDR estimates to those of the Bartlett beamformer, and of a conventional objective 
function based on the modal curvatures are carried out. For the sake of brevity, this paper only 
reports some experimental results, while the full analysis is presented in [7]. 
Numerical Model 
The direct problem is solved by means of a 2D finite element (FE) plane stress analysis. This 
model is used to obtain natural frequencies and mode shapes of a free-free beam of length L, with 
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a notch of small extension bD, located at position SD, measured from left end of the beam (see 
Fig.1). The cross-section of the beam is rectangular with height HU and width b. The notch is 
modelled as a height reduction to the value HD in a stretch bD. We define damage by two non-
dimensional variables, namely, its location sD=SD/L, and the residual height of the cross-section, 
hD=HD/HU, collected in the vector, 𝒙𝒙� = {𝑠𝑠𝐷𝐷 ,ℎ𝐷𝐷}𝑇𝑇.  
 

 
Figure 1. Schematic representation of the beam used in benchmark case 

The numerical model is used for the construction of the replica vectors via sweeping the damage 
location from 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 = 0.04 to 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 = 0.96 in 48 steps, and the residual height from ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 = 0.06 
to ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 = 0.97 in 30 steps. For all the analyses we evaluate the longitudinal modal strains ε at 
m=7 equally spaced points, as numbered in Fig.1, and derive modal curvatures using the kinematic 
relation χ=ε/HU/2 of the Euler-Bernoulli beam theory. 
 
Experimental Study 
The experimental setup is illustrated in Figure 2. The beam was excited by an instrumented 
hammer, at points #8 or #9, and the response was measured using seven strain gauges and two 
accelerometers. The tests were repeated ten times per each point of application of the forcing 
function. The applied impulsive force is capable of exciting frequencies up to 3000 Hz, which 
enables determining the first three natural frequencies. Accelerometers at points #8 and #9 are 
used for modal curvature normalization [6]. 

 
Figure 2. Schematic of the experimental setup 

We consider two cases which we label Case A, and Case B. In the former, damage is located at 
sD = 0.25, that is, under sensor #2, while in the latter damage is between sensors #3 and #4, with 
sD = 0.4375. In both cases we consider two damage severities which correspond to nominal 
residual heights hD = 0.75 (D1) and hD = 0.5 (D2). In all cases the damage extension is fixed, with 
bD = 1 mm. 

The numerical and experimental curvatures of the first three modes for Case A and Case B are 
presented in Fig.3. Overall, a very good agreement is observed in both cases regarding the form of 
the curves. In Case A, the localized effect of damage can be captured by the sensor #2 and the 
curvature exhibits a distinct change, providing a strong hint at the location of damage. In Case B, 
instead, the localized effect cannot be captured, which makes locating the damage more difficult. 
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(a) (d) 

 
 

(b) (e) 

 
 

(c) (f) 
Figure 3. Numerical and experimental modal curvatures for Cases A (a-c) and B (d-f). 

Inverse Problem via MFP Algorithms 
The direct solution of the free-vibration problem provides the replica vectors 𝝌𝝌𝑚𝑚(𝒙𝒙�) ∈ ℝ𝑚𝑚, which 
list the mass-normalized modal curvatures of the ith mode at m sensor points. The beamformers 
evaluate the correlation between the normalized replica vector,  

𝝌𝝌�𝑚𝑚(𝒙𝒙�) = 𝝌𝝌𝑚𝑚(𝒙𝒙�) ‖𝝌𝝌𝑚𝑚(𝒙𝒙�)‖⁄ , (1) 
and the data vector which lists mass-normalized modal curvatures obtained by experimental or 
pseudo-experimental measurements, 𝒅𝒅𝑚𝑚(𝒙𝒙�) ∈ ℝ𝑚𝑚, for the ith mode. Finding the damage parameter 
set which provides the best correlation with the measured data requires collecting the values of 
response data in the parameter space [𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 ] × [ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 ,ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 ], which is performed by the 2D 
FE procedure described beforehand. 

Bartlett Beamformer The Bartlett beamformer is a basic processor which has been used almost 
in all the studies about matched field processors (MFP) for comparative purposes. Simply, it is the 
average of the projection of the data vector onto the replica vector, and it can be written in terms 
of the cross-spectral density matrix (CSDM) of data, 𝑲𝑲𝑚𝑚 = 𝒅𝒅𝑚𝑚𝒅𝒅𝑚𝑚𝑇𝑇. The expression for the Bartlett 
Beamformer for individual modes and their superposition are given below. 

𝐵𝐵𝐵𝐵𝑚𝑚𝑟𝑟𝑟𝑟,𝑚𝑚(𝒙𝒙�) = 𝝌𝝌�𝑚𝑚𝑇𝑇(𝒙𝒙�)𝑲𝑲𝑚𝑚𝝌𝝌�𝑚𝑚 (𝒙𝒙�),    𝐵𝐵𝐵𝐵𝑚𝑚𝑟𝑟𝑟𝑟𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟(𝒙𝒙�) = �𝐵𝐵𝐵𝐵𝑚𝑚𝑟𝑟𝑟𝑟,𝑚𝑚(𝒙𝒙�)
3

𝑚𝑚=1
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This processor has many side lobes even in case of perfect pseudo-experimental data. This 
drawback is overcome by the adaptive filtering of data, which leads to different processors, one of 
which is the MVDR beamformer. 

Minimum Variance Distortionless Response (MVDR) Beamformer Trying to minimize the 
projection except for the best match, we have [4]: 

𝐵𝐵𝑀𝑀𝑀𝑀𝐷𝐷𝑀𝑀,𝑚𝑚(𝒙𝒙�) = �𝝌𝝌�𝑚𝑚𝑇𝑇(𝒙𝒙�)𝑲𝑲𝑚𝑚
−1𝝌𝝌�𝑚𝑚 (𝒙𝒙�)�

−1
,     𝐵𝐵𝑀𝑀𝑀𝑀𝐷𝐷𝑀𝑀(𝒙𝒙�) = �𝐵𝐵𝑀𝑀𝑀𝑀𝐷𝐷𝑀𝑀,𝑚𝑚(𝒙𝒙�).

3

𝑚𝑚=1

 (3) 

Here we note that the CSDM is usually ill-conditioned which makes its inversion not a straight-
forward task. We improve its conditioning using a diagonal loading technique, with a magnitude 
of 10−6tr𝑲𝑲𝑚𝑚. 

Objective Function A widely used objective function which measures the difference between 
replica vector and the measurement is: 

𝐻𝐻(𝒙𝒙�) = ��𝝌𝝌�𝑚𝑚(𝒙𝒙�) − 𝒅𝒅�𝑚𝑚(𝒙𝒙�)�
3

𝑚𝑚=1

,   𝒅𝒅�𝑚𝑚(𝒙𝒙�) =
𝒅𝒅𝑚𝑚(𝒙𝒙�)
‖𝒅𝒅𝑚𝑚(𝒙𝒙�)‖. (4) 

   

○ Actual xe = {0.25, 0.753}T ○ Actual xe = {0.25, 0.753}T ○ Actual xe = {0.25, 0.753}T 
× Estimate xe = {0.25, 0.781}T × Estimate xe = {0.25, 0.344}T × Estimate xe = {0.25, 0.781}T 

(a) (b) (c) 
Figure 4. Contour plots and estimates of the objective function a), Bartlett beamformer b) and 

MVDR c) for D1.A. 
Fig.4 shows the contour plots of the different estimators and reports the related estimates of the 

damage parameters. Note also that the reported values of hD slightly differ from the nominal ones 
for they were updated with their experimental measurement with a caliber. The correct value is 
denoted by a circle and the estimate by a cross. Overall, we see that the objective function and 
MVDR are very accurate in determining both location and severity of damage, while the Bartlett 
beamformer overestimates the severity but captures the correct location. Objective function and 
Bartlett beamformer admit many local extrema and side lobes, while MVDR remarkably surpasses 
them especially in terms of damage intensity resolution. 

The estimates in the case of a more severe damage are reported in Fig. 5. We see a pattern very 
similar to the previous case in which the estimates of the objective function and MVDR are 
accurate, but the Bartlett beamformer overestimates damage severity. 

In case of damage in between sensors #3 and #4, the identification is more difficult since the 
local effects of damage cannot be captured by one of the sensors (Fig. 3). This is reflected in Fig. 
6; the objective function has wider flat valleys, many local maxima are apparent in Bartlett 
beamformer, and MVDR has many side lobes even though their order is smaller than the global 
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maxima. When damage is more severe (Fig. 7), the estimate of Bartlett beamformer is improved, 
however, it is still less accurate than those of the objective function and MVDR. 

 

   

○ Actual xe = {0.250, 0.507}T ○ Actual xe = {0.250, 0.507}T ○ Actual xe = {0.250, 0.507}T 
× Estimate xe = {0.250, 0.594}T × Estimate xe = {0.250, 0.281}T × Estimate xe = {0.250, 0.594}T 

(a) (b) (c) 
Figure 5. Contour plots and estimates of the objective function a), Bartlett beamformer b) and 

MVDR c) for D2.A. 

   

○ Actual xe = {0.438, 0.733}T ○ Actual xe = {0.438, 0.733}T ○ Actual xe = {0.438, 0.733}T 
× Estimate xe = {0.462, 0.719}T × Estimate xe = {0.500, 0.539}T × Estimate xe = {0.462, 0.719}T 

(a) (b) (c) 
Figure 6. Contour plot and estimates of the objective function a), Bartlett beamformer b) and 

MVDR c) for D1.B. 
 
The overall estimates of different techniques for all the cases we considered here are 

summarized in Table 1. We see that the minimization of a suitable objective function and the 
MVDR provides identical results in these cases; however, the extrema of the latter are always more 
distinct than the former, which is a strong hint on higher reliability of MVDR. 

Table 1. Absolute errors of damage parameters for all the cases considered. 

 D1.A D2.A D1.B D2.B 
 |𝑠𝑠𝑒𝑒𝐷𝐷 − 𝑠𝑠𝐷𝐷| |ℎ𝑒𝑒𝐷𝐷 − ℎ𝐷𝐷| |𝑠𝑠𝑒𝑒𝐷𝐷 − 𝑠𝑠𝐷𝐷| |ℎ𝑒𝑒𝐷𝐷 − ℎ𝐷𝐷| |𝑠𝑠𝑒𝑒𝐷𝐷 − 𝑠𝑠𝐷𝐷| |ℎ𝑒𝑒𝐷𝐷 − ℎ𝐷𝐷| |𝑠𝑠𝑒𝑒𝐷𝐷 − 𝑠𝑠𝐷𝐷| |ℎ𝑒𝑒𝐷𝐷 − ℎ𝐷𝐷| 

H 0 0.028 0 0.087 0.024 0.014 0.004 0.031 
Bartlett 0 0.409 0 0.226 0.062 0.194 0.023 0.063 
MVDR 0 0.028 0 0.087 0.024 0.014 0.004 0.031 
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○ Actual xe = {0.438, 0.500}T ○ Actual xe = {0.438, 0.500}T ○ Actual xe = {0.438, 0.500}T 
× Estimate xe = {0.442, 0.531}T × Estimate xe = {0.461, 0.563}T × Estimate xe = {0.442, 0.531}T 

(a) (b) (c) 
Figure 7. Contour plots and estimates of the objective function a), Bartlett beamformer b) and 

MVDR c) for D2.B. 
Conclusions 
We examined the possibility of applying to damage identification some beamforming algorithms 
which are widely used in fields such as underwater source identification and image processing. 
The identification of damage using experimental modal curvatures revealed that the use of MVDR 
is reliable and it suppresses local extrema which may lead to erroneous estimates. All the 
processors under investigation have exhibited high sensitivity to damage location, although 
MVDR appeared to be the most sensitive with regard to damage intensity. 
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Abstract. We present the main outcomes of a recent experimental activity denoted to studying the 
dynamic behaviour of Wire Rope Isolators loaded along the axial direction. The experimental 
activity has been carried out at the laboratory of the Department of Structures for Engineering and 
Architecture of the University of Naples Federico II (Italy). Furthermore, a new hysteretic model 
derived from a recently developed class of asymmetric hysteretic models is illustrated. The main 
advantages of the proposed model with respect to the classical ones, typically having a differential 
nature, are: 1) the output variable is computed in closed-form, i.e. without numerically solving a 
differential equation; 2) the proposed model is based on two different sets of parameters that allows 
one to independently model the loading and unloading curves. Specifically, a close matching 
between the experimental asymmetric loop and the numerically one has been obtained. 
Introduction 
Wire Rope Isolators (WRIs) are widely used in controlling both vibration and shock in order to 
protect sensitive equipment in the areas of aerospace and mechanical engineering [1] as well as 
for seismic protection of buildings [2] and their contents/equipment [3]. These devices have also 
been used to reduce the seismic vibration in protecting high voltage ceramic circuit breakers [4] 
and to protect the two Riace bronzes towards vertical components of seismic ground motions [5,6]. 

The excellent damping properties of such a device are due to the sliding friction developed 
between strands and wires that allows one to dissipate a large amount of energy. In addition, the 
WRIs behaviour depends on the device’s geometrical characteristics, e.g. the device length (l), 
width (w), height (h) and the wire rope diameter (φ). 

The WRIs force-displacement curve is affected by geometrical and mechanical non-linearities 
resulting in a complex shape of hysteretic nature that depends on the direction along which the 
devices are loaded, i.e., typically, the shear, roll and axial directions [7], see, e.g., Fig. 1. As a 
matter of fact, the hysteretic loop is symmetric in both shear and roll directions, while along the 
axial direction is asymmetric, showing a remarkable difference between tension and compression 
behaviour [8]. 

The complex WRI behaviour is typically predicted by using hysteretic models of differential 
nature [9,10] including the well-known Bouc-Wen model [11,12]. These kinds of models show 
some issues, such as: 1) the evaluation of the output variable is performed by numerically solving 
a differential equation; 2) generally, the models’ parameters have a not clear physically meaning; 
3) the loading and unloading branches in the force-displacement curve are coupled; 4) they must 
be suitably modified to reproduce specific force-displacement curves such as asymmetric loops. 
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(a) Front view (b) Transverse view (c) Cable’s cross-
section 

Figure 1 Geometrical characteristics of WRIs and load directions. 
Being interested to characterise the dynamic behaviour of WRIs along the axial direction, we 

illustrate some preliminary results obtained for the PWHS16040 device manufactured by 
Powerflex S.r.l (Limatola, Italy) during an experimental campaign conducted at the laboratory of 
the Department of Structures for Engineering and Architecture of the University of Naples 
Federico II (Italy). Finally, the mathematical characterisation of such a behaviour is shown by 
adopting a new hysteretic model. 
Experimental activity and results 
The preliminary results of the experimental campaign carried out on the WRI PWHS16040 loaded 
along the axial direction in both small and large displacements regimes are described in this 
Section. Specifically, the force-displacement (f-u) curves are compared, aiming to investigate the 
dynamic behaviour of the above-mentioned device by studying the influence of the displacement 
amplitude and frequency of a sinusoidal displacement input as well as of the axial preload and of 
the wire rope diameter. 

  

(a) Displacement amplitude ± 0.01 meters (b) Displacement amplitude ± 0.03 meters 
Figure 2 Hysteresis loops exhibited by two PWHS16040 devices characterised by two different 

diameters of the wire rope. 
Fig. 2 shows the hysteresis loops obtained for two PWHS16040 devices equipped with two 
different wire ropes having diameters equal to 16 mm (blue curves) and 19 mm (red curves), and 
by applying, in absence of axial preload, sinusoidal displacements having a frequency of 0.1 Hz 
and amplitudes equal to 10 mm (left) and 30 mm (right). One can observe that the use of a large 
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wire rope diameter provides a clockwise rotation of the hysteresis loops both in small and large 
displacements. 

  

(a) Displacement amplitude ± 0.01 meters (b) Displacement amplitude ± 0.03 meters 
Figure 3 Hysteresis loops obtained in absence of axial preload from cyclic tests characterised by 

a frequency of 0.1 Hz. 
Hence, by increasing the wire rope diameters, the tangent stiffnesses in the state of tension and 
compression increase. In addition, a larger amount of dissipated energy, which is represented by 
the area enclosed in the hysteresis loop, is shown using a large wire rope diameter, mainly in the 
large displacements range. 
The hysteresis loops of the WRI PWHS16040 are plotted in Fig. 3 as a function of the axial preload 
by applying sinusoidal displacements having a frequency of 0.1 Hz and amplitudes equal to 10 
mm (left) and 30 mm (right). Notably, two values of axial preload are considered, namely 0 (blue 
curve) and 3 kN (red curves). The hysteresis loop exhibits a clockwise rotation, without changing 
its area, when the displacement amplitude is equal to 10 mm and the axial preload increases (see 
Fig.3(a)). On the other hand, in the range of large displacements (Fig. 3(b)), a stiffening behaviour 
in the state of tension is displayed when the axial preload is increased, whereas the tangent stiffness 
variation in the state of compression is negligible. 

Fig. 4 shows the hysteresis loops obtained for the WRI PWHS16040 device, in absence of axial 
preload, when subjected to a sinusoidal displacement having displacements amplitude equal to 10 
mm and 30 mm, see, e.g., Fig. 4(a) and (b), respectively, and increasing frequency. By increasing 
the input frequency, a pronounced hardening behaviour in the state of tension is shown for large 
displacements, while the change of the tangent stiffness in the state of compression remains 
negligible, see Fig. 4(b). In contrast, the frequency effect on the tested WRI is much lower at small 
displacements, see Fig. 4(a). 
Experimental validation 
In this Section, we derive a specific hysteretic model from a more general class of models [13]; 
subsequently the new model is validated by comparing the experimental hysteresis loops of the 
PWHS16040 device with the simulated one. 

The general idea of the class of models consists of splitting the loop into four distinct curves 
that describe two phases, namely the generic loading and unloading phases in which the 
generalised velocity is, respectively, greater and smaller than zero. 
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Figure 4 Hysteresis loops obtained in absence of axial preload from cyclic tests characterised by 
increasing values of frequency fr. 

Notably, the generic loading phase is described by the loading and upper limiting curves 
denoted as c+  and uc , respectively; whereas the generic unloading phase is defined by the 
unloading and lower limiting curves referred to, respectively, as c−  and lc , see, e.g., Fig. 5. 

 

Figure 5 The four curves able to simulate the dynamic behaviour of WRIs. 
The experimental validation is carried out by taking into account a hysteretic model belonging 

to the above-mentioned class. Specifically, the proposed model corresponds to a simplified version 
of the recently proposed Vaiana-Rosati model (VRM) [14] in which only hysteresis loops 
characterised by upper and lower limiting curves with no inflexion points are modelled. 

Due to space limitations we just report the mathematical expressions of the functions describing 
the curves relating force f and displacement u along the axial direction 

 
2

2

1 1 0

1 1 0

( ) ,

( ) ,

u
u b

u
l b

c u e k u f

c u e k u f

β

β

β β

β β

+

−

+ + + +

− − − −

= − + +

= − + −
 (1) 

whereas the loading and unloading limiting curves 

 

( )

( )

2

2

1 1 0

1 1 0

1( , ) ,

1( , ) .

j

j

u u uu u
j b

u u uu u
j b

c u u e k u f e e

c u u e k u f e e

αβ α

αβ α

β β
α

β β
α

+ + ++ + +

− − −− − −

− + − ++ + + + + + −
+

− − + +− − − − − − −
−

 = − + + − −  

 = − + − + −  

 (2) 
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The quantities 1 2 0 1 2 0, , , ( ), ,, , ,b bk f k fα β β α β β+ + + + + − − − − −  represent the constitutive model 
parameters to be identified, whereas 0 0 ), ,(d d d d+ + − −  can be expressed as a function of the above-
mentioned parameters. The quantities ju+  and ju−  are illustrated in Fig. 5 and can be evaluated as 
a function of the coordinates of a generic initial point that lies on the upper or lower limiting curve. 
The relevant expressions and their mechanical significance are omitted for brevity. 

 
 

(a) Wire rope diameter φ 16 (b) Wire rope diameter φ 19 
Figure 6 Experimental hysteresis loops vs. simulated ones obtained by using the model 

parameters listed in Tab. 1. 
Fig. 6 compares the experimental and numerical hysteresis loops obtained for the PWHS16040 

device by applying, in absence of preload, a sinusoidal displacement input having a frequency of 
0.1 Hz and an amplitude of 0.03 m. Specifically, the validation of the modified VRM model has 
been carried out by assuming two wire ropes having different diameters, i.e. 16 mm (Fig. 6(a)) and 
19 mm (Fig. 6(b)) and the constitutive model parameters listed in Tab. 1. 

The numerical hysteresis loops obtained by means of the proposed hysteretic model are depicted 
by the dotted red lines, whereas the solid black lines represent hysteresis loops obtained by 
experimental tests. Such a comparison shows an excellent match between the two hysteresis loops, 
demonstrating that the proposed hysteretic model can satisfactorily predict the WRI's dynamic 
response. 

Table 1 Model parameters used for reproducing hysteresis loops in Fig. 6. 

φ [mm] sgn ( )u  bk  [N m-1] 0f  [N] α  [m-1] 1β  [N] 2β  [m-1] 

16 + 300 000 2 400 1 800 750 125 
- 225 000 2 400 1 800 250 140 

19 + 450 000 3 015 1 500 850 140 
- 380 000 3 015 1 500 60 220 

Conclusions 
We have presented some preliminary results of an experimental campaign, on the PWHS16040 
device manufactured by Powerflex S.r.l. loaded along the axial direction, that has been carried out 
at the laboratory of the Department of Structures for Engineering and Architecture of the 
University of Naples Federico II (Italy). Specifically, aim of experimental campaign was to 
investigate the dynamic behaviour of the device by studying the influence of the amplitude and 
frequency of a sinusoidal displacement input as well as of the axial preload and of the wire rope 
diameter.  
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The experimental outcomes have shown that the effects of the frequency input and the axial 
preload do not significantly change the WRI dynamic behaviour in the field of small 
displacements. On the contrary, a stiffening behaviour in the state of tension has been shown in 
the field of large displacements. 

Finally, in order to predict the WRI dynamic behaviour along the axial direction, a new 
hysteretic model has been proposed. Such a model has been calibrated and validated by comparing 
the experimental hysteresis loops with the numerically simulated ones.  
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Abstract. The aim of this work is to present a structural model updating procedure based on a 
recent variant of Particle Swarm Optimization, called Continuous Particle Swarm Optimization. 
In order to validate the proposed model, the modal parameters of a real scale large electrical device 
have been identified by measuring the dynamical response of the system subjected to a measured 
input. Numerical results confirm the robustness and reliability of the proposed method. 
Introduction 
The discrepancy between the design of an artifact and its actual construction generates uncertainty 
on the mechanical behavior of the structures which depends on a large number of variables such 
as geometrical and mechanical properties of materials and structural parts, boundary conditions 
and so on. 

In the past decades, the scientific literature proposed several model updating methods [1] mostly 
based on heuristic optimization techniques and on the experimental characterization of the 
structures in order to fill up the aforementioned gap.  

Among the classical optimization techniques, the Continuous Particle Swarm Optimization 
(CPSO) [2, 3] has been recently developed showing good performance in terms of accuracy and 
computational time reduction in comparison with the others. 

Moreover, the dynamical behavior of the artifact needs to be identified through experimental 
campaigns performed by means of two different approaches. The first one is the so-called 
Operational Modal Analysis (OMA) in which the modal parameters are obtained only from the 
measured data using environmental vibrations as unknown input (i.e., wind load, micro-tremors, 
traffic), without any artificial excitations applied on the structure. The second approach is the 
Experimental Modal Analysis (EMA) in which the identification of modal parameter is evaluated 
by applying a measured input on the system and measuring its response.  

In the present paper, the CPSO has been adopted with the aim to develop a robust and fast 
structural model updating procedure. The method has been validated on a real scale large electrical 
device whose dynamical properties have been characterized by using EMA approach. 

The experimental seismic response of the structure under investigation has been acquired by 
taking advantage of the shaking table system of the Laboratory of Earthquake engineering and 
Dynamic Analysis (L.E.D.A.) [4]. 

The paper is organized in three sections: in the first one the experimental model of a high 
voltage Current Transformer is presented as well as its numerical twin model defined by means of 
Finite Element Method (F.E.M.); the second section deals in detail with an original model updating 
procedure achieved through CPSO. Last, the comparison in terms of displacement between 
acquired data and dynamical response reproduced by the optimized numerical model shows a good 
agreement validating the proposed method. 
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Experimental Model 
It is common practice that the design and construction process of industrial artifacts need to be 
verified by means of experimental test to guarantee the goodness of the actual objects to be placed 
in the market and their reliability during the operative lifetime. For such a reason, a great number 
of national and international standard have been delivered for example to qualify the artifacts under 
seismic events [5-6]. 

In order to foresee the behavior of these objects and their components under several input 
motions without the necessity to run many expensive experimental campaigns, it is often 
convenient to develop a reliable twin numerical model starting from the mechanical and dynamical 
data acquired during the mandatory qualification tests.  

In this paper a model updating procedure is discussed to develop a numerical model able to 
reproduce the dynamic response of a high voltage Current Transformer which have been tested at 
the Laboratory of Experimental Dynamic of the L.E.D.A. Research Institute. 

The Transformer has been mounted on a support structure by means of a six-spring damper and 
instrumented by several accelerometers and strain gauges to acquire the response in terms of 
accelerations and strains, respectively. Moreover, an infrared optoelectronic system has been 
deployed to measure the absolute 3D displacements of the structure under test. In Fig. 1a a picture 
of the experimental setup is reported and, for the sake of shortness, only the sensors A1 (tri-axial 
accelerometer) and D1 (markers for displacement measure) at the top of the transformer are 
highlighted. 

a) b)  
Figure 1. a) Experimental setup for shaking table tests; b) FEM model: nodes and element 

geometry. 
With the aim to define a numerical twin model of the unit under test, a simplified Finite Element 
Model has been built by means of a Matlab® self-developed FEM software (Fig. 1b). The FEM 
model to be updated consists of n. 8 nodes (node n. 1 is fully restrained while nodes 2 to 8 are not 
constrained) and n. 7 elements among which elements 1, 3, 4, 5, 6, 7 have been discretized as 3D 
lumped-mass frame elements whose bending properties depend on the stiffness coefficients ,x iEI  
and ,y iEI  [7], while element n. 2 has been modeled as a 3D spring with axial stiffness zk  and 
rotational springs ,xkϕ and , ykϕ  (lateral xk , yk  and torsional ,zkϕ  are herein considered 10 times 
bigger than the others in order to simulate the actual behavior of the spring). Elements n. 3 and 7 
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(corresponding to the massive oil tanks of the transformer) are much stiffer than the other elements 
and are not considered in the optimization process. 

On each frame element with parameters to be identified (element n. 1, 4, 5 and 6) the damping 
has been modeled according to Raileigh formulation in such a way that their internal damping 
matrix is 

0, 1, , 1, 4,5,6i i i i i iα α= + =C M K   (1) 

while for the spring element n. 2 the damping coefficients to be optimized are those corresponding 
to the axial and rotational degrees of freedom, namely zc , ,xcϕ and , ycϕ , respectively. 

Nominal values of the materials and geometrical properties of each element have been obtained 
by the design information available from the constructor and from the static tests performed before 
the seismic qualification tests. 
Modal Updating by means of Continuous Particle Swarm Optimization 
In this paper, a model updating strategy is developed by assuming that the simplified FEM model, 
previously described, is linear and the difficulties in modeling joints, flanges, the presence of non-
structural components and other complicated boundary conditions could be compensated for by 
adjusting the stiffness and damping coefficients of some relevant elements of the structure. 

As customary [1], a Finite Element Model Updating procedure can be defined as an iterative 
method where some physical parameters are updated until the FEM model reproduces the 
measured data to a sufficient degree of accuracy. This can be achieved by minimizing a so-called 
objective function with respect to the variation of the selected physical parameters: 

( )min ,opt J= < <  x
x x x x x   (2) 

where ( )J x  is the objective function, x is the array of the physical parameters to be updated that 

can assume values in the interval ( ),x x . 

In the following, the experimental data acquired during seismic tests will be assumed correct 
and considered as the refence signals to use for the computation of the objective function. Since 
the aim is to obtain a numerical model able to reproduce the dynamic response of the structure, the 
objective function adopted in this work is computed as: 

( )
( ) ( )( )

( )( )
( ) ( )( )

( )( )
num exp num exp
8, 8, 8, 8,

1 2exp exp
8, 8,

rms , , , rms , , ,

rms , rms ,
x i f x i f y i f y i f

x i f y i f

u t t u t t u t t u t t
J w w

u t t u t t

   − −
   = +
   
   

x x
x   (3) 

where 1 2 0.5w w= =  are weighting parameters, 𝑟𝑟𝑟𝑟𝑟𝑟 is the root mean square function, 8, 8,,x yu u  are 
the displacements with respect to ground at the top of the transformer (node n. 8) in x and y global 
direction, respectively, for the numerical (num) and the experimental (exp) system. The time 
window ,i ft t    have been chosen to be the time interval between the 2% and 98% contribution 

of the experimental shaking table input acceleration time histories ( )exp
g tu  to the Arias intensity 

defined as: 

( )exp

0

fT

gA t dt= ∫ u   (4) 

where 0, fT    is the whole signal duration. 
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At each step of the iterative procedure adopted, the FEM software computes the global Mass 
M, Damping D and Stiffness K matrices of the system and solves the numerical time integration 
problem  

( ) ( ) ( ) ( )
( ) ( )

exp

0 00 ; 0
gt t t t + + = −


= =

Mu Cu Ku Mτu

u 0 u 0

  


 (5) 

where ( )tu  is the displacement vector of the nodes of the structure for all the 6 degrees of freedom 
in space with respect to ground, the upper dots indicate time derivative, τ  is the load incidence 
matrix and ( )exp

g tu  is the array of the x, y and z direction experimental acceleration time histories 
recorded at the base of the structure during the shaking table seismic tests. 

To compute the optimal minimum value of the objective function ( )J x  and the corresponding 
optimal parameter set optx , the latest variant of PSO, the so called CPSO, introduced in [2,3], has 
been applied. 

The discrete formulation of PSO has been extended in the continuous time space by means of 
an integration over the time interval, [0, ]T , or rather, the bird flying motion evolution is defined 
by a continuous time function that is the integral of a given Cauchy problem associated with a 
second order ordinary differential equation describing the dynamics of a damped harmonic 
oscillator. In details, let µ  denote the inertia weight, cc  and sc  the cognitive and social constant, 

ibp  the best position of the i-th bird history, gbp  the best position in the swarm history, 1r  and 

2 [0,1]r ∈  random values.  
Eventually, let ( ),  ( ) :[0, ] [0, )t t Tω ζ → +∞  be the angular frequency and the damping ratio of 

the oscillator, respectively, such that, [0, ]t T∀ ∈ , 

2
1 2

2 ( ) ( ) 1 ( )
( ) ( ) ( )c s

t t t
t c r t c r t

ζ ω µ
ω

= −
 = +

 (6) 

thus, if the time interval is split in N sub-interval of range dt T N= , the particle position updates  
1
0 [( 1) , ]( ) ( )N

k k dt kdtp t p t−
= −= ∪  (7) 

where [( 1) , ] ( )k dt kdtp t−  is the particle movement computed as follows. 
Let be ( ) ktω ω= , ( ) ktζ ζ= , ( ) ( )k c ib s gbf c p kdt c p kdt= +  [ , ( 1) ], 1, ,k kdt k dt k N∀ ∈ + = …  and  

( ) ( )2 2
1 21 1 .k k

k k k k k kλ ω ζ ζ λ ω ζ ζ   = − + − = − − −      
  (8) 

If 1ζ ≠  then 
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Instead, if 1ζ =  that is 1 2
k k kλ λ λ= = , it results  

( )[( 1) , ] 1 2 2( ) exp( )k k k k
k dt kdt

k

fp t c c t tλ
ω− = + +  (11) 

where 

( ) ( )1 2 1 expk k kk
k k

k

fc p kdt p kdt kdtλ λ
ω

  
= − + − −  

  
  (12) 

2 2 .k k k
k k

k

fc p pλ
ω

 
= − − 

 
  (13) 

Numerical results 
The procedure described in the previous section has been applied for the computation of the 
optimal parameters able to reproduce the dynamical response of the numerical twin model. 

The parameters x to be optimized are summarized in Table 1. 
Table 1. Optimization parameters. 

1x  
2x  3x  4x  5x  6x  7x  8x  9x  10x  11x  12x  13x  14x  

zk  ,xkϕ  , ykϕ  zc  ,xcϕ  , ycϕ  ,1xEI  ,1yEI  0,1α  1,1α  ( ), 4,5,6xEI  ( ), 4,5,6yEI  ( )0, 4,5,6α  ( )1, 4,5,6α  
 
In order to achieve the optimum value of the parameters in Table 1, the CPSO has been executed 

by choosing: 1.49cc = , 1.49sc = , number of population 100popn = , 200T = , 200N =  and 
maximum number of iterations 200.  

 
Figure 2. Displacements at the top of the structure (node 8) in x (upper) and y (lower) direction 

vs time: red line represents experimental data; blue line represents numerical simulation by 
using nominal parameters. 

The Fig. 2 and Fig. 3 depict the displacement versus time of node 8 in the x and y direction 
considering the experimental data (red line) and numerical simulation (blue line) concerning the 
nominal parameters (Fig. 2) and the optimized parameters (Fig. 3). The comparison of the time 
signals in the latter figure shows a good match and it is possible to state that the proposed 
methodology allows to define a set of structural parameters able to correctly simulate the dynamic 
of the structure under investigation. 

Several runs of the optimization procedure have been executed and a good agreement among 
them has been found in terms of both the optimum points and the corresponding objective function 
values. 
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Figure 3. Displacements at the top of the structure (node 8) in x (upper) and y (lower) direction 

vs time: red line represents experimental data; blue line represents numerical simulation by 
using optimal parameters. 

Summary 
A model updating analysis based on CPSO has been presented and verified to numerically 
reproduce the dynamical response of a high voltage Current Transformer.  

Future developments of this work will consider the comparison of the proposed model updating 
procedure with other classical optimization algorithms such as Genetic Algorithms and PSO, other 
objective functions depending on different components of the structural response and a modified 
version of the FEM model to investigate the role played by geometrical and mechanical 
nonlinearities. 
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Abstract. Monuments and museums contents in the Mediterranean area have revealed a poor 
dynamic behavior and suffered large damages during past severe seismic events. Their protection 
deserved great research efforts due to their inestimable values and high cultural significance. From 
an analytic point of view, art and museum objects, statues and displays are generally modelled as 
rigid blocks and have been extensively studied in the non-linear dynamic context. On the other 
hand, only limited experimental researches have been carried out. Base isolation devices have 
proven to be highly effective in control the dynamic behavior of for statue-like items. This work 
presents an analytical and experimental study for the dynamical characterization of a bidirectional 
base-isolation device. The ability of the device in reducing the dynamic response of statue-like 
objects has been investigated by means of full-scale shaking table tests carried out at L.E.D.A. 
Research Institute at the “Kore” University of Enna. Experimental results are then used to calibrate 
an analytical model of the device. The Goddess of Morgantina statue has been selected as case-
study due to its significance and since it is equipped with a base-isolating device in its present 
placement. 
Introduction 
In the last decades, monuments and historic buildings located in the Mediterranean area have been 
exposed to several major earthquakes and extensive damages occurred. While the seismic 
protection of historic buildings is a well investigated research field with a large amount of 
numerical and experimental activities, also museums contents, artefacts and statues deserves the 
attention of scholars due to the high cultural significance and the inestimable value of most of 
them. Museum artefacts and statues are usually modelled as rigid bodies and no specific provisions 
are indicated in seismic codes, since they are considered as non-structural elements. Generally, 
they are analyzed in the non-linear dynamics context [1-3], but the experimental works remain 
limited. Base isolation techniques revealed to be very effective in seismic protection, also due to 
their small size, simplicity and affordability.  

This paper presents a research conducted in the framework of the Research Project eWAS - An 
Early-Warning System for Cultural Heritage, funded by the MUR (Italian Ministry of University 
and Research), which aimed to evaluate the natural hazards to which Sicilian monumental and 
historical heritage are exposed. An extensive analytical and experimental study to characterize the 
dynamic performance of a bidirectional base-isolation device is presented. The isolator is based 
on an element patented as KSJ (Kinematic Steel Joint), consisting of a multiple articulated 
quadrilateral mechanism with crossing rods, entirely made of cut and folded steel sheets, thus 
reducing production and maintenance costs [4] and extending the applicability of the base-isolation 
techniques also to non-structural elements or cultural heritage items. Depending on the item to be 
protected, KSJ elements can be arranged in several configurations. In order to realize a base-
isolation device for statue-like items, as illustrated in Fig. 1-a, KSJ elements can be assembled as 
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to form two double-rail stacked systems attached to a rigid base. In this way, the statue can undergo 
to horizontal bidirectional relative displacements with respect to the ground.  

 
Figure 1 . The statue of the Goddess of Morgantina: a) the full scale replica with the isolation 

device on the shaking tables at L.E.D.A.; b) in its present placement; 
The Goddess of Morgantina statue (depicted in Fig.1-b) has been selected as case-study. This 

2.24m tall statue, carved in the 5th century BC in Sicily, was illegally excavated from the 
archaeological site of Morgantina (Sicily) in late 1970s, and exposed at the Paul Getty Museum in 
for several years. When the statue was finally returned to Italy on 2011, the base-isolating device, 
designed and realized in California, has been maintained. 

Basing on an accurate 3D laser-scanner survey and 3D-printed form-work, a full-scale replica 
of the Goddess of Morgantina statue has been constructed. A fibre-reinforced cementitious mortar 
has been selected for its highly fluidity and for its unit mass, in order to reproduce as close as 
possible the mass and inertial properties of the actual statue. Full scale shaking table tests have 
been carried out at L.E.D.A. Research Institute of the "Kore" University of Enna [5]. A great 
amount of experimental data has been collected in order to prove that the design characteristics of 
the device are adequate to reduce the acceleration transmitted to the statue and to calibrate an 
analytical model of the isolated base. 
Modelling of the dynamical behavior of the isolation device 
Due to the kinematic characteristics of KSJ elements, the base-isolation device under study can be 
classified as a friction pendulum bearing, since it produces vertical upward displacements as it 
moves away from the central rest position. The protected item is then constrained to have 
trajectories contained in a double-curved concave surface. However, unlike conventional bearings, 
this device can resist uplift and provide reactions to the overturning moment but it does not protect 
against the earthquake vertical component. 

In the base-isolation device at hand, the bi-directional behavior results from the composition of 
two orthogonal motions at each rail level, which depends on only one co-ordinate. The restoring 
and frictional forces exerted by the isolator and its self-centering capabilities depend on the slope 
of the trajectories. By considering, the rails in x direction, and by assuming that the surface can be 
expressed as z(x), it can be shown that the horizontal component of the restoring and frictional 
forces can me modelled, respectively, as [6]: 
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( ) ( )
( )

( ) ( ) ( )
( )R F,sl2 2

z ' x x sgn x
F x mg ; F x, x mg

1 z ' x 1 z ' x
µ

= = −
+ +

 
  (1) 

being m the mass of the protected item, g the gravity acceleration, z′(x) the first spatial 
derivative of the trajectory function, sgn(·) the signum function. Moreover, a velocity-variable 
friction coefficient can be set as [7]: 

( ) ( ) ( )max max minx f f f exp xµ α= − − −   (2) 

where fmin and fmax are the minimum and maximum mobilized coefficient of friction, 
respectively, α is a parameter that control the friction coefficient variation rate and the over dot 
means time differentiation. Classical models of friction-based systems comprise two cases, sliding 
and sticking. In the sliding case the relative velocity x  is non-zero and the friction force is 
expressed as in Eq. 1. In the sticking phase, the relative velocity is equal to zero and the friction 
force assumes, for equilibrium conditions, the following expression: 

( ) ( )( ) ( )F,st F,sl eq eqF x, x min F x, x , F sgn F= −   (3) 

where Feq is the sum of all other forces acting on the protected object in the direction tangential 
to the trajectory. Similar equations apply also for the rails acting in y direction and, finally, the 
equation of motion of the bi-directional base isolation device subjected to a seismic loading can 
be written in state-space form as  

( ) ( ) [ ]T
g x y x y, t ,− == −Z DZ G Z Z τ Zu      (4) 

where ( )g tu  collects the ground acceleration components and T
(2x2) (2x2) =  τ 0 I  is the load 

location matrix. In Eq. 4, the system matrix D and the non-linear force vector G are expressed as: 

( )
( )

(2x2) (2x2) (2x1)

1 1
(2x2) R F

; ,
− −

 
 =
 − +

 
 =
  

0 I 0
D

0 M C M F F
G Z Z  (5) 

being M and C diagonal matrices containing the mass and damping parameters in x and y 
direction respectively, whereas FR and FF are (2x1) vectors collecting the components in x and y 
direction of the restoring forces and friction force, respectively, as defined in the previous 
equations.  
Eq. 4 can be easily solved in a step-by-step integration scheme. In the following applications, a 
fourth-order Runge-Kutta algorithm has been used in which, at the beginning of each step, the 
sliding and sticking conditions are separately assessed for each direction.  
Results of shaking table tests 
Several dynamic shaking table tests have been conducted to characterize the dynamical behavior 
of the device and to assess the seismic protection level [8]. In a first set of tests, broadband random 
noise acceleration time-histories have been imposed to measure the Frequency Response Function 
(FRF) between an accelerometer mounted on the shaking table (R1, input) and one on the rigid 
base (A1, output) of the device, under four increasing load conditions (from C0 to C3) realized by 
fixing heavy steel plates to the upper rigid base of the device. In the highest load level (C3), the 
same mass of the full-scale replica of the Goddess of Morgantina statue (about 900 kg) is applied. 
Fig. 2 reports the FRFs amplitude plots for each load level, for each direction and for an input 
intensity of 1.0 m/s2 RMS. Results show that the device is able to strongly reduce the horizontal 
accelerations for each load level. In particular, it is to be noted that the load level C0 (no added 
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masses) does not represent the normal operating configuration of the device. Moreover, a narrow 
magnification frequency range between 1.0 Hz and 1.15 Hz has been observed. 

 
Figure 2 . FRF computed for random noise tests: a) x direction; b) y direction 

 
Figure 3 . Response Spectra comparison for Norcia signal. 

A second set of shaking table tests has been executed by applying the horizontal components 
of four natural historical earthquakes acceleration time-histories (Kobe, Irpinia, Norcia and 
L’Aquila), selected for their different frequency content, impulsive behavior, duration and 
intensity. Firstly, the tests have been performed at the same load levels of previous tests (with steel 
plates) and, secondly, other tests have been carried out with the full-scale replica of the Goddess 
of Morgantina statue fixed on the device. In Fig. 3, the comparison between the Response Spectra 
(RS) computed 5% damping of the input and of the accelerations at the rigid base for Norcia signal 
and for all load levels is reported. The RS curves prove that the device strongly reduce the 
accelerations transmitted to the protected item independently of the load level.  

The seismic tests performed with the statue mounted on the isolating device shown the 
effectiveness in the seismic protection of the statue. Fig. 4 illustrates the trends of peak 
accelerations at shaking table and on the rigid base with seven increasing input intensity (from 
20% to 120% of the actual one) for both directions and with reference to Kobe and L'Aquila 
signals. 
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Figure 4 . Peak acceleration comparison for L’Aquila and Kobe signals. 

Model calibration 
The first step in characterizing the device was to identify the geometric properties of the double-
curvature surface. Bi-axial horizontal displacements have been imposed to the rigid base, the 
trajectories have been acquired by a 3-D motion capture system [8] and it has been found that the 
surface containing the trajectories can be modelled as an elliptical paraboloid, expressed as: 

( )2 2z ax by a 0,b 0= + > >  (6) 

where the parameters a = 0.3391 m-1 and b = 0.3190 m-1 have been evaluated by a fitting 
procedure. The equivalent oscillation periods, slightly variable along the stroke, have been 
estimated to be close to 2.5 s, typical values of base-isolation devices. 

The remaining parameters of the analytical model, namely the masses, the damping coefficients, 
the friction at high and low velocity and their variation rate, have been evaluated by means of an 
optimization procedure, by minimizing the following objective function: 

( ) ( )
( ) ( )

( )

2
N

exp th
2j x,y

i 1 exp

x i, j x , i, j1J w i, j
2 x i, j=

=

 − =∑ ∑
X

X  (7) 

being X the vector that collects the optimization parameters, xexp and xth the (N x 2) matrices of 
experimental and analytical horizontal components of displacements, respectively, and w a 
weighting function which is calculated as the time derivative of the Arias’s Intensity function, in 
order to better reproduce the strong motion phase of the response. 

 
Figure 5 . Comparison between experimental and analytical displacements after optimization 

procedure. 
Fig. 5 depicts the results of the proposed procedure for the seismic test conducted with Kobe 

signal at 100% of its actual intensity. The comparison among the acceleration time history recorded 
at the rigid base and the analytical one is reported. This latter, is obtained in correspondence of the 
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following optimal set of parameters: xm 900kg= , ym 980.6kg= , xc 133,4Ns / m= , 

yc 137,4Ns / m= , 1
xa 0.3070m−= , 1

ya 0.3693m−= , maxf 0.88%= , minf 4.54%= , 5.43α = .  
It appears that the proposed analytical model is able to capture the essential features of the response 
in terms of accelerations, but further in-depth investigation is needed to enhance the model.  
Conclusions 
In order to characterize the dynamic behavior of a bi-directional isolating device based on the 
patented KSJ system, an experimental and analytical research has been carried out.  

An analytical model of the device has been set up and calibrated, basing on the results of a full-
scale shaking table tests campaign performed at L.E.D.A. Research Institute of Kore University of 
Enna. At this aim, a full-scale replica of the Goddess of Morgantina statue, chosen as case-study, 
has been constructed, placed on the isolation device and subjected to broadband random noise and 
seismic tests with increasing intensities. Test results demonstrated the ability of the device in 
highly reducing the seismic acceleration transmitted to statue-like art objects.  

Finally, the calibration parameters of the analytical model have been evaluated by an 
optimization procedure, so that the model is able to capture the essential feature of the response.  
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Abstract. Active Vibration Control (AVC) problem is successfully studied considering all the 
characteristics of a control problem. The controlled system consists of a honeycomb panel of 
carbon fiber. Expensive devices are in general used for setting up and designing AVC this due to 
limitations for practical implementation. In our work we point to a low cost and practical solution 
using a microcontroller that has been verified. The honeycomb plate has been forces with out of 
plane load using an electrodynamic shaker at resonances that has been identified by experimental 
modal analysis. Piezoceramic patches are used as sensor and actuator for the control. Multiple 
analog signal processing circuits were developed to scale and shift the signal at the input and output 
of the MCU. The Positive Position Feedback (PPF) control algorithm is proposed, and a campaign 
of tests are carried out with harmonic excitations at resonance frequencies. Experimental results 
show an amplitude velocity reduction from 50% to 77% less and Power Spectral Density (PSD) 
attenuation up to 12.8 dB. The size and structural properties of the MFC patches, the control unit 
and structure under control are suitable for automobile and aerospace applications. 
Introduction 
In the last years, more and more Active Vibration Control has been increasing  a lot of 
consideration, problem related to uncontrolled vibrations finds its application in wide range of 
industries, as for example: body plates of automobiles, preventing the bending of aerodynamic 
components in motorsports or reducing unwanted noise and resonance response; also in the 
aerospace sector, active vibration control finds its application as in [1] where Ye-Lin Lee describe 
a reduction of vibration up to 98% in simulations of a lift-offset compound helicopter using two 
active control techniques. Moreover, studies regarding experimental activities and problems of 
complex systems, as in [2], [3] and [4] demonstrate the importance of experimental investigations.  

Different techniques and algorithms can be used to control the vibration of a structure as the 
author in [5] devised an energy-fuzzy adaptive PD control to stabilize the structures in subsonic 
and transonic regime, or as in [6], Balakrishna used piezoceramic actuation embedded to the 
structure to reduce the response, producing a practical solution for the sting vibration. Another 
method is explained in  [7] where Oveisi and Nestorović used a frequency domain subspace 
identification for robust control design, or in [8] Electrically Controlled Rotor (ECR) has been  
controlled developing a Kalman filter-based control algorithm. 

Example of microcontroller for active vibration control applications are present as in [9] using 
an Arduino Uno, with clock speed of 16 MHz.  

In [10], Moon K.Kwak developed a MIMO PPF controller realized by a dSpace DSP board, 
with the sampling frequency of ADC and DAC being 50 kHz, A.Zippo et alt., in [11], showed 
experiments implementing  a variety of configurations: SISO, multiSISO and MIMO on a free-
free composite panel with PPF method and MFC patches both for sensors and actuators in linear 
and nonlinear range. Moreover, analytically define chaotic structures is stimulating for improving 
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our knowledge in the occurrence of vibrations related to complex systems [12] with quasiperiodic 
and chaotic motion [13]. 

In [14], Isabelle Bruant et alt., used genetic algorithm for optimal placing patches for ACV. 
Experimental modal analysis 
In figure 1 is shown the experimental setup, while in figure 2 the TestLab sum of FRF is shown, 
this graph help to experimental identify modes of vibration. 

Eleven modes have been identified in total and in figure 3 and 4 are represented the 
reconstructed modal shapes at 25.13Hz and at 132.31Hz, the respective identified damping is 
0.33% and 0.18% 

 

  

Figure 1. Experimental modal analysis setup Figure 2: Sum of FRFs of the plate 
 

  

Figure 3:  2nd mode of vibration at 25.13 Hz  Figure 4: Vibration mode at 132.31 Hz  

Sensor and actuator selection  
In Table 1 are presented the selected. MFC patches used as sensor and actuator, the Macro Fiber 
Composites (MFC) can be used both as sensor or actuator, depending on the voltage is measured 
or powered from or to the patch, they consist of piezo-ceramic rods sandwiched in a design of 
multi-layers of electrodes and polyimide film.  In figure 5 their location on the plate is showed. 
The physical effect used by this materials is the d33, achieved by the stack arrangement of the 
piezoelectric material, that are configured so that when a voltage is applied across the electrodes, 
the stack expands in length (commonly considered as 3-3 axis) and for a certain voltage, the net 
static displacement δ of the piezoelectric ceramic actuator is: 

δ =
𝑑𝑑33𝑉𝑉+

𝐹𝐹
𝐾𝐾𝑎𝑎

1+ 𝐾𝐾
𝐾𝐾𝑎𝑎

  (1) 
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where d33 is the strain constant of the piezoelectric material in the 3-3 axis, K is the external 
spring stiffness, Ka is the actuator stiffness (𝐾𝐾𝑎𝑎 = 𝐸𝐸𝑎𝑎𝐴𝐴𝑎𝑎/𝐿𝐿𝑎𝑎, where 𝐸𝐸𝑎𝑎, 𝐴𝐴𝑎𝑎, and 𝐿𝐿𝑎𝑎 are the actuator’s 
young’s modulus, cross-sectional area, and length, respectively). F is the external load force.   
 

Table 1. Dimensions and electrical properties of MFC patches 

  M8507-P1 (sensor) M8557-P1 (actuator) 
Active length [mm]  85  85  
Active width [mm]  7  57  
Overall length [mm]  101  103  
Overall width [mm]  13  64  
Capacitance [nF]  3.1  16  
Free strain [ppm]  1035  1350  
Blocking force [N]  65  693  
 

 
Figure 5: patches location  

 
Micro controller unit selection  
The application of AVC in certain industrial application as automotive adds more constraints for 
the implementation as compact and light weight. Indeed, a 32-bit Micro Controller Unit (MCU) 
from Texas Instrument is used for the study and experiment performing on a composite sandwich 
plate the control.  

The C2000 32-bit microcontrollers are optimized for processing, sensing and actuation to 
improve closed-loop performance in real time. 

The main feature are: 
• 32-bit C28x architecture floating point MCU 
• 200 MHz processing speed 
• Selectable 16-bit & 12-bit SAR ADC, up to 14 MSPS system throughput 
• 1MB flash & 204KB RAM 
• USB communication with Simulink interface 

Analog circuits design  
The analog signal processing circuits are needed to scale and shift the signal at output of the sensors 
and MCU to match the input of the signal requirement at the succeeding element to improve 
resolution, hence the performance and avoid signal saturation.  In figure 6 is showed the electric 
scheme of the system. 
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Figure 6:  Electric schemes 

The circuits are first prototyped in a breadboard, and after the components are implemented to 
a PCB to make it more compact and lightweight. BNC connectors has been used at the signal input 
and output for all the boards.  

In the manufacture of the signal processing circuits, few of the resistors were replaced by 
trimmers to add the flexibility of tuning the gain and bias which can account for any errors during 
assembly and soldering.  
Control algorithm  
The PPF controller is a filter of second order that tends to maximize damping in the frequency 
specified without destabilizing other modes, and thus reducing spillover. PPF controller is 
modelled as a second-order dynamic system, which is represented by the following equation,  

𝜂𝜂𝜂(𝑡𝑡) + 2𝜁𝜁𝑐𝑐𝜔𝜔𝑐𝑐𝜂𝜂𝜂(𝑡𝑡) + 𝜔𝜔𝑐𝑐2𝜂𝜂(𝑡𝑡) = 𝑘𝑘𝑘𝑘𝜔𝜔𝑐𝑐2  (2) 

Where 𝜁𝜁𝑐𝑐is the damping ratio of the compensator,  𝜔𝜔𝑐𝑐 is the frequency of the compensator and 𝑘𝑘 
is the compensator gain. The transfer function takes the form: 

𝐻𝐻(𝑠𝑠) = ω𝑐𝑐
2

𝑠𝑠2+2ζ𝑐𝑐ω𝑐𝑐𝑠𝑠+ω𝑐𝑐
2 (3) 

At frequencies above ωc the slope of the transfer function amplitude is negative and very steep 
(-40 dB/octave), so it reduces the problem of spillover for vibrations at higher frequencies. On the 
contrary, at frequencies below ωc the bode diagram of H(s) has an amplitude of 0 dB, the simulink 
model is showed in figure 7. 

 
Figure 7. PPF controller modelled in simulink  

Setup and results  
The plate is excited using a traditional electrodynamic shaker, placed behind the plate. The force 
applied by the shaker is measured by a dynamic force transducer and the PPF algorithm is compiled 
and uploaded in the flash of MCU. The actuator and sensor are placed to interact optimally with 
the selected modes.  

Results of the second vibration mode control at 25.17Hz are a Velocity reduction of 74.18%, a 
PSD amplitude attenuation of 11.76 dB inn a Settling time of about 1 second,  in figure 8 is shown 
respectively the time history  and PSD of the shaker input signal,  and the PSD of the control, 
while in figure 9 is presented the time history while the control is activated.  
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Figure 8: PPF controller modelled in simulink Figure 9: TH during control activation 
 

Conclusions 
This investigation designed an Active Vibration Control System on the base of a C2000 32-bit 
microcontroller unit by means of MFC patches used for sensing the disturbances and actuate a 
controlling force by means of a second order filter algorithm (Positive Position Feedback method). 
This work shows more practical solution can be implemented also with low-cost central unit and 
allow a direct implementation in automotive industrial problems. The control techniques 
discussed, and the developed hardware was proved effective in suppressing the amplitude of 
vibration when subjected to harmonic excitations. Nevertheless, harmonic disturbances are not 
common, forcing alone a system in a practical application, further studies will be carry out 
applying to the panel random excitations and complex signals to better reproducing and testing 
real case studies.  
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Abstract. Nowadays, high accuracy measurements provided by terrestrial laser scanner and vision 
sensors allow to collect useful and exhaustive information about the conditions of the existing 
structures, useful to detect defects and geometry anomalies and to better understand their 
mechanical behavior. These avant-garde technologies were found to be particularly effective for 
the structural health assessment of the cable-stayed pedestrian bridge described in this paper. 
Considering a continuous mono-dimensional model of an inclined perfectly flexible cable, the 
axial tension is locally tangent to the cable profile. Thus, determining the cable static response 
under self-weight consists of a geometric shape-finding problem. Through terrestrial laser 
scanning, a 3D point cloud model of the bridge was acquired, including a data-abundant 
description of the actual static configuration of the stays. Therefore, cable configuration was no 
longer an unknown of the static problem, which can be inverted to assess the static tension. 
Furthermore, modal analysis was conducted also through image-based vibrations measurements 
to identify the fundamental frequencies of the cables. The independent identification of the axial 
forces from static (geometric) and dynamic (spectral) data provided results in good agreement. 
Introduction 
Structural cables are primary load bearing elements in different civil engineering systems, such as 
cable-stayed and suspension bridge. The assessment of their integrity condition and stress level 
are key tasks in the health monitoring of such structures. Among the techniques used to identity 
cable forces, direct methods make use of load sensors, while indirect methods estimate cable 
tension through different quantities such as strain, or natural frequencies [1],[2]. 

The dynamic identification method based on determining the unknown cable tension from the 
geometric stiffness that can be evaluated for measured frequencies (known the cable mass) is the 
most used, because it is a nondestructive method which guarantees high efficiency [3],[4],[5]. 
Similarly to other model based methods, this approach requires refined mechanical formulations 
describing the dependence of the spectral properties on the structural parameters [6],[7]. In 
addition to traditional accelerometer sensors, different technologies are used to record cable 
vibrations. Microwave interferometry has been used to measure the vibration response of cables 
in cable-stayed bridges [8],[9]. Frequencies and cable tensions have been identified through radar 
technique with the same accuracy of the ones obtained with conventional sensor measurements. 
Modal analysis and axial force identification of stay cables are also performed through vision-
based measurement, with motion magnification methods used to amplify microvibration of stay 
cable captured by video camera [10]. If not based sufficiently refined mechanical methods, 
frequency-based approaches often neglect or underrate the effects of the chord inclination angle, 
cable extensibility, flexural stiffness, complex boundary conditions and cable-beam interactions. 
All these effects could lead to significant errors in tension identification.  
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In this work, the 3D point cloud model of a cable-stayed pedestrian bridge was exploited to 
evaluate the actual static configuration of the stays and to identify their axial forces by comparing 
the quadratic term coefficient of the cubic function interpolating the acquired geometry data with 
the quadratic term of the cubic equation obtained from an approximate solution of the static 
problem. The quality of the estimation of cable force was evaluated through the definition of an 
error function based on the cubic term the interpolating function and thorough the comparison with 
the tension identified through frequency-based method.  
Bridge description and data acquisition  
The bridge is a steel truss structure located in Beinasco, Turin province, in Italy. It is a cycle and 
pedestrian cable-stayed bridge and consists of an access ramp and a deck both supported by steel 
columns and cables anchored to a steel tubular pylon (see Fig. 1) with star reinforcements in 15 
mm thick shaped sheets, hinged at the base. The deck (80 m long, 3 m wide and 1.65 m height) is 
made of three main tubular members and smaller cross-members and it is supported by 7 cables 
(42 mm diameter), all prestressed during assembly to avoid loosening. The first part of the access 
ramp is simply supported on columns while the second part is suspended by other stays (28 mm 
diameter) converging on the same pylon that supports the deck. Several cables (40 and 42 mm 
diameter) connect the pylon to the ground, to ensure stability and counterbalance the loads of the 
deck and ramp. On the side of the ramp, the steel truss-type beam of the deck is also supported by 
an access concrete staircase which is located at the center of the ramp. 

Experimental data were acquired by different technologies to collect both geometry and 
vibration information of the structure. The terrestrial laser scanner Cam2 Laser Scanner Focus 
Faro x 130 (130 m unambiguity interval, 0.6 m - 130 m Range Focus3D X 130 HDR, 
122000/244000/ 488000/976000 points/sec measurement speed, ±2 mm distance error) was used 
to acquire actual geometry configuration of the whole structure; during the scans, it acquired 
measurements by the appropriate laser and photographs in both color and black and white. The 
given color allowed to obtain three-dimensional RGB models (see Fig. 1b). 

Wireless and wired accelerometers and a high-speed camera were used to record structural 
dynamic response under ambient excitation. The vibrations of the cables were recorded by using 
6 uniaxial piezoelectric wired accelerometers, PCB 393B31 with ICP technology (10.0 V/g 
sensitivity, 0.5 g pk measurement range, 200 Hz sampling frequency). Furthermore, the high-speed 
camera IO Industries Flare 12M125xCL (monochrome, F-mount, 4096 x 3072 resolution, 5.5 x 
5.5 µm pixel size, 100-200 fps sampling frequency) was installed on the concrete cantilever of the 
stairs located in the central area of the ramp to record the vibration of cables SP15 and SP16 (Fig. 
4a). The displacement time histories were obtained by processing the captured images with Digital 
Image Correlation (DIC) technique.  

a)  b)  
Fig. 1. Beinasco bridge: a) plan view of the cable-stayed; b) side view of the 3D point cloud 

model. 
Cable tension identification from static configuration 
Consider a suspended cable hanging on a vertical plane under self-weight. Let S be the set of N 
laser-scanned points belonging to the cable, pointed by the configuration vector ( , , )i i i iX Y Z=X , 
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within an orthogonal Cartesian reference system in a three-dimensional space (with 1,...,i N= ). 
The vertical midplane of the N coordinate points is sought through the equations 

y ax b= + ,   1
ija a

M
= ∑ ,    1

ijb b
M

= ∑ , (1) 

where the coefficients aij and bij are determined by taking 2
rM N=  pairs of points (i, j) from the 

cable point cloud model, according to the formulas 
i j j i

ij ji
i j j i

Y Y Y Y
a a

X X X X
− −

= = =
− −

,    i j j i j i i j
ij ji

i j j i

X Y X Y X Y X Y
b b

X X X X
− −

= = =
− −

, (2) 

where a subset of 2 rN N< points has been selected, namely rN points iX  and rN points jX close 
to the lower and upper cable support – respectively – with the aim of maximizing the accuracy of 
the coefficient estimates by maximizing the denominators in equations (2). The coefficients aij and 
bij, obtained for each pair of points considered, are represented in the plane (a, b) in Fig. 2. It can 
be noted that the results associated to the same point iX  are approximately aligned. This behaviour 
can be easily justified by considering that, with respect to a fixed lower point iX , the positions of 
the upper points jX (that are close to each other) determine small variations of the coefficients aij 
and bij, that can be estimated through their first variations 

( , ) ( , )ij j j ij j j
ij j j

j j

a X Y a X Y
a X Y

X Y
δ δ δ

∂ ∂
= +

∂ ∂
,   

( , ) ( , )ij j j ij j j
ij j j

j j

b X Y a X Y
b X Y

X Y
δ δ δ

∂ ∂
= +

∂ ∂
,         (3) 

so that it can be demonstrated that the ratio ij ij ib a Xδ δ = −  is a constant. The midplane identified 
with this procedure is represented in Fig. 2b. A roto-translation of the reference system are 
performed to make the Cartesian plane ( , )X ZΠ coincident with the midplane of the cable. 

The geometric curve to be identified based on the cable points is postulated to be describable 
by a cubic function ( )Z X . Suited dimensionless variables and parameters are introduced 

Zz
L

= ,   Xx
L

= ,   ( )arctg B Lθ = ,  (4) 

where the lengths L and B are the horizontal and vertical distance between the supports of the cable 
(assumed known) and  𝜃𝜃 is the angle of the cable chord with respect to the horizontal.  

 

a)  b)  

Fig. 2. Midplane of the 3D point cloud of cable: a) coefficients aij and bij; b) vertical 
midplane identified (blue) and 3D point cloud model of the cable (red). 

By employing nondimensional variables, the generic expression of the cubic function ( )z x
depends on four unknown coefficients iγ , according to the formula  

3 2
0 1 2 3( )z x x x xγ γ γ γ= + + + . (5) 

Therefore, by imposing the geometric boundary conditions 0( ) 0xz x = =  and 1( ) tanxz x θ= = − , 
the cubic expression becomes 
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3 2
0 1 1 0( ) ( tan )z x x x xγ γ γ γ θ= + − + + , (6) 

where the coefficients 0γ  and 1γ  are unknown, but univocally determinable for each pair of 
laser-scanned points 1 1 1( , )x z=x  and 2 2 2( , )x z=x  lying on the midplane through the formulas 

1 2 1 2 1 2 1 2
0

1 2 1 2 1 2

(1 ) (1 ) ( , )
(1 )(1 )( )

x z x x z x x x
x x x x x x

γ − − − −∆
=

− − −
,      

2 2
2 1 2 1 2 1 1 2 1 2

1
1 2 1 2 1 2

(1 ) (1 ) ( ) ( )
(1 )(1 )( )

x z x x z x x x x x
x x x x x x

γ − − − + + ∆
=

− − −
,      (7) 

where 1 2 1 2 1 2( , ) ( ) tanx x x x x x θ∆ = − . A subset of 2 sN N< points has been selected, namely sN  
points 1x  and sN points 2x  close to the lower and upper thirds of the cable profile, respectively, 
with the aim of maximizing the accuracy of the coefficient estimates by maximizing the 
denominators in equations (7). The coefficients 0γ  and 1γ , obtained for each pair of points 
considered, are represented in the plane ( 0γ , 1γ ) in Fig. 3. Again, the alignments of the results can 
be justified by considering that, with respect to a fixed lower third point 1x , the positions of the 
upper third points 2x  (that are close to each other) determine small variations of the coefficients 

0γ  and 1γ , and that the ratio of the first variations is 1 0 1( 1)xδγ δγ = − +  is constant. 

a)  b)  

Fig. 3. Geometric interpolation of cable axis: a) coefficients of cubic function, b) 
overlap of the cubic interpolation with the point cloud model. 

The nonlinear ordinary differential equation governing the static equilibrium under self-weight 
of the inextensible cable, considering constant weight per unit natural length w , reads 

 1 228 cos 1 ( )z zδ θ  ′′ ′= − +  ,            with    ( ) (8 cos )wL Hδ θ= ,                                           (8) 

where H  is the unknown horizontal reaction. It is known that this equation admits the catenary 
function as exact solution. Since the catenary solution can be difficult to handle, equation (8) can 
be attacked employing a classic perturbation scheme. Setting the parameter and variable ordering  

1δ εδ= ,          2 3
1 2 3( ) ( ) ( ) ( ) ...z x z x z x z xε ε ε= + + +        (9) 

where ( ) ( ) tanz x z x x θ= −  describes the depth of the cable with respect to the chord and 1ε <<  
is a small auxiliary nondimensional parameter with mere bookkeeping role. 

From the physical viewpoint, it is important to note that the ordering entails that the cable 
weight-to-tension ratio is small ( ( )Oδ ε= ) and the depth of the cable is shallow ( ( ) ( )z x O ε= ). 
Introducing the ordering in equation (8), expanding in ε -power series, collecting same-order terms 
and solving the resulting ordered hierarchy of linear ordinary differential equations up to the 
second order with the boundary conditions (0) 0iz =  and (1) 0iz = , the solutions are 
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1 1 (1 )4z x xδ= − ,   28
2 13 sin(2 ) (1 )(1 2 )x x xz θδ − −= . (10) 

After reconstruction, the direct comparison of the cubic function (5) and the cubic perturbation 
solution 𝑧𝑧(𝑥𝑥) = �̃�𝑧(𝑥𝑥) + 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 ≃ 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 + 𝜀𝜀�̃�𝑧1(𝑥𝑥) + 𝜀𝜀2�̃�𝑧2(𝑥𝑥) allows to identify the unknown 
parameter δ  by equating the respective quadratic and cubic coefficients. To circumvent the 
redundancy, the identification can be based on the quadratic coefficient 1γ , being larger. The 
equality reads 

14 (1 2 sin(2 ))δ δ θ γ+ =                                                                                                            (11) 

and establishes a quadratic equation in the unknown δ , that must be solved for positive values 
*δ . The comparison between cubic coefficients, being smaller, can provide an estimate of the 

identification inaccuracy 216
0 *3 sin(2 )eδ γ δ θ= − − . Once the parameter δ  is determined, the 

horizontal reaction H  and the cable tension 𝑁𝑁 ≃ 𝐻𝐻
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃

 can be assessed by inverting the parameter 
definition, provided that the cable weight w  is known. The mean values (and their variance) 
obtained with this approach are listed in Tab.1 for seven stays of the Beinasco bridge. 
Frequency-based cable axial force identification 
The small-amplitude free oscillations of the bridge stays have been investigated according to the 
linearized undamped dynamics of suspended cables. According to the Irvine cable model [11], 
[12], which is based on assuming parabolic static profile, linear elastic behavior and negligible 
longitudinal inertia, the cable axial force can be identified by employing the circular frequency jω  
of j-th out-of-plane modes, according to the direct and inverse (string-like) relations 

cos
j

j N
L m

π θω = ,   
2 2

2 2 2cos
jm L

N
j

ω
π θ

= ,            (12) 

where m the uniformly distributed mass density. Accordingly, the j-th frequency is expected to 
be directly and linearly related to the out-of-plane mode number j  in the peak-picking frequency 
identification based on the Power Spectral Density (PSD) of the experimental signals. Such linear 
relation is clearly noticeable in the PSD of the camera signal, more than the accelerometer one 
(Fig. 4), because camera signals allow to identify the fundamental frequencies of the cables, which 
appeared to be lower than 1 Hz. The mean values (and their variance) obtained with this tension 
identification approach are listed in Tab. 1 for seven stays of the Beinasco bridge. 

 

a)  b)  c)  
Fig. 4. Frequency identification of cable SP15: a) plan view of cable and camera position; b) 

PSD of accelerometer signals, c) PSD of image-based displacement signal. 

Concluding remarks 
The paper investigates the static and dynamic response of the stays supporting a cable-stayed 
pedestrian bridge, by exploiting experimental data concerning both geometry configuration and 
vibration response to ambient excitation. By referring to a continuous perfectly flexible model of 
inclined suspended cable, and by considering the laser-scanned geometry of the stays, the static 
configuration under self-weight has been consistently described. This description allowed the 
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static (geometry-based) identification of the cable tension, which has resulted in good agreement 
with the tensions evaluated through the dynamic (frequency-based) output-only identification 
method, applied to both accelerometer and image-based vibration signals.  

Tab. 1. Cable tension from static identification sN  and from dynamic identification dN . 

Cable 0γ  
0

2
γσ  1γ  

1

2
γσ  𝜃𝜃 *δ  

*

2
δσ  eδ  2

eδ
σ  sN  [kN] dN  [kN] 

SP10 4.84E-04 1.09E-05 3.22E-02 2.63E-05 0.57 7.94E-03 1.56E-06 -7.91E-04 1.02E-05 97.19 94.89 
SP11 -7.35E-03 2.41E-05 5.12E-02 4.64E-05 0.65 1.25E-02 2.63E-06 6.55E-03 2.20E-05 59.39 58.78 
SP12 1.35E-02 4.21E-05 1.22E-01 8.32E-05 0.73 2.89E-02 4.18E-06 -1.79E-02 3.44E-05 26.19 26.02 
SP13 -3.50E-03 8.55E-05 1.75E-01 1.87E-04 0.83 4.05E-02 8.67E-06 -5.21E-03 6.36E-05 18.39 19.54 
SP14 -9.73E-04 2.77E-04 6.14E-02 6.48E-04 0.94 1.49E-02 3.60E-05 -1.56E-04 2.45E-04 54.25 41.68 
SP15 -2.06E-02 1.91E-04 2.49E-01 4.68E-04 1.04 5.67E-02 2.01E-05 5.59E-03 1.30E-04 16.32 17.83 
SP16 2.95E-02 7.65E-04 7.59E-02 2.12E-03 1.11 1.84E-02 1.15E-04 -3.10E-02 6.58E-04 53.78 44.31 
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Abstract. The elastic stability of a plane metamaterial made up of a mesh of orthogonal rods 
coupled with diagonal cables is studied. The stability domain and the optimal values of the stiffness 
of the cables are determined. 
Introduction 
In this work explicit solutions are obtained for the stability domain of a bidimensional periodic 
metamaterial made up of a mesh of beams and cables. Fig. 1 shows the metamaterial and the 
chosen periodic cell (RVE). This metamaterial was already studied in [1] in the simpler case of 
absence of cables by assigning a priori the wave lengths of critical modes.  

In [2], by introducing suitable simplifying assumptions, the wave lengths of critical modes were 
exactly determined by means of Floquet-Bloch theory.  The main idea of the paper was to couple 
periodic patterns of rods with periodic patterns of extremely flexible cables to enhance the stability 
performance of the obtained metamaterial. Here, we extend our preceding results by considering 
the more general case in which vertical and horizontal rods have different stiffness.  
Mechanical assumptions 
The studied metamaterial is shown in Figure 1. In the following analysis we will neglect the axial 
and shear deformations of rods and denote by J  and Jµ  the inertia moments of horizontal and 
vertical rods, respectively. Without loss of generality, we assume 1µ < . Further, we assume  

 0, 0,c cJ A
J A
→ →   (1) 

where cJ  and cA  are the moment of inertia and the cross-section areas of diagonal cables and
min{ , }h vA A A=  is the minimum cross section area of the rods. 

We distinguish (see Figure 1) two types of joints: type 1, connecting four rods and four cables, 
and type 0, connecting four cables. As a consequence of (1), equilibrium of a type 0 node is 
identically satisfied and will not be considered in the following. 

The chosen RVE is composed of four rods (green in Figure 1) with length l , four internal 
diagonal cables of length 2l  (red in Figure 1) and four external cables of length 2l ,  whose 
stiffness is halved since these are shared with the neighboring RVEs. 
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Figure 1: The metamaterial subjected to a generic macrostress 

Equilibrium in precritical states 
In case of  null shear macrostress ( 0)T = , as a consequence of (1),  the axial compressive forces 
in the rods are 
 , ,

x yx yP l P lΣ Σ= −Σ = −Σ  (2) 

where xΣ  and yΣ  are the traction macrostresses in the horizontal and vertical direction, 
respectively. In case of pure shear, ( 0x yΣ = Σ = ) cables in compression immediately buckle 
(dotted lines in Fig. 2), while cables in tension exert the axial forces TN  (continuous lines in Fig. 
2) and the axial  compressive forces TP  occur in rods. These are given by 

 2 , ,T TN T l P T lρ ρ= =  (3) 
where ρ  and ek  are a distribution factor and a dimensionless measure of elastic cables stiffness 

(see [2] for details):  

 
2

1

,
24 2

e c
e

e

k A lk
k Jµ

µ

ρ
+

= =
+

. (4) 

Here, as usual in Eulerian stability analysis, the mechanical response is assumed linear in 
precritical states. Then the distribution factor is determined with reference to the unstressed initial 
state in which the stiffness of cables reduces only to its elastic part ek . 
Under the assumption (1) it is possible to superimpose the two cases above analyzed, to obtain 
 
 ( ) ( ), .

x yx T x y T yP P P T l P P P T lρ ρΣ Σ= + = − Σ − = + = − Σ −  (5) 

Floquet-Bloch analysis 
The critical displacement vector field is expressed as (see Fig. 2) 
 𝐮𝐮(𝐱𝐱) = {𝑢𝑢(𝐱𝐱),𝑣𝑣(𝐱𝐱),𝜃𝜃(𝐱𝐱)}𝑇𝑇 ∈ ℂ3 (6) 

where x  is the node position vector, which is written as 
 𝐱𝐱 = 𝜁𝜁1𝑙𝑙𝐢𝐢 + 𝜁𝜁2𝑙𝑙𝐣𝐣, (𝜁𝜁1, 𝜁𝜁2) ∈ ℤ2 . (7) 

The critical displacement vector is determined according to Floquet-Bloch's theorem 
 ( ) ( )1 2 1 1 2 2( ) ( ) ( ) .i l l ie eζ ζ ω ζ ω ζ⋅ + += =w i ju x u 0 u 0  (8) 
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where ω  is a dimensionless wave vector, with ( )1 2, ,ω ω π π∈ − . Due to the axial inextensibility 
of rods, only the following cases are feasible: 

 
Figure 2: A square mesh of rods and cables 

a) no translations of nodes occur: 1 2( ) ( ) 0, , ( , )u v ω ω π π= = ∀ ∈ −x x ; 
b1) rotations hβ  of horizontal rods are null and the horizontal wavelength is infinite 1( 0)ω = ; 
b2) rotations vβ  of vertical rods are null and the vertical wavelength is infinite 2( 0)ω = . 

 
The degrees of freedom of the RVE are chosen as 

 { } { }, , ( ), ( ), ( ) .T T
h v h vβ β θ β β θ= =γ x x x  (9) 

and its Hermitian stiffness matrix k  is determined as 
 = +b ck k k , (10) 

where bk  and ck  are the stiffness matrices of the rods and cables, respectively. k  depends on 
both the wave numbers 1 2( , )ω ω  and the applied macrostress through the parameters xq  and yq : 

 , ,
2 2

yx
x y

Pl P lq q
EJ EJµ

= =  (11) 

which can assume either positive real values (compressed rods) or imaginary values (rods in 
traction). We impose that in stable or critical states the second variation of the total energy is 
positive semidefinite  

 1 ( , , ) 0.
2

 x yq q ≥*γ k ω γ  (12) 

The adopted procedure is detailed in [2]. In case a) the stability condition (12) reduces to  
 cot cot 0x x y yq q q qµ+ ≥  (13) 

and the critical state condition is always attained for 1 2ω ω π= = . Figure 3 depicts the 
corresponding critical mode. Notice that, under the assumption (1), the stability condition (13) is 
not influenced by the stiffness of cables, which is negligible with respect to those of rods. 
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Figure 3: Critical modes I (case a) and II (case b1) 

In case b1), from the stability condition (12) we obtain 

 ( )
2

3 3
2 2

cot cot cot
max 8 ,8 ,0

cot 1cot cot
x y x y x y y

v y y
y yx y x y y x x y

q q q q q q q
k k q q

q qq q q q q q q q
µ µ

µ µ
µ µ

 + − ≥ =  −+ − −  
 (14) 

where e Tk k k= +  is a dimensionless measure of total stiffness of cables, which is sum of an 
elastic part ek , already given in (4), and a geometric part  

 
2

2
T

T
N lk

E J
= . (15) 

In Figure 3 it is shown the critical mode occurring when vk k= . Similarly, in case b2), from the 
stability condition (12) we find  

 ( )
2

3 3
2 2

cot cot comax 8 , 8 ,0
cotcot c

t
o 1t

y x x y y x x
h x x

xx y x y y x x y x

q q q q q q qk k q q
q qq q q q q q q q

µ
µ µ

 + − ≥ =  
+ − −−  

. (16) 

The critical mode III, occurring in case b2) when hk k=  is similar to the mode II rotated by π/2. 
In absence of cables, the stability conditions in cases b1) and b2) reduce to the conditions 

 
2

2

cotcot 0

cotcot 1 0

yx

x y x

yx

x y y

qq
q q q

qq
q q q

µ µ

µ

+ − ≥

+ − ≥








 (17) 

Stability domain 
From the above analysis we conclude that the stability domain of the material is determined by the 
conditions 

  ( )
cot cot 0

max( , ) ,
x x y y

h v x y

q q q q

k k k k q q

µ



+ ≥

= ≥
  . (18) 

In order to obtain a bidimensional representation, we define the dimensionless macrostresses 
 xΣ  and  yΣ   

  , yx
x y

Ex Ey

TT ρρ Σ −Σ −
Σ = Σ =

Σ Σ
, (19) 

where 

 
2 2

3 3, .Ex Ey
EJ E J
l l

π π µ
Σ = Σ =  (20) 
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Therefore, from (11) we get  

  , ,
2 2

yx yxq qi iπ π
= Σ = Σ  (21) 

In Figure 4 the boundaries of the stability domains in the plane  ( ),x yΣ Σ  are shown for different 

values of µ. Two limit cases are considered: the case in which the cables have a stiffness 
max( , )h vk k k≥ , such to determine the critical mode I, in which the boundaries are the continuous 

lines with dot marks; the case of absence of cables, in which the boundaries are the inner 
continuous lines (without dots), deduced by (17). Notice that, in view of (19), to each point of 
these bidimensional stability domains correspond infinite macrostresses. 

 
Figure 4: Stability frontiers for different values of µ  

In Figure 5, in the case 1µ = , the optimal dimensionless stiffness of cables 
 ( ) max(, , )y vx hk kk Σ Σ =   is represented. This is the minimum value ensuring the stability of the 

considered macrostress. The minimum value of k  on the boundary of the stability domain is 
attained at the point  A≡(-1, -1) and is equal to 2π . Among the critical macrostresses corresponding 
to this point, we have equiaxial compression and pure shear. The maximum value of optimal 
stiffness is attained at the points (-4, ∞) and (∞, -4) and is equal to 28π . 
Figure 6 shows the stability boundaries in the three dimensional space ( ), ,x Ex y Ex ExΣ Σ Σ Σ Τ Σ , for 

different values of µ, considering an elastic stiffness of the cables 28ek π= . Notice that in order 
to preserve the scale, all macrostress components have been divided by the same quantity ExΣ . 
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Figure 5: Stability domain and optimal values k  for 1µ =  

 
Figure 6: Stability frontiers for 28ek π= .  
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Abstract. Local resonant metamaterials are a class of microstructured man-made material which 
attenuate the propagation of waves in certain frequency ranges, known as band gaps. In this work, 
we study through asymptotic homogenization the anti-plane shear wave propagation in 
metamaterial with a stiff matrix and soft inclusions, periodically distributed, which present a 
hierarchical geometry. Band gaps of the metamaterial are then analytically predicted by the 
intervals of frequency in which the effective mass becomes negative. 
Introduction 
Metamaterials have attracted a lot of interest in dynamic problems due to their peculiar and unusual 
properties related to wave propagation. A particular class of these materials are the locally resonant 
metamaterials (LRMs), which are specifically designed to trap the energy of propagating waves 
by employing the mechanism of local resonance. The frequency intervals in which waves are 
attenuated are known as band gaps. 

Typically, LRMs have a periodic structure, made of one or several phases, hence the Bloch 
theorem [1,2] can be employed to reconstruct their band structure, including band gaps, in the 
linear-elastic regime.  

In recent years, several researchers propose hierarchical geometries for LRMs to obtain wider 
band gaps [3,4]. Numerical simulations of a continuum system exhibiting a hierarchical geometry 
may represent a huge computational burden and analytical predictions of their dynamical 
properties are mainly restricted to discrete systems of lumped masses and springs.  

Two-scale asymptotic homogenization is a promising technique which can be used to study the 
dynamic effective behaviour of metamaterials [5,6]. This method has been employed to study a 
periodic LRM made of a connected stiff matrix and soft inclusion in two- and three-phase solids 
[7,8], and in thin plates [9], allowing the identification of band gaps as the intervals of negative 
effective dynamic mass.  

In this work, we extend the results obtained in [8], to study the anti-plane shear wave 
propagation in a three-phase hierarchical LRM constituted by a connected matrix with a periodic 
repetition of coated inclusions which are in turn microstructured, thus realizing a hierarchical 
LRM. In particular, we consider the presence of several concentrical annular rings of rigid masses, 
with interposed soft coatings, in each inclusion. The effective mass of the metamaterial, which is 
frequency-dependent, is derived up to the solution of a tridiagonal linear system. The analytical 
predictions of band gaps are validated by comparison with those obtained by numerical Bloch-
Floquet analyses. Finally, some parametric studies are performed to show the potentiality of the 
proposed approach for the design and optimization of hierarchical LRMs. 
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Figure 1: (a) Geometry of the hierarchical metamaterial with its (b) unit cell composed by the 

matrix (red), coatings (yellow) and rigid masses (blue) in the case 3N = . (c) First and 
Irreducible Brillouin zone of the square lattice. 

Two-scale asymptotic homogenization 
We consider a three-dimensional heterogeneous linear-elastic media which is characterized by a 
two-dimensional periodicity. The cross-section Ω  of the body, shown in Fig. 1a and having 
characteristic size L , is made of a connected stiff matrix (m) and several inclusions periodically 
distributed. Each inclusion presents a hierarchical geometry consisting of N concentric annular 
rigid masses (f) with interposed soft coatings (c). The unit cell Y ò of the periodic media, depicted 
in Fig. 1b with its characteristic size  , shows the domains ,fY α

ò  and ,cY α
ò  of each rigid mass and 

coating, which are numbered from the innermost to the matrix mY ò by 1, , Nα = … .  
Under the hypothesis of separation of scales, i.e., when ϵ = ℓ/𝐿𝐿 ≪ 1, the effective behaviour 

of the metamaterial can be described through asymptotic homogenization. 
The anti-plane shear wave propagation problem is governed by the scalar Helmholtz equation 

2div( ) 0 inw wµ ρ ω∇ + = Ωò ò ò ò , (1) 

where wò is the out of plane displacement andω  is the angular frequency of the propagating wave. 
The terms µò and ρò  in Eq. 1 are the periodically varying shear modulus and mass density of the 
materials, which are assumed to be ,m mµ ρ  for the matrix, 2 ,c cµ ρò for the coatings and fρ  for the 
rigid masses, with mµ  and mρ  of the same order of magnitude of cµ  and ,c fρ ρ . 
     According to the two-scale homogenization technique, introducing the fast variable 𝐲𝐲 = 𝐱𝐱/ϵ 
and the re-scaled unit cell 𝑌𝑌 = 𝑌𝑌ϵ/ϵ, the solution of Eq. 1 is searched in the form 

𝑤𝑤ϵ(𝐱𝐱) = 𝑤𝑤0(𝐱𝐱,𝐱𝐱/ϵ) + ϵ𝑤𝑤1(𝐱𝐱,𝐱𝐱/ϵ)+. . . , (2) 

where the functions ( , )iw x y  are defined on YΩ× and are periodic with respect to y . 
Substituting Eq. (2) into Eq. (1) it is possible to prove that the 0-th order displacement in the matrix 
depend only on x , i.e., 0 0( , ) ( )mw W=x y x  in mYΩ× , see [7] for the full derivation.  

Moreover, due to the radial symmetry of coatings and inclusions the masses rigidly translate 
within the unit cell. That means that 0 0( , ) ( )mw Wαψ=x y x  in ,fY αΩ×  with 1, ..., αψ ψ  unknown 
coefficients. 
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 Figure 2: Detail of the circular sector of 
(a) the α -th coating surrounded by 
two rigid masses, and (b) the α -th 

rigid mass surrounded by two 
coatings. 

 
 
 
 
 

 
Motion of the coatings. Restricting Eq. 1 at order 0ò  in the α -th coating, one obtains 

0 2 0
,0 inc c cYw w αµ ρ ω∆ Ω×+ =y , (3) 

with proper boundary conditions to guarantee the continuity of the solution at interfaces. For 
Nα ≠ , as shown in Fig. 2a, these BCs read 0 0

mw Wαψ=  on , ,c fY Yα α∂ ∩∂  and 0 0
1 mw Wαψ +=  on 

, , 1c fYY α α+∂ ∩∂ . Due to linearity the solution of Eq. 3 is given by 0 0( , ) ( ) ( )mw W αη=x y x y  in ,cY αΩ×
. Using polar coordinates, one obtains a solution depending on the radial coordinate r only, in the 
form 

0 , 0 0 0 ,0 0 , 0 , 0

1

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

( ( ) (( ( ) ) ) ( )) ) ( )
( )

) ) ( ) ) )

(

( ( ) ( ( ( ( )) (
f fc c

f c c f f c c f

R J Rr R J R r

R R J R R R R J R

J Y r r YJ Y Y
r

J Y Y J Y Y R
α αα α

α α α

α α α α α α α α

λ λ λ λλ λ λ λ
η ψ ψ

λ λ λ λ λ λ λ λ +

−−

− −
= + . (4) 

In Eq. 4 pJ  and pY  are the p-order Bessel’s functions of first and second kind, 2 2 /c cλ ρ ω µ= , 
while , ,,c fR Rα α  are the external radius of the α -th coating and inclusion, see Fig. 2a. Note that 
this solution can be extended also for the N -th coating by setting 1 1Nψ + = . 
 
Motion of the masses of the inclusions. Up to now, the 0-th order displacement 0w  is determined 
up to the knowledge of the matrix displacement 0

mW  and of the N  constants αψ . The latter can be 
determined by enforcing the global dynamic equilibrium of each rigid mass. For the α -th mass 
the equilibrium reads 

,

0
2 0

,| | 0
f

c f f mY r
Y Ww ds

α
α αµ ρ ω ψ

∂
=

∂
+

∂∫ . (5) 

If 1α ≠ , i.e., we are not considering the innermost mass (see Fig. 2b), Eq. 5 can be rewritten 
as 

2
2 2

1 , 1 1 1 , 1 , , , 1 , 1( ) ( ) ( ) ( ( ) 0
2

)f
c c f f c f

c

f g R gR R f R R Rα α α α α α α α α α α α α

λ ρ
ψ ψ ψ

ρ− − − − − − +

 
+ − − 
 

+


− =


, (6) 

where we have introduced the functions 
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The dynamic equilibrium of the innermost mass ( 1α = ) is expressed again by Eq. 6 with 
0 0 ,0 ,0 0c ff g R R= = = = . The system given by Eq. 6 written for 1, ..., Nα =  is a tridiagonal system 

which allows to compute the unknowns αψ  for each value of λ , i.e., of ω . 
 
Dispersion relation. Taking the average of Eq. 1 at order 0ò  over the unit cell, one obtains the 
effective equation of motion of the hierarchical metamaterial 

0 0 0 2 0div ( ) i( ) 0 nm mW Wρ ω ω⋅∇ Ω+ =x xμ , (8) 

where 0μ  is the positive definite effective stiffness tensor (see [7] for the detail of its derivation) 
and 0 ( )ρ ω  is the frequency-dependent effective dynamic mass density, which expression is 

0
, , 1

1 1

( ) | ( 1| | | ( 1)
| | |

)
|

N N
f c

st f cY Y F G
Y Yα α α α α α α

α α
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= =

+ + += − −∑ ∑ . (9) 

In Eq. 9, ρst  is the static mass density and , α αF G  are constants defined by  
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α α α α α α α α

α α
α α α α
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λ λ

+ +
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=

− −
=
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. (10) 

Substituting into Eq. 8 the monochromatic wave 0 ( ) exp( )mW i= ⋅x k x , where i  is the imaginary 
unit and k  is the wavevector, one obtains the dispersion relation 𝜌𝜌0(𝜔𝜔)𝜔𝜔2 − 𝛍𝛍0:𝐤𝐤⊙ 𝐤𝐤 = 0.  

As it can be seen, no real wavevector can satisfy the dispersion relation if the effective mass is 
negative. This means that the band gaps of the hierarchical metamaterial are identified as the 
intervals of frequency in which 0 ( ) 0ρ ω < . 

Example 
The design of hierarchical LRM requires, besides the choice of the material and of the shape of 
the unit cell, also the selection of the number of masses and their distribution. As an example, we 
will consider a square unit cell, made of an epoxy matrix, rubber coatings and lead masses, see 
Fig. 1b. Typical values of the materials parameters are reported in Table 1. 
 

Table1: Properties of the constituent materials 
 

 E  [MPa] ν  [-] ρ  [kg/m3] 
Matrix (epoxy) 3600 0.370 1180 
Coatings (rubber) 0.118 0.469 1300 
Rigid masses (lead) 14000 0.420 11340 

 
We keep constant the total mass of coatings and resonant masses and we discuss the effect of 

changing the inclusions microstructure. Assuming 2| 0 5| . 0fY =   and 2| 0 1| . 3cY =  , we obtain 
different unit cells (Fig. 3) by changing N and assuming that each sub-inclusion has the same 
mass. In the case of one, two and three rigid masses the effective mass density given by Eq. 9 is 
plotted against frequency in the left plates of Fig. 4a, 4b and 4c, respectively. Frequencies are 
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normalized with respect * 2/c cω µ ρ=  . The dispersion curves, along the irreducible Brillouin 
zone of the unit cell (see Fig. 1c), are obtained by the numerical solution of Bloch-Floquet 
problems and are reported in the right plates of the same figures. The comparison shows the 
accuracy of the proposed homogenization approach for the prediction of the lowest band gaps 
(shaded in the figures) in the low-frequency regime. 

 

 
 

Figure 3: First five hierarchy level considered. 
 

 
 

Figure 4: Effective mass density against frequency (left) and numerical dispersion curves (right) 
in the case of one (a), two (b) and three (c) rigid masses. (d) Band gaps width as a function of 

the number of rigid masses.  
Figure 4d shows the width of band gaps for the first five hierarchical geometries with the 

corresponding gap mid-gap ratio %] 200( ) )[ / (c o c oBG ω ω ω ω= − + , where oω  and cω  are the 
opening and closing frequency of the band gap. It can be observed that an additional band gap 
appears for each rigid mass considered, while the opening frequency of the first one is almost 
constant. 
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Conclusions 
In this work, we studied the propagation of anti-plane shear waves in a continuous ternary locally 
resonant metamaterials, exhibiting a hierarchical mass-in-mass geometry, through asymptotic 
homogenization. In the simple case of concentric annular coatings and rigid masses we provide 
the expression of the effective dynamic mass density of the metamaterial up to the solution of a 
tridiagonal system, which has the same dimension of the number of sub-masses inside the 
inclusions.  

The homogenized mass, which turns out to be frequency-dependent, allows for the prediction 
of the band gaps as intervals of frequency in which it becomes negative. This result has been 
validated by comparison with the band gaps obtained through numerical Bloch-Floquet analyses. 
This allow to perform parametric studies on the hierarchical metamaterial considered, which could 
be useful in their design phase. 

The results obtained in this work can be easily generalized to wave propagation problems in 
plane strain conditions and for thin plates. 
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Abstract. The first-order shear deformable laminated beam problem is reformulated in terms of a 
fictitious bending displacement as primal variable. A fourth-order differential equation governs 
the problem with two additional unknown constants coming from the integration of the 
longitudinal displacement. With the classical six boundary conditions, the problem is complete 
and well posed. An isogeometric collocation scheme is developed to solve the problem 
numerically. The formulation is completely locking-free and satisfies high continuity requirements 
for the approximation functions. The results for an exemplary structure confirm the validity and 
the good performance of the method, which is preliminary to the single variable reformulation of 
a more accurate zig-zag model for laminates with perfect and imperfect interfaces. 
Introduction 
As is well known, the elastic and thermal mismatch between the layers of composite beams induces 
complex zig-zag distributions of stresses and displacements in the thickness direction; relative 
displacements may also arise at the layer interfaces. Alternative approaches to the classical 
structural theories, which are based on assumptions that make them inadequate, must be used. 

The zig-zag theories overcome the drawbacks of equivalent single-layer and layer-wise 
theories. A global displacement field is enriched by through-the-thickness zigzag functions. This 
allows to take into account the local effects due to material inhomogenities and to impose stress 
continuity at the interfaces, while maintaining the number of degrees of freedom low. Originally 
formulated zigzag theories had some inconsistencies and limitations and were not ideal for the 
implementation in numerical solution schemes, leading to the development of refined theories, 
which however also have some important drawbacks (see e.g. [1] for a review). 

The validity of a more recent, energetically consistent, multiscale model formulated in [2] was 
demonstrated for a wide class of problems: plane-strain problems [3]; beams and plates subjected 
to thermal loadings [4]; propagation of plane-strain harmonic waves [5]; brittle delamination 
fracture under mode II dominant conditions [6-8]. 

Our work proposes a novel single-variable approach to the zigzag model in [4], by extending 
to laminates with and without imperfect interfaces a technique recently developed for 
homogeneous beams [9,10], as an efficient alternative approach to refined zigzag theories. All 
details and results will be presented at the conference; here, we describe the methodology and 
show some preliminary promising results in the framework of classical first-order shear 
deformation theory, which confirm the validity and efficacy of the method. 
Equations governing first-order shear deformation theory for laminates 
In this section the equations governing first-order shear deformation theory for laminates are 
briefly recalled with reference to the multi-layered beam shown in Fig. 1 and having thickness h, 
unit width in the direction x1 and length L in the direction x2. In the system of Cartesian coordinates 
x1, x2, x3, the plane x3=0 defines the reference surface of the beam, which is arbitrarily chosen. The 
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beam consists of n layers joined by n−1 perfectly bonded interfaces (no relative sliding and 
transverse displacements are allowed). Each layer is linearly elastic and orthotropic with principal 
material axes parallel to the geometrical axes; the layers can have different mechanical properties. 
Coordinate 3

kx  defines the interface k, that is the upper surface of the layer k having thickness (k)h 
(with k=1,..,n numbered from bottom to top). 

 

 

Fig. 1 Multi-layered beam geometry Fig. 2 Analyzed exemplary beam 
The beam is subjected to boundary conditions and mechanical loads acting on the upper and 

lower surfaces and on the lateral bounding surface, and applied so as to satisfy plane strain 
conditions in the plane x2-x3 perpendicular to the axis x1. 

Transverse normal stresses are set equal to zero ( 33 0σ = ) and the in plane displacements are 
assumed as linear functions of the through-the-thickness coordinate. Then, the global equilibrium 
equations can be written in terms of the global degrees of freedom v02, w0 and ϕ2 (denoting, 
respectively, the displacements of the reference axis, along the directions x2 and x3, and the cross 
section rotation, about the axis x1). Using a comma followed by subscripts to denote derivatives 
with respect to the corresponding coordinates, they are: 

22 02,22 22 2,22 2

22 02,22 22 2,22 44 44 2 0,2 2

44 44 2,2 0,22 3

0

( ) 0

( ) 0

P
m

P

A v B f

B v D k C w f

k C w f

ϕ

ϕ ϕ

ϕ

+ + =

+ − + + =

− + − =

 , (1) 

with coefficients 

3 3

1 1
3 3

( ) 2 ( )
22 22 22 22 3 3 3 44 44 31 1

( , , ) (1, , )d and d
k k

k k

x xn nk P k
k kx x

A B D C x x x C C x
− −= =

= =∑ ∑∫ ∫  , (2) 

where: for the layer k, ( ) ( )
22 22 23 32 33( / )k kC C C C C= −  relates local longitudinal normal stress and 

strain, through ( ) ( ) ( )
22 22 22

k k kCσ ε=  under the assumed plane-strain conditions ( ( )k
ijC  with i,j=1,2 

being the coefficients of the 6x6 stiffness matrix), and ( )
44

k C  is the stiffness coefficient relating 
local transverse shear stress and strain, through ( ) ( ) ( )

23 44 232k k kCσ ε= ; f2,  f3,  f2m denote distributed 
longitudinal and transverse global loads (positive if rightward and upward, respectively) and global 
couples (positive if clockwise) acting on the reference surface. In Eq. (1) a shear correction factor 
k44 is introduced to improve the treatment of shear, given the limitations of the assumed theory to 
describe the global kinematics. The coefficients A22 and D22 are the extensional and bending 
laminate stiffnesses, B22 is the coupling stiffness of the laminate and relates bending strain with 
normal force and vice-versa. 

Eq. (1) is a system of coupled differential equations in three unknowns, which is completed by 
six boundary conditions imposed at the ends x2=0, L with outward normal n={0, 1,0}T: 

(k)h layer kh
x2

3
kx

1
3
kx −

reference surface
L

h=3t
t

x3

x2

f3(x2)
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02 02 22 2 22 02,2 22 2,2 0,22 2 22 2

0 0 22 2 44 44 2 0,2 2 22 2

2 2 22 2 22 02,2 22 2,2 2 22 2

or [ ]

or ( )

or [ ]

P

v v N n A v B w n N n

w w Q n k C w n Q n

M n B v D n M n

ϕ

ϕ

ϕ ϕ ϕ

= = + + =

= = + =

= = + =







 (3) 

(the tilde defines prescribed values). Once the problem has been solved, the local response for 
each layer is obtained straightforwardly through local compatibility, constitutive and equilibrium 
equations. 
Single-variable formulation 
In this section a single-variable formulation of the problem under consideration is presented, where 
the system of coupled differential equations (1) is reduced to a single equation in one unknown 
variable. As discussed in [9,10], different choices are possible for the primal variable. The 
approach proposed in [10] is followed here and the global transverse displacement w0 is splitted 
into two parts: a bending part, w0b, and a shear part, w0s, which are defined as follows 

 0 0 0 2 0 ,2 2 0,2 0 ,2with so thatb s b sw w w w w wϕ ϕ= + = − + = . (4) 

Substituting Eq. (4) into the first and second of Eq. (1) yields v02,22 and w0s,2 as functions of 
w0b,222, which can be derived once with respect to x2 and introduced into the third of Eq. (1) to 
obtain a fourth-order differential equation in the one unknown w0b 

( )2 1 1
22 22 22 0 ,2222 3 22 22 2,2 2 ,2( ) ( )b mD B A w f B A f f− − − = − +  . (5) 

When w0b is determined, the global rotation ϕ2 follows directly from the second of Eq. (4), 
whereas the global transverse and longitudinal displacements w0 and v02 are given by , respectively, 

( ){ }21 1 1
0 0 44 44 22 22 22 0 ,22 22 22 2 2 2

1 1
02 22 22 0 ,2 2 22 2 2 5 2 6

( ) ( ) [ ( ) ]d

( ) ( ) d d

P
b b m

b

w w k C D B A w B A f f x

v B A w f A x x c x c

− − −

− −

 = − − + − 

= − + +

∫
∫ ∫

, (6) 

where the integration of v02 requires the introduction of two additional arbitrary constants, say 
c5 and c6. To complete the boundary value problem, substituting these results into Eq. (3) leads to 
the following expressions for the resultant forces and moment in terms of w0b 

{ }
{ }

22 2 2 2 22 5 2

2 1 1
22 2 22 22 22 0 ,222 22 22 2 2 2

2 1 1
22 2 22 22 22 0 ,22 22 22 2 2 22 5 2

[ d ]

[ ( ) ( ) ] ( )

[ ( ) ( ) ] ( ) d

b m

b

N n f x A c n

Q n D B A w B A f f n

M n D B A w B A f x B c n

− −

− −

= − +

= − − − +

= − − − +

∫

∫

. (7) 

Eq.s (5)-(7) , together with the second of Eq. (4), represent a single-variable formulation for 
laminates. All kinematic and static variables are expressed in terms of only one unknown and these 
expressions do not contain integrals of the unknown funtion. This excludes a priori locking 
problems and facilitates the employment in discrete numerical solution schemes. Furthermore, 
analogously to Bernoulli–Euler beam theory, this formulation is rotation-free, but shear 
deformability is accounted for. For symmetric laminates, when a mid-thickness reference surface 
x3=0 is chosen, B22=0 and Eq.s (5)-(7) reduce to those of the single-variable formulation for 
homogeneous Timoshenko beams in [10], but with f2 and f2m ≠0. In this case the membrane and 
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bending equilibrium problems are decoupled and the global longitudinal displacement v02 is 
independent of the bending transverse displacement w0b. 

a)  b)  
Fig. 3 Global response of the laminate: a) transverse displacement; b) rotation 

   

Fig. 4 Local response of the laminate: longitudinal displacement and in-plane stresses 
Numerical solution through an isogeometric collocation scheme 
In this section we develop an isogeometric collocation scheme (see, e.g., [10] and [11]) to solve 
numerically the laminate problem governed by the single-variable formulation derived above. In 
order to do this, the unknown primal variable w0b is approximated by a B-spline curve, that is a 
linear combination of m piecewise polynomial basis functions of degree p, say Ni,p with i=1,..,m, 
generated from a so-called knot vector and defined recursively starting with piecewise constants: 
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∑

∑
, (8) 

where N  is a row matrix of the B-spline shape functions and 0ˆ bw  is the vector of control 
variables which represent the m degreees of freedom of the numerical model (the mesh). A knot 
vector is a set of m+p+1 nondecreasing real numbers (the knots); for 1D straight geometries, they 
represent dimensionless coordinates in the direction x2, say ξ=x2/L, and divide the laminate domain 
(a patch) in m+p subintervals (the knot spans). The generation of the basis functions starts from a 
set of m+p piecewise constant functions, which =1 in a single knot span and =0 otherwise, and 
requires the employment of the recursive formula p times. In order to have interpolatory basis 
functions at knots located at the ends of the patch, where boundary conditions are imposed, open 
knot vectors with the first and last knot appearing p+1 times are considered. 

Using Eq. (8) into Eq.s (5)-(7) gives global kinematic and static variables in a discrete form, 
whereas N22 is always given by the first of Eq. (7), since it is independent of w0b: 
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To solve the problem, the strong form in Eq. (5) is discretized and evaluated at a set of suitable 
collocation points, say iξ , 

( )2 1 4 '''' 1
22 22 22 0 3 22 22 2,2 2 ,2ˆ( ) ( ) ( ) ( ) ( ) ( )i b i i m iD B A L N w f B A f fξ ξ ξ ξ− − − − = − +  . (10) 

Following [11], the so-called Greville abscissae related to the fourth derivative space, which 
corresponds to the order of the differential equation, are here chosen; they are defined as follows 

5 6 ..
for  1,.., 4

4
i i i p

i i m
p

ξ ξ ξ
ξ + + ++ + +
= = −

−
. (11) 

Eq. (10) gives m−4 equations in the m unknown control variables. The missing equations are 
obtained by imposing 6 boundary conditions at the ends of the patch ( 0,1iξ = ) through Eq. (9), 
which contain the two additional constants c5 and c6. To conclude, the discrete problem is governed 
by a system of m+2 algebric equations in the m+2 unknowns 0ˆ bw  and c5, c6. 

Application to an exemplary case and conclusive remarks 
The single-variable formulation and related numerical scheme is employed for the solution of the 
classical problem shown in Fig. 2 and solved in closed form in [12]. A cross-ply laminated beam 
is simply supported at the ends and subjected to a sinusoidal transverse load 

3 2 0 2( ) sin( / )f x q x Lπ=  (f2= f2m=0). The beam consists of n=3 unidirectionally reinforced laminae 
symmetrically arranged with stacking sequence (0°/90°/0°) and perfectly bonded together. Each 
lamina has thickness t (h=3t) and is orthotropic with elastic constants EL, ET=EL/25, GLT=EL/50, 
GTT=EL/125, νLT=νTT=0.25. A mid-thickness reference surface is chosen. 

For the discretization, quintic (p=5) and higher degree (p=6) B-splines are used, since the 
governing differential equation is of fourth order. Three meshes with different number of degrees 
of freedom (m=7,13 for p=5 and m=10 for p=6) are considered. 

The dimensionless global transverse displacement and rotation, as functions of the 
dimensionless position along the axis x2, and local longitudinal displacement, and bending and 
transverse shear stresses, through the thickness, obtained for k44=1 and L=4h are shown in Fig.s 3 
and 4. The numerical results for discretizations p=5 with m=7 (green curves) and m=13 (brown 
curves), and p=6 with m=10 (blue curves) are presented together with the 1D analytical solution 
of Eq. (5) (black curves). The analytical and numerical results are in very good agreement, but for 
the coarsest discretization with p=5 and m= 7 in Fig. 3 and for transverse shear stresses in Fig. 4. 
In the latter figure the comparison with the 2D exact solution (red curves) allows to conclude that 
the solution for the highest-order and finest discretizations (p=5, m=13 and p=6, m=10) are 
statically equivalent, even though locally different, to the 2D exact solution; this is not true for 
p=5, m= 7. Extension of the technique to the zigzag model in [4], which is in progress, is expected 
to provide full agreement with the 2D solution. 
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Abstract. Numerical simulations give the opportunity for designing periodic microstructured 
materials by tuning and manipulating their dynamic properties in terms of vibration control by 
varying their main micro-geometrical parameters. Specifically, the bandgap formation in 2D 
nacre-like composites characterized by a brick-and-mortar arrangement of stiff platelets and a soft 
matrix containing periodically arranged cavities was investigated through the Bloch-wave 
analysis. The numerical outcomes highlighted that, by varying the microstructural topology of the 
void inclusions and the stiff platelets, enhanced wave absorption capabilities can be obtained 
providing new opportunities to design periodic lightweight bioinspired composite metamaterials 
with elastic wave attenuation properties.  
Introduction 
As engineering requirements have become more strict, composite materials are increasingly being 
used in many applications [1,2] to meet advanced mechanical, chemical, thermal and vibrational 
[3,4] requirements. The research community is also constantly interested in developing advanced 
materials inspired by nature that can reach excellent properties. Thus nacre, also known as the 
mother of pearl, is among the most examined because of its excellent mechanical properties [5] 
related to the “brick-and-mortar” pattern characterizing its microstructural arrangement. Due to 
recent advancements in additive manufacturing, numerous researchers are exploring the high 
potential for designing nacre-like bioinspired materials with advanced properties finding 
applications in a wide range of engineering fields [6–8]. Due to their complex microstructure, 
composite materials are heterogeneous media that are susceptible to various nonlinear phenomena, 
especially if subjected to large deformation, such as instabilities at the microscopic and 
macroscopic scale [9] or damage mechanisms involving the microscopic scale such as matrix 
cracking or debonding of the fiber-matrix interfaces [10–13]. It is widely known that there is a 
strict correlation between these microscopic mechanisms and macroscopic fracture phenomena 
such as delamination, interfacial debonding, and multiple crack propagation which are generally 
considered the most frequent precursors of damage in microstructured composites [14–17]. By 
adopting hyperelastic constitutive models, numerous advanced numerical modeling techniques, 
including homogenization [18,19] and multiscale techniques [20,21], have been developed over 
the past decade to predict the mechanical behavior of composite materials subjected to large 
deformations and to reduce the computational effort needed to model complex microstructural 
geometries. Recent research has shown that nacre-like composite materials are capable of 
influencing wave propagation through their intrinsic periodic microstructure, which has led to an 
increase in interest in the study of their dynamic and wave propagation properties [22–25]. In this 
regard, materials with periodic structures, exhibiting physical properties not available in nature 
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such as noise and vibration attenuation, are commonly referred to as metamaterials. They have 
experienced tremendous growth during the last decade, but they still have a few limitations. In 
mechanically demanding processes, for example, the mechanical properties of such materials can 
conflict with the demand for high energy dissipation needed to guarantee the vibration and noise 
attenuation characteristics. In this work, the Floquet-Bloch analysis is used to investigate the 
elastic waves propagation in lightened nacre-like composites with alternating stiff platelets and 
void inclusions in a finite element code (COMSOL Multiphysics 5.6). As a result, we will be able 
to increase our understanding of this growing area of research by exploring how by varying the 
main geometrical parameters and the voids inclusion arrangement affect vibration control and band 
gap phenomena of periodic nacre-like composite materials. Specifically, two void inclusion 
arrangements were investigated, and a parametric study was conducted by varying the main 
geometrical parameters, such as void volume fraction, platelets aspect ratio, and the thickness ratio 
between the horizontal and vertical matrix interfaces. The numerical outcomes have shown that by 
varying the void inclusion arrangements we are able to provide new opportunities for designing 
lightened bioinspired composite metamaterials with advanced wave absorption capabilities. 
Numerical Results 
The 2D unit cells investigated are reported in Fig.1 together with an example of mesh discretization 
highlighting the main geometrical parameters characterizing the results of the parametric analysis 
reported in the following. In this work, the matrix interphases are characterized by two different 
thicknesses bh and bv, related to the horizontal and vertical interfaces respectively. The unit cell 
and the platelets length are denoted by L and Lp, respectively, while the unit cell and the platelets 
height are denoted by H and Hp, respectively. 

 
Fig.1 Investigated lightened nacre-like metamaterial with the main geometrical parameters. 
The parametric analyses were performed by varying the geometrical parameters in terms of 

volume fraction (8 ) /[(2 2 )(4 4 )]f p p p v p hv L H L b H b= + + , platelets aspect ratio /p p pw L H= , with 
10pL mµ=  and interface thickness aspect ratio /b v hw b b= . The parameter fv , ranging from 0.91 

to 0.99 , is evaluated considering both the volume occupied by the platelets (3 / 4)p
ffv v=  and the 

one occupied by the voids (1/ 4)v
f fv v= . Based on the following neo-Hookean hyperelastic strain 

energy density function, the constitutive law for each microstructural material phase (matrix and 
platelets) is defined: 

2
( , ) ( , ) ( , )

1 1(tr( ) 3) ln( ) ln( )
2 2

m p m p m pW C J Jµ µ λ= − − + , (1) 

Where the material parameters with subscript m and p are related to the matrix and platelets, 
respectively. Here µ  is the initial shear modulus, C  is the right elastic Cauchy-Green tensor, J  
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is the Jacobian of the transformation and λ  is the first Lamé parameter which is able to control 
the material compressibility. With the aim to model the incompressible behavior of material phases 

( , )m pλ  was considered equal to ( , )1000 m pµ . The initial shear modules are equal to 2.5 MPamµ =  
and p mkµ µ=  with k equal to 10000. The Floquet-Bloch analysis was performed by imposing the 
Floquet-Bloch boundary conditions on the periodic unit cells and by opportunely varying the k-
wave vector inside the first Brillouin zone obtaining the corresponding frequency dispersion 
(additional information about the numerical implementation can be found in the following research 
works [23,26,27]). Then, by analyzing the obtained dispersion curves the complete bandgap found 
were stored for each geometrical configuration investigated and then reported in Figures 1 and 2 
in order to show the bandgap evolution as a function of the volume fraction parameter for different 
platelets and interface thickness aspect ratio.  

Fig. 2 shows the evolution of the complete bandgaps with reference to the first lightened unit 
cell as a function of the volume fraction fv . The figure highlights that numerous bandgaps were 
obtained for the case in Fig.2a with 1bw =  and that they become slightly wider as the volume 
fraction increases. Specifically, with 91% 95%fv≤ ≤  only two bandgaps were found for the cases 
with 0.5pw =  and 4pw =  in a range of frequency below 60 [MHz], while with 95% 99%fv≤ ≤  
we found that numerous bandgaps appear at higher frequency ranges and with different platelets 
aspect ratios reaching the highest attenuated frequency equal to 250[Mhz].  

 

 
Fig.2 Bandgap evolution with reference to the lightened unit cell n.1 

The numerical results with reference to a thickness aspect ratio 4bw =  were reported in Fig.2b, 
in which it is clear that a higher thickness aspect ratio leads to a change in the wave absorption 
properties in terms (lowering the attenuated frequency ranges). In fact, only two bandgaps were 
found for the cases with 2pw =  and 4pw =  reaching the highest attenuated frequency equal to 110 
[MHz]. To investigate the influence of different void inclusion arrangements, a second unit cell 
was proposed considering the same amount of void volume fraction and the obtained results were 
reported in Fig. 3. Compared with the unit cell n.1, in this case, it is clear that greater bandgaps 
were observed at lower frequency ranges and that the bandgaps become slightly wider as the 
volume fraction increases. In Fig.3a the most bandgaps were found for the cases with a volume 
fraction 94% 99%fv≤ ≤ , while in Fig.3b the most band gaps were found for  97% 99%fv≤ ≤ . 
However, in both Fig.3a and Fig.3b the bandgaps with the highest and widest frequency range 
were found for the case with a platelets aspect ratio 4pw =  while the bandgaps with the lowest 
frequency range were found with 0.25pw = . Thus, in general, we observed that a higher volume 
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fraction leads to wider bandgaps with higher attenuated frequency ranges and that a higher platelets 
aspect ratio leads to higher attenuated frequency ranges. 

 
Fig.3 Bandgap evolution with reference to the lightened unit cell n.2 

Conclusions  
In this study, we investigated the wave propagation properties in two different lightened 
bioinspired metamaterials by varying the main geometrical parameters. The proposed 
microstructured metamaterials were lightened by inserting void inclusions in place of some 
reinforcing platelets in order to promote wave attenuation property. Comprehensive parametric 
analyses were performed to investigate the influence of the void volume fraction, the platelets 
aspect and the interface thickness aspect ratios.  Based on the numerical results, void inclusions 
and stiff platelets with different microstructural topologies were found to experience enhanced 
wave absorption capabilities, thereby providing new opportunities to design periodic lightweight 
bioinspired composite metamaterials able to attenuate specific frequency ranges of propagating 
elastic waves. 
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Abstract. Lattice fibre materials are challenging the standard modelling approaches due to their 
specific nature that results in peculiar effective behaviours such as extremely anisotropic materials 
or generalized continuum media. In this context, the aim of this paper is to the determine 
qualitatively and quantitatively the role of the morphological and mechanical parameters by 
investigating simple archetypical microstructures. The study is conducted through an up-scaling 
approach making use of the Homogenization method of discrete periodic media in the framework 
of a variational approach. The results of the homogenization have been validated comparing the 
response of the continuum with the response of discrete models.  
Introduction 
Lattice fibre materials are becoming widespread in engineering applications, thanks to their 
versatility and their efficient mechanical and physical properties. In addition to conventional fibre 
materials, widely used in aero-spatial technology and in civil engineering, innovative materials 
have been introduced by the new manufacturing technologies like additive printing.  

The aim of the contribution is to investigate the elastic mechanical behaviour of plane networks 
(fibre sheets), that present strong directional properties, which can be tuned by suitable design of 
the network and selection of the fibre mechanical characteristics.  

In order to describe the network behaviour, the effective mechanical properties of plane fibre 
networks have been derived using discrete homogenization [1,2,3]. The resulting equivalent 
continuum presents strong directional properties, with anisotropy ratios much larger than those 
that can be found in natural materials.  

The results of the homogenization have been validated comparing the response of the 
continuum with the response of ‘‘discrete’’ models, for which each element is modelled as a 
slender beam, and boundary conditions are accounted for in an exact way. 
Brief description of Discrete homogenization technique and some applications on lattice 
structural types 
Discrete homogenization applies to lattices constituted by a finite number of nodes and micro-
beam elements. It derives from classical two-scales homogenization, in which the fast 
(microscopic) variables are substituted by the node numbering. Scale separation hypothesis is 
assumed, that is, the ratio between the dimension of the unit cell ℓ𝑐𝑐 and the dimensions of the 
network, 𝐿𝐿 is a very small parameter 𝜀𝜀 = ℓ𝑐𝑐/𝐿𝐿<< 1.  Homogeneous Euler–Bernoulli beams are 
considered for the lattice, for more detaileds on the homogenization method see [3,4]. 

Two types of networks are examined in this paper, both composed by straight members with 
rigid connection, representing both biaxial and quadriaxial repetitive cells. The biaxial cell is 
composed by two families of fibres, as shown in Fig. 1(a); in this case will be considered either 
orthogonal rectangular cells (so that the fibres form an angle 𝛼𝛼 = 𝜋𝜋∕2) and skew cell (with an angle 
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between the fibres 0 < 𝛼𝛼 < 𝜋𝜋∕2). The quadriaxial cell is always considered with orthogonal fibres 
as shown in Fig. 1(b). The elements of the networks are considered as having rectangular cross-
sections, with unit depth normal to the plane of the lattice. Plane stress are therefore considered 
for the homogenized model. Referring to the elements indicated in Fig. 1, the following symbols 
will be used: 𝑙𝑙𝑖𝑖 is the length of member 𝑏𝑏𝑖𝑖; 𝐼𝐼𝑖𝑖 is the in-plane moment of inertia of member 𝑏𝑏𝑖𝑖; 𝐴𝐴𝑖𝑖 is 
the area of member 𝑏𝑏𝑖𝑖; ℎ, 𝑠𝑠 will denote the height and width of the members; 𝐸𝐸𝑖𝑖 is the Young 
Modulus of member 𝑏𝑏𝑖𝑖; 𝛼𝛼 is the opening angle of the biaxial cell. 

 
Fig. 1 Case studies: (a) Skew cell with rigid connection, (b) Rectangular cell braced with rigid 

connection. 
The homogenized constitutive equations of the network constituted by skew repetitive cells 

with straight fibres forming an angle 𝛼𝛼 between themselves and for the rectangular cell braced 
with rigid connection can be found in [4,5]. 
Analysis of the properties of the equivalent materials 
The design of lattice structures, like woven fabrics and networks, with controlled anisotropy and 
mechanical properties is of critical importance for various applications. In order to evaluate the 
characteristics of anisotropy of networks having as elementary cell one of those examined in the 
previous sections, we examine the uniaxial stiffness of the network defined as the ratio between 
an uniaxial stress applied along an axis 𝜉𝜉 rotated by an angle 𝜃𝜃 respect to the 𝑥𝑥 axis (always taken 
coincident with the direction of fibre 1 and the corresponding strain, see Fig. 2. The ratio 𝐷𝐷𝜉𝜉𝜉𝜉= 𝜎𝜎𝜉𝜉𝜉𝜉/ 
𝜖𝜖𝜉𝜉  denotes  the uniaxial stiffness in the direction 𝜉𝜉. 

 
Fig. 2 Definition of the rotated axis 𝜉𝜉. 

Extension tests of networks modelled by square biaxial or quadriaxial cells arranged at various 
angles with respect to the extension axis are considered. The following geometrical and 
mechanical properties of the fibres have been considered: 𝑙𝑙1 = 𝑙𝑙2 = 5 mm; ℎ1 = ℎ2 = 1 mm, 𝑠𝑠1 = 𝑠𝑠2 
= 1 mm, 𝐸𝐸1 = 𝐸𝐸2 = 1600 Mpa. 
Biaxial network 
The uniaxial stiffness, normalized with respect to the modulus 𝐸𝐸1 of the beams lying in the 1-
direction, are represented in polar plots in Fig. 3(a) and 3(b).  
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Defining the dimensionless parameters 𝜌𝜌 = 𝑙𝑙2/𝑙𝑙1 𝛽𝛽 = ℎ2/ℎ1 𝛾𝛾 = 𝐸𝐸2/𝐸𝐸1 𝜇𝜇1 = 𝑙𝑙1/ℎ1,  the different curves 
in the plots refer to cells having beams with different length with 𝜌𝜌 ranging from 1 to 3, equal 
section 𝛽𝛽 = 1, equal modulus 𝛾𝛾 = 1, and slenderness of the first set of beams 𝜇𝜇1 = 5. 

The material obtained presents a sharp contrast of anisotropy, reaching two order of magnitudes 
between the directions of the fibres and a direction at 45◦ with it. For large ratios 𝑙𝑙2/𝑙𝑙1 there is also 
a strong difference between the stiffness along the directions of the fibres. 
 

 
Fig. 3 Uniaxial stiffness of a material formed by rectangular reference cells with rigid 

connections as function of the load directions for different aspect ratio of the cell. 
Extension tests are usually performed to get an estimate of the elastic properties of fibre 

networks. According to ISO standard 13934-1, the sample length-to-width ratio used in laboratory 
tests for assessing the uniaxial elastic modulus should be equal to 2. 

In order to evaluate whether this aspect ratio is appropriate for obtaining stable values of the 
elastic parameters, the apparent elastic modulus 𝐷𝐷𝑦𝑦𝑦𝑦 in the axial direction was numerically 
evaluated as a function of the slenderness of the sample for various inclinations 𝜃𝜃 of the material 
axis 1 with respect to the loading direction. 

The aspect ratio was varied in the range 0.1 to 10.0. The results are summarized in the plot of 
Fig. 4(a). All the results are contained within two boundaries, represented by the upper and lower 
dashed curves, which represent the uniaxial stiffness evaluated analytically under the hypothesis 
of uniaxial strain state (𝜖𝜖𝑧𝑧𝑧𝑧 = 𝛾𝛾𝑦𝑦𝑧𝑧 = 0, upper curve) and of uniaxial stress state (𝜎𝜎𝑧𝑧𝑧𝑧 = 𝜏𝜏𝑦𝑦𝑧𝑧, lower 
curve). 
Quadriaxial network 
The results of this section refer to a quadriaxial lattice with orthogonal fibres and rigid connections, 
as the one examined, in the special case that the internal fibres along the diagonals (usually less 
stiff) are identical among themselves. The internal node is located at the centre of the cell. The 
following dimensionless parameters are used: 𝛾𝛾1 = 𝐸𝐸2/𝐸𝐸1; 𝛾𝛾2 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖/𝐸𝐸1; 𝛽𝛽1 = ℎ2/ℎ1; 𝛽𝛽2 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖/ℎ1; 𝜌𝜌 = 
𝑙𝑙2/𝑙𝑙1 where 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖, ℎ𝑖𝑖𝑖𝑖𝑖𝑖 are the Young modulus and the thickness of the internal fibres.  
The length of the internal fibres is 𝑙𝑙𝑖𝑖𝑖𝑖 = 𝑙𝑙1/2�1 + 𝜌𝜌2. The slenderness of the external fibre 1 is 
denoted by 𝜇𝜇1 = 𝑙𝑙1∕ℎ1. Notice that the slenderness of the beams in the 2-direction and of the internal 
beams are respectively 𝜇𝜇2 = 𝜇𝜇1 𝜌𝜌/𝛽𝛽 and 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 = μ1 /𝛽𝛽2�0.25 + 0.25𝜌𝜌2. 
The case of a square braced cell, 𝜌𝜌 = 1, with two equal external fibres and 𝛽𝛽1 = 1, 𝛾𝛾1 = 𝛾𝛾2 = 1, is 
examined first. The slenderness ratio of the external beams has been fixed to 𝜇𝜇1 = 5. 
The uniaxial stiffness and compliance are reported in Fig. 5, for different values of 𝛽𝛽2 varying 
from 0.3 to 2. According to whether the internal fibres have a larger thickness than the external 
(𝛽𝛽2 > 1), or the opposite, a greater stiffness is obtained at the braces direction (45◦), or at 0◦. 
However, in any case, a more isotropic behaviour is obtained with respect to the biaxial lattice. 
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The effect of the internal fibres is to reduce the contrast of anisotropy. The insertion of diagonal 
fibres makes the transition of the stiffness from direction 1 to direction 2 more smooth. 

 
 
 
 
 
 
 
 
 
 
                                                         (a)                                                                        (b) 

Fig. 4 Uniaxial stiffness of a material formed by rectangular reference cells with rigid 
connections as function of the load directions for different aspect ratio of the cell. 

The apparent longitudinal elastic modulus as a function of the fibre for aspect ratios of the 
specimen in the range 0.1 to 10 and for orientations ranging from 𝜃𝜃 = 0◦ to 𝜃𝜃 = 45◦ is presented in 
Fig. 4(b). Comparing this plot with the one of Fig. 4(a) it is possible to observe that in the case of 
quadriaxial networks the behaviour of the material is almost independent on the mesh inclination. 
This effect can be attributed to the stiffness contribution given by the braces.  

 
 

Validation 
The numerical results obtained using the homogenization model in the simulation of the bias test 
of the biaxial network with aspect ratio 𝜌𝜌 = 2 have been compared to the response of a meso-model 
of the network, realized by means of discrete linear beams.  
Four discrete models with a variable number of cells have been employed, corresponding to 20, 
40, 80, 160, cells along the longest side of the specimen. For both families of equal fibres the 
Young modulus 𝐸𝐸 = 1600 MPa and slenderness ratio 𝑙𝑙𝑖𝑖∕ℎ𝑖𝑖 = 10 have been used.  
The elastic properties of the homogenized material are 𝐸𝐸𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 160 MPa, 𝛤𝛤 = 0.8 MPa. As the 
number of elements in the discrete model grows, so as to satisfy the scale separation hypothesis, 
the results of the discrete and of the homogenized models tend to converge. Fig. 6(a) shows the 
relative error for the strain energy between the discrete model and a reference value evaluated with 
the homogenized continuum model, using a very fine mesh. Similar convergence plots refer to the 

Fig. 5 Uniaxial stiffness of a material formed by square braced cell with rigid 
connections as function of the load directions for different thickness ratios 𝛽𝛽2. 
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lateral contraction of the specimen, measured at its centre (Fig. 6(b)) and to the shear strain 𝛾𝛾12 
between the fibres directions in the centre of the specimen (Fig. 6(c)). 
 

 
Fig. 6 Convergence of the results of the discrete models and of the homogenized model as the 

number of discrete cells increases.  
Cylindrical structure 
In this section a cylinder whose wall is made by a periodic lattice of biaxial orthogonal fibres with 
circular cross-section is examined. The discrete and homogenized continuous model will be 
compared. The homogenised model was defined taking into account both the flexural and the 
membrane properties simultaneously. The cylindrical structure is shown in the figure 7. 

 
Fig. 7 Cylindrical structure 

The geometrical parameters used for the model are: diameter D = 100 mm and height H = 300 
mm of the cylindrical structure; dimensions of the repetitive cell l1 = 4.0 mm e l2 = 4.0 mm, with 
rotations of load at 45◦ of the cell with respect the axis z; diameter of the beams of the cell is d = 
0.5 mm. The mechanical properties of the material constituting the lattice are the elastic module E 
= 1600 N/mm2 and poisson’s ratio ν= 0.15. A line load that tends to uniformly stretch the cylinder 
has been applied.  

At one end of the cylinder translations are prevented, at the other end only axial displacements 
are allowed.  The same simulation using the homogenized continuum has been performed. The 
vertical displacements of both models, figures 8 and 9, are quite similar. The maximum 
displacement value is 27.982 mm 28.346 mm respectively for the discrete model and for the 
homogenized model. The relative error between the maximum displacement obtained for the 
discrete model and that obtained for the homogenised is: 
 

𝑒𝑒𝑟𝑟 =
|28.346 − 27.982|

27.982
× 100 = 1.3% 
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Fig. 8 Band plot of the vertical dislacement for the discrete FEM model for different increment 

of the load. 

 
Fig. 9 Band plot of the vertical dislacement for the discrete FEM model for different increment 

of the load. 
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Abstract. This work analyzes the dynamic behavior of structural elements that can be modelled 
as taut cables with a discrete array of punctual attached and hanging masses. The propagation of 
mechanical waves is strongly influenced by the presence of such scatter elements. We found that 
the problem is governed by a discrete equation, whose solutions depend on the behavior of an 
equivalent mass density, that varies with frequency. The spectrum of the problem is characterized 
by the presence of band gaps. This behavior is generally exploited for the design of metastructures. 
A parametric study of the equivalent mass is finally given. 
Introduction 
Long and flexible slender elements are typically modelled as cables, i.e. as structures with no 
flexural rigidity. The dynamics of such systems has been widely studied due to the possible 
activation of several peculiar mechanisms mainly connected to the intrinsic non-linearities of the 
problem [1–3].  

In most applications, cabling systems present hanging elements that are often periodically 
repeated. This is the case for instance for the main cables in suspension bridges [4], for cableways 
[5] and for overhead lines with ball markers or vibrational dissipators [6]. These elements largely 
influence and modify the dynamic response of the system, acting as scatterers for propagating 
waves. To show this, we here analyze a simplified problem by studying the propagation of 
mechanical waves in taut cables with a periodic array of masses, directly attached to the cable 
or/and hanging to it by means of elastic springs. We focus on the linear dynamics of the system. 
Specifically, we verified that there exist some intervals of frequencies at which waves cannot 
propagate through the cable, i.e. band gaps in the spectrum. We thus found that the system can 
behave as a metastructure.  

In this work, we initially derive an equivalent equation governing the linear dynamics of our 
system and we show that band gaps can indeed appear. We then analyze how these band gaps are 
modified by a variation of the parameters involved in the problem: this analysis gives useful 
information for the design phase. 
Problem formulation 
Let us analyze the propagation of transverse mechanical waves in taut cables. This model can be 
used to study the behavior of long and slender structural elements, characterized by a low flexural 
rigidity, that are stretched between two supports positioned at the same height. The cable is here 
characterized by the presence of a periodic arrangement of pointwise hanging elements, composed 
of masses 𝑚𝑚1 directly attached to the cable and connected to hanging masses 𝑚𝑚2 by means of 
elastic springs k (cf. Fig. 1). 
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Figure 1: Cable in tension under a force 𝑯𝑯, with a periodic distribution of scatter elements 
composed of masses 𝒎𝒎𝟏𝟏 directly attached to the cable and/or masses 𝒎𝒎𝟐𝟐 hanging through 
springs 𝒌𝒌. The following limiting cases are shown: in scheme (a) masses are hanging to the 

cable by means of elastic springs, in scheme (b) masses are directly attached to the cable, and in 
scheme (c), masses are constrained to the ground by means of elastic springs. Direction 𝒆𝒆𝟑𝟑 is 

out-of-plane. 

By calling 𝐻𝐻 the pretension applied to the cable, the equilibrium configuration can be 
approximated to be horizontal when H is much larger than the total weight of cable and attached 
elements. Specifically, a material point 𝑠𝑠0 will be moved to a different position s, during this 
pretensioning phase, along direction 𝒆𝒆1 (see Fig. 1). By calling 𝑁𝑁𝑒𝑒𝑒𝑒(𝑠𝑠0) the axial force and 
𝜖𝜖𝑒𝑒𝑒𝑒(𝑠𝑠0) the static axial strain of the point originally at position 𝑠𝑠0, from equilibrium and linear 
elasticity one has 

𝑁𝑁𝑒𝑒𝑒𝑒(𝑠𝑠0) = 𝐻𝐻    and    ϵ𝑒𝑒𝑒𝑒(𝑠𝑠0) = 𝐻𝐻/𝐸𝐸𝐸𝐸, (1) 

where EA is the axial stiffness of the cable.  
Note that, with the current assumptions, the presence of the punctual elements does not 

influence the static equilibrium of the system. This is not the case when the cable is moving. To 
show this, let us now take the static equilibrium configuration to be the new reference configuration 
for the dynamic problem. We call L the distance between the two supports and n the total number 
of hanging elements. Accordingly, 𝑑𝑑 = 𝐿𝐿/(𝑛𝑛 + 1) is the distance between two subsequent 
elements. As we are dealing with a wave propagation problem, we do not consider the boundary 
conditions. 

By studying small oscillations around the equilibrium configuration, the motion problem is 
governed by three uncoupled equations along the in-plane horizontal and transverse directions and 
the out-of-plane direction (respectively, directions 𝒆𝒆1, 𝒆𝒆2 and 𝒆𝒆3 in Fig. 1). Specifically, along the 
transverse direction 𝒆𝒆2, one has: 

�̈�𝑢(𝑠𝑠, 𝑡𝑡) − 𝑐𝑐𝑡𝑡2𝑢𝑢′′(𝑠𝑠, 𝑡𝑡) = 0    ∀𝑠𝑠 ∖ 𝑃𝑃  (2) 

where we use (∎̈) and (∎′′) to denote respectively the time and spatial derivatives. In Eq. 2, 𝑐𝑐𝑡𝑡2 =
𝐸𝐸𝐸𝐸�1 + ϵ𝑒𝑒𝑒𝑒�

2
/ρ is the speed of transverse waves, and we have used P to define the collection of 

positions 𝑠𝑠 = 𝑠𝑠𝑖𝑖  of the i-th hanging elements. The motion problem is then completed by a set of jump 
conditions, such that: 

�𝐸𝐸𝐸𝐸𝜖𝜖𝑒𝑒𝑒𝑒𝑢𝑢′�(𝑠𝑠𝑖𝑖, 𝑡𝑡) = 𝑚𝑚1�̈�𝑢(𝑠𝑠𝑖𝑖, 𝑡𝑡) − 𝑘𝑘�𝑣𝑣𝑖𝑖(𝑡𝑡) − 𝑢𝑢(𝑠𝑠𝑖𝑖, 𝑡𝑡)�    𝑤𝑤𝑤𝑤𝑡𝑡ℎ 1 < 𝑤𝑤 < 𝑛𝑛,  (3) 

where ⟦∎⟧ = (∎)+ − (∎)−, with (∎)+ (resp. (∎)−) denoting the right (resp. left) limit of (∎) at 
s. In the above Eq. 3, we used 𝑣𝑣𝑖𝑖 to denote the vertical displacement of the end point of the spring 
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where the mass 𝑚𝑚2 of the i-th element is attached, by making the assumption that these masses can 
only move in the vertical direction 𝒆𝒆2. Accordingly, the equation of the vertical motion of the i-th 
mass 𝑚𝑚2 reads as: 

𝑚𝑚2�̈�𝑣𝑖𝑖 + 𝑘𝑘�𝑣𝑣𝑖𝑖(𝑡𝑡) − 𝑢𝑢(𝑠𝑠𝑖𝑖, 𝑡𝑡)� = 0. (4) 

Note that Eq. 3 can be also used to model the case when masses 𝑚𝑚1 + 𝑚𝑚2 are directly attached 
to the cable and the case when the elastic springs are constrained to the ground. For this, one has 
to consider, respectively, an infinite stiffness k and an infinite mass 𝑚𝑚2. Specifically, from Eq. 4, 
one has for the former case 𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝑢𝑢(𝑠𝑠𝑖𝑖, 𝑡𝑡), meaning that the system behaves as if masses 𝑚𝑚2 
were directly attached to the cable and summed to masses 𝑚𝑚1. For the latter case, instead, one has 
�̈�𝑣𝑖𝑖 = 0, meaning that masses 𝑚𝑚2 cannot move. These cases are shown in Fig. 1 (schemes (b) and 
(c)), together with the case corresponding to 𝑚𝑚1 = 0 (scheme (a)). 

By considering that both fields u and 𝑣𝑣𝑖𝑖 are small and harmonically varying in time, such that 

𝑢𝑢(𝑠𝑠, 𝑡𝑡) = 𝑢𝑢�  𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒 iω𝑡𝑡    and    𝑣𝑣𝑖𝑖(𝑠𝑠, 𝑡𝑡) = 𝑣𝑣�𝑖𝑖 𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒 iω𝑡𝑡,  (5) 

Eq. 2 can be solved within each interval i-th. The term i is used in relations 5 and in the followings 
to denote the imaginary unit. By calling 𝑢𝑢�𝑖𝑖 the transverse displacement of the i-th mass 𝑚𝑚1, one 
obtains 

𝑢𝑢�(�̂�𝑠) = 𝑢𝑢�𝑖𝑖−1 𝑐𝑐𝑐𝑐𝑠𝑠(Ω(n + 1)s� − 𝑤𝑤 + 1) +
𝑢𝑢�𝑖𝑖 − 𝑢𝑢�𝑖𝑖−1 𝑐𝑐𝑐𝑐𝑠𝑠 Ω

𝑠𝑠𝑤𝑤𝑛𝑛 Ω
𝑠𝑠𝑤𝑤𝑛𝑛(Ω(𝑛𝑛 + 1)�̂�𝑠 − 𝑤𝑤 + 1) (6) 

where Ω = ω𝑑𝑑/𝑐𝑐𝑡𝑡 and �̂�𝑠 = 𝑠𝑠/𝐿𝐿 are respectively dimensionless frequency and coordinate. Using 
Eq. 6, together with Eq. 3 and 4, one finally finds the following equivalent equation of motion for 
the points 𝑠𝑠𝑖𝑖 ∈ 𝑃𝑃: 

Δ𝑖𝑖𝑢𝑢� + μ(Ω)𝑢𝑢�𝑖𝑖 = 0,    with    Δ𝑖𝑖𝑢𝑢� = 𝑢𝑢�𝑖𝑖+1 + 𝑢𝑢�𝑖𝑖−1 − 2 𝑢𝑢�𝑖𝑖. (7) 

In the above equation, μ(Ω) can be interpreted as a frequency dependent equivalent mass density 
and it reads  

𝜇𝜇(Ω) = 2(1 − 𝑐𝑐𝑐𝑐𝑠𝑠 Ω) + �Θ1 +
𝑘𝑘�Θ2

𝑘𝑘� − Θ2Ω2
�Ω 𝑠𝑠𝑤𝑤𝑛𝑛Ω (8) 

where Θ1 and Θ2 are two mass ratios and 𝑘𝑘� is a normalized stiffness of the springs: 

Θ1 = 𝑚𝑚1
ρ𝑑𝑑

,    Θ2 = 𝑚𝑚2
ρ𝑑𝑑

,   and   𝑘𝑘� = 𝑘𝑘𝑑𝑑
𝑁𝑁𝑒𝑒𝑒𝑒

.  (9) 

Spectral band gaps 
From the derivation in [7], one has the following solutions of Eq. 7: 

 
𝑢𝑢�𝑖𝑖 = 𝐸𝐸 𝑒𝑒𝑒𝑒𝑒𝑒(−i K∗𝑤𝑤) + 𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒(i K∗𝑤𝑤)                     for 0 ≤ μ(Ω) ≤ 4, 

𝑢𝑢�𝑖𝑖 = 𝐸𝐸 𝑒𝑒𝑒𝑒𝑒𝑒(−K∗𝑤𝑤) + 𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒(K∗𝑤𝑤)                         for μ(Ω) < 0, 

𝑢𝑢�𝑖𝑖 = 𝐸𝐸 (−1)𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(−K∗𝑤𝑤) + 𝐵𝐵 (−1)𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(K∗𝑤𝑤)    for μ(Ω) > 4, 

(10) 

 
where K∗ ∈ [0,π] is a dimensionless wavenumber obtained as: 

 

1 − μ(Ω)
2

= �
𝑐𝑐𝑐𝑐𝑠𝑠 𝐾𝐾∗           for 0 ≤ μ(Ω) ≤ 4,
𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝐾𝐾∗           for μ(Ω) < 0,           
−𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝐾𝐾∗       for μ(Ω) > 4.           

  (11) 
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Accordingly, waves propagate freely along the cable when 0 ≤ μ(Ω) ≤ 4. For either μ(Ω) < 0 or 
μ(Ω) > 4, waves are instead attenuated, as the displacement field is given by a superimposition of 
exponentials.  
The spectrum of the problem governed by Eq. 7 is thus characterized by band gaps, i.e. by intervals 
of frequencies at which wave solutions does not exist. 
Parametric study of band gaps 
As discussed in the previous section, band gaps are given by those frequencies at which either 
𝛍𝛍(𝛀𝛀) < 𝟎𝟎 or 𝛍𝛍(𝛀𝛀) > 𝟒𝟒. Considering for example the case with 𝚯𝚯𝟏𝟏 = 𝟎𝟎, 𝚯𝚯𝟐𝟐 = 𝟏𝟏.𝟏𝟏𝟏𝟏 and 𝒌𝒌� =4 
(hanging masses), we report in Fig. 2 the behavior of 𝛍𝛍 in function of the frequency 𝛀𝛀. Band gaps 
are denoted by the green (𝛍𝛍(𝛀𝛀) < 𝟎𝟎) and red (𝛍𝛍(𝛀𝛀) > 𝟒𝟒) intervals. Blue intervals correspond to 
pass bands. 

 
Figure 2: Equivalent mass vs frequency for the system studied in Fig. 5, with 𝒌𝒌� = 𝟒𝟒. Colors must 

be interpreted as in Figures 3 to 6: blue is used for pass bands, red and green for band gaps. 
 
Let us now study how the equivalent mass density 𝛍𝛍(𝛀𝛀) is influenced by the parameters given 

by relations 9. Specifically, we here analyze how band gaps vary in function of them. For this, we 
show some contour plots (Figures 3 to 6) of the equivalent mass 𝛍𝛍(𝛀𝛀) for the following cases: 

Fig. 3. Cable with masses 𝑚𝑚1 and no hanging mass (𝑚𝑚2 = 0). 
Fig. 4. Cable with 𝑚𝑚1 = 0 and 𝑚𝑚2 → ∞ (cable lying on a discrete array of elastic constraints). 
Fig. 5. Cable with 𝑚𝑚1 = 𝑚𝑚2 = 𝑚𝑚 (Θ1 = Θ2 = Θ) and fixed dimensionless spring stiffness 𝑘𝑘�. 
Fig. 6. Cable with hanging masses 𝑚𝑚2 (𝑚𝑚1 = 0) and varying dimensionless spring stiffness 𝑘𝑘�. 

As before, in the contour plots the conditions 𝛍𝛍(𝛀𝛀) < 𝟎𝟎 and 𝛍𝛍(𝛀𝛀) > 𝟒𝟒 are verified respectively 
in the green and red regions. The blue areas, instead, correspond to pass bands. 
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Figure 3: Masses directly attached to the 

cable for varying mass m1 (m2=0). 

 
Figure 4: Cable lying on a discrete set of 

elastic springs for varying stiffness (m1=0). 

  
Figure 5: Cable with equal attached and 

hanging masses for varying mass m1=m2=m. 
For this plot we used 𝒌𝒌� = 𝟒𝟒.𝟕𝟕𝟑𝟑. 

 
Figure 6: Cable with hanging masses for 

varying stiffness k (m1=0). For this plot we 
used 𝜣𝜣𝟐𝟐 = 𝟏𝟏.𝟏𝟏𝟏𝟏. 

 
Note that the system studied in Fig. 2 corresponds to that used in Fig. 6, by fixing 𝑘𝑘� =4. Colors 

have the same meaning in both Figures.  
From Fig. 3, the width of band gaps increases with the mass. For the system analyzed in Fig. 4, 

their width increases with the stiffness. Most importantly, this latter case is characterized by a cut-
off frequency with a band gap opening at zero frequency. Note that the closing frequencies in Fig. 
3 and the opening frequencies in Fig. 4 are independent respectively from a variation of attached 
mass and stiffness. This can be explained by studying the behavior of the equivalent mass μ. For 
this, let us first rewrite here relation 8 for these two cases 

 

μ(Ω) = �
2(1 − 𝑐𝑐𝑐𝑐𝑠𝑠 Ω) + Θ1Ω 𝑠𝑠𝑤𝑤𝑛𝑛Ω
2(1 − 𝑐𝑐𝑐𝑐𝑠𝑠 Ω) + 𝑘𝑘� 𝑠𝑠𝑖𝑖𝑠𝑠Ω

Ω
        .  (12) 

 
From relations 12 one can recognize that at points 𝑗𝑗π, with 𝑗𝑗 ∈ ℕ∗, the first and second terms 

in the definition of the equivalent mass are both zero independently of Θ1 and 𝑘𝑘�.    
Let us now comment on Figures 5 and 6. In both cases, the systems used are characterized by 

the presence of resonant elements (springs and masses 𝑚𝑚2) that can locally resonate causing the 
opening of band gaps. The dotted black curves in these contour plots show how the resonance 
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frequency varies with respect to the varying parameters. Specifically, the equivalent mass is 
indefinite at resonance and tends to +∞ or −∞ from below or from above (cf. Fig. 2), depending 
on the case under consideration. Accordingly, band gaps will always appear around the frequency 
of resonance, as one can check from the contour plots. From Fig. 6, band gaps width clearly 
increases with the stiffness. The presence of opening and closing frequencies that result to be 
independent from a variation of mass (Fig. 5) and stiffness (Fig. 6) can be explained by looking at 
the equivalent mass μ with a reasoning similar to that followed for Figures 3 and 4. 

Note that, for the parameters fixed by the black continuous horizontal lines in Figures 5 and 6, 
the two systems are characterized by a spectrum where the closing frequency of the first band gap 
is superimposed with the opening frequency of the second band gap: the final band gap becomes 
thus very wide, resulting in an optimal attenuating behavior. This feature is also valid for the 
second and third band gaps in the spectrum shown in Fig. 5, as indicated by the black dashed 
horizontal line.    
Conclusions 
In this paper we have considered the linear dynamic behavior of a cable with hanging elements. 
We found that this system behaves as a metastructure, offering the peculiar property that waves 
cannot freely propagate for some intervals of frequencies, generally known as band gaps. For this, 
we have derived an equivalent mass density from which we were able to obtain information 
regarding the influence of the parameters involved in the problem. The result can be of interest as 
a starting point for more realistic models where the initial sag of the cable is taken into account. 
This would better idealize the structural applications listed in the introduction of the current work. 
Moreover, the attenuating capabilities of the system could be exploited for the localization and 
focusing of mechanical waves, as shown in [8,9].  
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Abstract. Engineered metamaterials for precise wave manipulation and control is a new challenge 
for many applications in the field of mechanical vibration control and energy harvesting. Inspired 
by the advancement in wave manipulation and localization performance of elastic waveguides 
thanks to the introduction of resonators, we try to assess if these systems can be applied also into 
the junctions between beams that make up lattices. The goal is to achieve control over elastic wave 
propagation and define whether the local resonators are able to enhance the redirection of the wave 
into a perpendicular beam. Furthermore, evaluations concerning elastic energy localization in the 
resonators are reported to assess whether these systems are also suitable for energy localization 
and energy harvesting. 
Introduction 
Control over wave propagation has attracted growing interest across different realms of physics, 
with multiple realizations in electromagnetic [1] acoustic [2,3], and elastic systems [4].  Different 
physical effects have been developed in photonics and researchers have been borrowing those 
ideas to focus or confine elastic wave energy, such as the creation of elastic lenses [5,6,7,8], 
cavities [9,10], mirrors [11] or topological modes [12]. Metamaterials devised through the use of 
local lateral resonators have been recently employed to confine elastic energy for energy 
harvesting applications or vibration isolation. These resonators filter elastic waves and store elastic 
energy inside them, efficiently protecting the underlying guide from harmful vibrations [13,14]. 
More recently, it has been shown how broadband vibration isolation properties and wave 
redirection effects can be achieved leveraging graded arrays of resonators with spatially varying 
resonance frequency [15,16]. In the context of wave localization and wave redirection, the idea of 
implementing novel metalattices is now taking place The underlying idea is to create metalattices 
that are able, thanks to their microstructure, to guide specific elastic waves, depending on the 
desired frequency and polarization, into certain predetermined paths in the lattice. The 
modification of the microstructure of the lattice is able to induce a change in the homogeneous 
properties at a macro level [17]. As a result, if the variation is properly engineered, lensing effects 
or in general wave manipulation effects are obtained. The idea now is the opposite: modifying the 
microstructure of a classic lattice so that the waves are redirected at the micro-structural level. The 
necessary step to achieve such structures would be to design junctions with peculiar properties that 
are able to influence the energy redirection between the single beams that compose the junction. 
To do so, this paper reports some numerical experiments conducted using local resonance systems 
to partially achieve such junctions.  The idea is to engineer lateral resonators that localize and 
convert waves to achieve control over preferential wave paths. 
Analyses 
A study of wave manipulation and control over the connection of two infinite waveguides is 
reported. The aim is to develop new knowledge over wave redirection in metalattices that employ 
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local resonance effects in specific junction points of frame structures to control the flow of elastic 
energy through space.  

Starting from the analysis of a simple T-junction between infinitely long waveguides, the idea 
is to see if the presence of a resonator is able to single handedly improve the percentage of wave 
redirected into the perpendicular waveguide. The hypothesis is that, thanks to the localization of 
energy inside the resonator, the wave emitted by it through anchor losses or other coupling 
phenomena will be redirected also into the perpendicular waveguide. Then, from these results, 
rainbow reflection arrays will be implemented to see whether these structures are beneficial for 
the redirection of the waves. 
Materials and methods 
First, we evaluate the resonance frequency of the resonator implemented at the junction of the two 
waveguides with the specific boundary conditions (BCs). In the case of a 13 mm long, 2.5 mm 
wide, 1.5 mm thick resonator, made of aluminum and attached to the junction point of two infinite 
waveguides made of aluminum, the resulting resonance frequency is 5800 Hz. At the waveguides 
boundaries, ALID boundary conditions are implemented to model an infinite domain [18]. Further 
damping mechanisms are not contemplated. The analyses reported below are all conducted 
evaluating the displacement field generated by a travelling flexural wave. The numerical results 
reported are obtained through time domain implicit analyses in COMSOL Multiphysics. 
Single resonator at the junction 
Fig. (1) reports the geometries analyzed and the results obtained through the comparison between 
the case with the resonator positioned at the junction point between the waveguides and the 
junction without the resonator. The displacement field has been normalized with respect to the 
maximum displacement generated at the input. It shows how the presence of the resonator 
influences the redirection of the wave at the frequency associated to its resonance. The maximum 
displacement field in the perpendicular waveguide is enhanced by 43% when the resonator is 
positioned on the junction. Furthermore, another analysis was conducted to see whether the energy 
traversing the waveguide is more localized on the resonator in the case of infinite waveguide or 
the T junction case described above. Fig. (2) shows the setup and the results. It is clear that, for a 
narrow band signal centered at the resonance frequency of the resonator, the maximum 
displacement field of the cantilever is enhanced by 134%. 

 
Fig.1: On the left the analyzed geometries. On the right the computed normalized displacement 
on the perpendicular waveguide for the case of junction with lateral resonator (a), and junction 

without lateral resonator (b). 
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Fig.2: On the left the analyzed geometries. On the right the computed normalized displacement 
at the resonator’s tip for the case of T junction (a), and lone lateral resonator on the waveguide 

(b). 
 

This is an interesting result for energy localization and energy harvesting application, given that 
the presence of the junction enhances the energy stored in the lateral resonator.  
Asymmetric rainbow at the junction 
Having seen how the presence of a single resonator is able to improve wave redirection and energy 
localization, the next step is to evaluate the effect of placing the resonator inside a rainbow 
reflection array. This has been done by considering that a rainbow reflection array is able to 
increase the interaction time between the wave and the target resonator [19]. The goal is to assess 
whether this system can increase both localization of the wave at the target resonator positioned at 
the junction point and also redirect  more efficiently the energy along the perpendicular waveguide. 
Before stating the results, it is to be noticed that the resonance frequency of the target resonator is 
now shifted with respect to the previous analyzed case: this is due to the interaction with the 
neighbor resonators that pushes down the resonance by 300 Hz. Furthermore, the rainbow 
reflection configuration is composed of 15 linearly increasing in length and equally spaced 
resonators so that the target resonator (the 12th) is positioned exactly at the junction point between 
the two waveguides. 
Now the idea is to compare the redirection efficiency of the rainbow structure at the resonance 
frequency of the target resonator. The analyses are all performed with a narrowband signal 
generated at the resonance frequency of the target resonator.  
Fig. (3) reports the results of the comparison between the case of one single resonator at the 
junction point (the same one shown before) with the asymmetric rainbow case. The result shows 
that the rainbow structure is not able to efficiently redirect the wave into the perpendicular 
waveguide.  
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Fig.3: On the left the geometries analyzed. On the right the computed displacement on the 

perpendicular waveguide for the case of junction with lateral resonator (a), and junction with 
rainbow reflection array (b). 

 
As for the efficiency of energy localization inside the resonator, Fig. (4) reports that, as stated 

in previous works [19,20] the enhancement of energy localization is confirmed. However, even if 
the displacement field of the resonator is enhanced 8 times in the rainbow array, the redirection on 
the perpendicular waveguide is halved. The energy is simply back scattered towards the input, as 
it is in the case of simple one dimensional systems. 
 

 
Fig.4: Normalized displacement field of resonators’ tip for the case of junction with lateral 

resonator (a), and junction with rainbow reflection array (b). 
 

The rainbow configuration can be modified both by changing the length of the lateral resonators 
and the spacing between them. Changing the latter, results in a drastic change in redirection 
efficiency. For an array with a distance between the resonators in the order of one eight of the 
wavelength (in the previous case it was 12 times) the redirection is 3% less than that for the single 
resonator case, while the energy displacement field of the resonator is still maintained at 
approximately 8 times the one of the single resonator. These results are reported in Fig. (5) and 
Fig. (6). The reason why the change in distance of the resonator is so important is thought to be 
linked to the conversion of the travelling wave from flexural to torsional. A torsional wave is better 
able to be redirected in the perpendicular waveguide. On this topic it has already been shown how 
a staggered configuration of resonators is able to achieve efficient mode conversion when the 
distance and the length of the resonators is properly set [21]. 
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Fig.5: On the left the geometries analyzed. On the right the computed displacement on the 

perpendicular waveguide for the case of junction with lateral resonator (a), and junction with 
rainbow reflection array (b). 

 
Fig.6: Normalized displacement field of resonators’ tip for the case of junction with lateral 

resonator (a), and junction with rainbow reflection array (b). 
In the end, we observe that the resonator and the resonators array are able to influence the wave 
redirection mainly through conversion of the flexural input wave mode into a propagating torsional 
mode. Further studies on this topic are necessary to assess whether this wave conversion effect is 
the key component in wave redirection. 
Conclusions 
The paper contains some studies aimed at evaluating the effectiveness of implementing different 
configurations of lateral resonators at 90 degrees junctions of infinite beams. It was showed how 
the presence of the resonators can be an advantage or disadvantage in terms of wave redirection. 
It was seen how a single resonator positioned at the junction point is able to partially influence the 
energy redirection towards the perpendicular waveguide and how its own motion is enhanced by 
the junction. For what concerns the rainbow reflection system, the results indicate that the single 
resonator is more effective with respect to the array if the resonators are closely packed together. 
But for the case of more spaced resonators the two configurations are comparable in wave 
redirection efficiency. Furthermore, the rainbow array allows for a great enhancement of the 
displacement of the target resonator. Further numerical and analytical studies must be performed 
to correctly understand the phenomena that define wave redirection. 
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Abstract. Architected materials possess extraordinary mechanical properties, that cannot be met 
by natural materials, either in the static and in the dynamic range. For this reason, the study of 
metamaterials is a very active field of research. Although lattice architectures are commonly 
preferred, especially for the relative simplicity of manufacturing, geometries based on thin shells 
may present considerable advantages. Indeed it has been shown that shell metamaterials, still 
preserving lightness and versatility, can present excellent stiffness and strength properties, and 
ability to absorb strain energy by means of very large deformations, that make them useful for the 
design of shock absorbing elements. In the contribution will be examined a class of shell 
metamaterials, composed of triple periodic minimal surfaces TPMS, that having zero mean 
curvature can be in equilibrium with an isotropic state of stress. Two particular surfaces, the 
Schwarz P and the Schwarz G minimal surfaces, the first centro-symmetric, the second chiral, are 
examined.  
Introduction 
Metamaterials represent an innovative approach to the problem of obtaining unusual or extreme 
physical responses for advanced applications. Since their extreme macroscopic responses depend 
primarily on the internal low scale pattern, the understanding of how the microstructure topology 
influences the macroscopic properties is the key-point in the design of new advanced 
metamaterials. 

Metamaterials are usually classified into three-dimensional and surface (planar) materials and 
are frequently based on elementary geometric patterns.  

Periodic cellular materials are characterised by a unit cell that can be translated through them. 
If the cell is translated in two dimensions, they are designated prismatic cellular materials (e.g., 
honeycomb), while if the cell is translated in three dimensional periodicity, then they give rise to 
cellular structures.  

A common typology of periodic material is constituted by truss lattices, in which case the unit 
periodic cell can assume several forms, that have been widely investigated. Hutchinson and Fleck 
(2006), Thomsen et al. (2018) performed a topological optimization of 2D periodic materials 
undergoing buckling type instabilities. Moreover, the non-linear response of planar periodic 
materials has been analyzed by Vigliotti et al. (2014) [6]. 
Shell lattice structures  
AM has enabled the design and manufacturing of cellular structures whose unit cells are composed 
of plates or shells rather than struts. These lattice structures are commonly described as Triply 
Periodic Minimal Surfaces (TPMS)-like (though their surfaces do not necessarily have zero mean 
curvature) and are referred to as “shell lattices”.  

In this way cellular materials are obtained, that can be closed or open as in natural foams. 
Manufacture of closed cell plate lattices remains problematic for powder-based AM systems due 
to the requirement of powder removal (see figure 1, from [1]). Open cells can be obtained 
exploiting the properties of the geometry of minimal surfaces. 
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Figure 11. shell lattice cells generated by placing plates on the closest-packed crystals 
combining simple cubic (SC), BBS and SC-BCC-FCC (B) and SC FCC (C)[1] 

Triply periodic minimal surface (TPMS)  
A minimal surface is a surface that has a mean curvature equal to zero at every point. When the 
minimal surface is infinite and periodic in the three independent directions it is called a triply 
periodic minimal surface (TPMS). TPMS are surfaces that locally minimize surface area for a 
given boundary [5].  

These surfaces have distinctive geometrical characteristics: a minimal surface is smooth 
everywhere, has no sharp edges or corners, and splits the space into two or more non-intersecting, 
intertwined and infinite domains that can be repeated periodically in three perpendicular directions.  

The first examples of TPMSs were discovered by Schwarz in 1865, followed by his student 
Neovius in 1883. They described five TPMSs, namely, Schwarz primitive (P), Schwarz diamond 
(D), Schwarz hexagonal (H), Schwarz crossed layers of parallels, and Neovius (N). The gyroid 
(G) surface was described by Schoen in 1970, along with another eleven newly discovered TPMSs. 
In many ways, the G, D, and P surfaces are the most important most commonly observed TPMS 
structures. 

TPMS are widespread in nature. One outstanding example are the cubic membranes, biological 
membranes formed from lipid bilayer sheets, highly curved. They not only separate the inside and 
outside of an organism but are also involved in many biological processes, such as selective 
permeability and energy production.  

Single gyroid geometries have been widely discovered in nature, such as alveolar surface of 
mammalian lung , the prolamellar bodies in plant cells , intracellular cubic membrane in cell 
organelles , wing scales of green butterflies and exoskeletons of beetles. The SG structure found 
in the green butterflies is of special interest, exhibiting a complete photonics bandage and 
polarization dependent optical properties and negative refractions due to inherent chirality. 

TPMS can be divided into balanced and unbalanced surfaces. Examples of balanced surfaces 
are the Gyroid and Primitive surfaces that divide the volume into congruent or interchangeable 
regions that may (Gyroid) or may not (Primitive) be mirror images of the one another. Unbalanced 
surfaces such as the I-WP divide the space into labyrinths of unequal morphologies [f14]-[5]. 

Minimal surfaces can be found by means of form-finding algorithms [cite Bletzinger], 
However, useful approximations can be obtained using level-set equations derived from a sum 
defined in terms of the Fourier series [5]. 

�𝐹𝐹𝑖𝑖(𝒌𝒌𝒊𝒊) cos(2𝜋𝜋𝒌𝒌𝑖𝑖 ∙ 𝒓𝒓 − 𝜶𝜶𝒌𝒌𝒊𝒊) = 𝑡𝑡
𝑁𝑁

𝑖𝑖=1

 

where F is the amplitude, ki a parameter that defines the relative dimensions of the periodic cell 
in the three directions, and α a phase parameter. Particularly simple expressions can describe P D 
and G surfaces. In this paper we focus on gyroid and Schwarz primitive geometries, whose 
approximated expressions are given by 
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Schwarz primitive: 
𝑔𝑔𝑃𝑃 = cos

2𝜋𝜋𝜋𝜋
𝑎𝑎

+ cos
2𝜋𝜋𝜋𝜋
𝑎𝑎

+ cos
2𝜋𝜋𝜋𝜋
𝑎𝑎

= 𝑡𝑡 

Gyroid 
𝑔𝑔𝐺𝐺 = sin

2𝜋𝜋𝜋𝜋
𝑎𝑎

cos
2𝜋𝜋𝜋𝜋
𝑎𝑎

+ sin
2𝜋𝜋𝜋𝜋
𝑎𝑎

cos
2𝜋𝜋𝜋𝜋
𝑎𝑎

+ sin
2𝜋𝜋𝜋𝜋
𝑎𝑎

cos
2𝜋𝜋𝜋𝜋
𝑎𝑎

= 𝑡𝑡 

The constant t is denoted as the level parameter. The best approximation to minimal surfaces is 
obtained setting t=0.  

Varying the value of the level parameter, two families of surfaces are obtained. In the case of P 
surface, 𝑡𝑡 ∈ (−1,1), while in the case of the G surface 𝑡𝑡 ∈ (−𝜋𝜋,𝜋𝜋). Figures 2,3 show the surfaces 
that can be obtained for some values of the level parameter. While for the P surface the sign is 
critical, it is inessential for the G surface, given its rotational symmetries.  

 
Figure 2. Isolevel surfaces obtained from expression (2), for t=-1, -0.5, 0, 0.5 1. The Schwarz P 

surface is the one corresponding to t=0. 
 

Figure 3. Isolevel surfaces obtained from expression (3)), for t=-1, -0.5, 0, 0.5 1. The Single 
Gyroid surface is the one corresponding to t=0. 

 
Unit cell for metamaterials can be obtained assigning a thickness to one of the iso-level surfaces. 

However, this procedure is safe only for very thin surfaces, otherwise  there is the risk of 
intersections. A consistent way for building solid microstructures is obtained using the analytical 
expressions (2), (3). Since minimal surfaces divide the space in two non connected regions, it is 
possible to build a so called solid network as the region of space for which 𝑔𝑔𝐺𝐺 ≤ 𝑡𝑡1 (similarly for 
the P surface). A sheet solid can then be obtained from the intersection of two solid networks with 
close values of the level parameter. It  is observed that replicating the procedure, it is possible to 
build hierarchical minimal surface unit cells. This aspect will be object of future investigations.  

TPMSs are obtained replicating the unit cells in three orthogonal directions. Figure 4 illustrate 
the procedure. It is interesting to underline that choosing values of the level set parameter close to 
the extreme values one can approach plate lattices or rod lattices. This possibility makes the present 
approach very appealing for optimization procedures.  



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 535-539  https://doi.org/10.21741/9781644902431-87 

 

 
538 

 

   (a) (b) (c) 
Figure 4. TPMS obtained as repetition of unit cells. (a) P surface with t=-1, (b) G surface with 

t=1,  (c) G surface with t=-0.25 
 
Among all possible lattices, the unique geometry of the Gyroid minimal surface and its related 

morphologies makes Gyroid structured materials a fascinating subject across many disciplines 
including biology, physics, optics and topological photonics. Gyroids, like most biomimetic 
designs, are mechanically robust as evolution of self-assembly leads to mechanically stable 
structures.  

Gyroids present  cubic symmetry and chirality. They bisect space into a pair of 3D labyrinths, 
one left-handed (LHD) and one right-handed (RHD). These channels resemble a spiral-like shape 
and are indeed chiral [F20]. With the left- and right-handed channels having opposing handedness, 
the infinitely periodic gyroid surface has zero net geometric chirality due to equal amounts of LHD 
and RHD curvature  
Physical and Mechanical properties of TPMS-Gyroid structure in the linear range 
From an engineering point of view, the main properties that need to be determined in order to 
investigate the linear response of the material are density and stiffness. Next some preliminary 
observations about them will be outlined. Similar results can be found in [..] for the density, and 
in [Maskery] for the elastic properties.  
Figure 5a shows a plot of the relative density for a P sheet network as a function of the level parameter. The relative 
density is defined as the volume occupied by the sheet with respect to the volume of the bounding cube. Three different 
values of the thickness are considered, viz., h/L= 0.05, 0.1, 0.15, with L the size of the bounding cube. The density is 
relatively independent from the level parameter, and of its order of magnitude can  be approximated as 1.5 h. 
A similar result is found for the gyroid, also in this case the relative density is almost constant with the level parameter. 
. 

 (a) (b) 
Figure 5 Relative density of sheet networks (a) P surface (b) G surface 
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Many investigations have focused on the compressive behaviour of TPMS. Maskery et al.. 
Wang et al. Yan et al. A stable and progressive buckling collapse is observed during compression, 
and absorbed energy and crushing load are affected by relative density. Li et al. conducted a 
comparison of gyroid structures with different lattices at quasi-static loading Ref. Their results 
highlighted that the gyroid lattice structures with the relative density of 20% and 30% absorb more 
energy per unit mass than the other structures, indicating the potential application in protective 
structures. [Abueidda] 

Maskery et al.[ The deformation and elastic anisotropy of a new gyroid-based honeycomb made 
by laser sintering I. Maskery*, I.A. Ashcroft]  and Abueidda et al. [Effective conductivities and 
elastic moduli of novel foams with triply periodic minimal surfaces Diab W. Abueidda a,b, Rashid 
K. Abu Al-Rub a,∗, Ahmed S. Dalaq a, Dong-Wook Lee a, Kamran A. Khan c, Iwona Jasiuk ] 
among others studied the mechanical performance of three TPMS structures: Primitive, Gyroid, 
and Diamond. They showed that the Primitive structure has higher elastic modulus than the other 
two TPMS designs. The Primitive type also exhibits strut stretching and buckling, as opposed to 
the bending dominated deformation modes observed in other TPMS.  

 
 
 
 
 
 
 
 
 
 

Figure 7 shows the horizontal displacements of a unit gyroid cell to uniaxial stretch. At odd with 
P cells, the gyroid tends to rotate in addition to deform. This aspect has been not observed in 

previous studies, indicating the need of using non standard material models for interpreting the 
behaviour of lattice gyroid metamaterials, opening the way to very interesting applications.  
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Abstract. It is well known that Water Distribution Networks (WDNs) are very inefficient and, in 
Italy, 40% of water is lost during distribution. In this paper, we present a solution for detecting 
leakages in WDNs, based on three main components: i) an innovative sensing element to be 
deployed at the sensor nodes, which analyses vibrations in the acoustic range for classifying 
external noise sources, induced by water leakages, by means of suitable machine learning 
techniques; ii) an Internet of Things (IoT) system of sensors, deployed at the junctions of the 
WDNs, for comparing the measurements collected at different critical points of the network; iii) a 
machine learning algorithm for processing the data. After the definition of the WDN structure, we 
introduce some numerical simulation tools suitable for studying our system and modeling the 
proposed sensing solution. Given the geometry, physical properties (pipe lengths, diameters, 
roughness, reservoir shapes and levels, pump and valve characteristic curves) and nodal demands, 
the simulation tool is able to compute leakages in pipes or nodes over time. In parallel, we simulate 
our IoT system coupled to the WDN, by logging partial information about the WDN status, which 
corresponds to the demand readings at the edge nodes or at some junction nodes, together with the 
(optional) measurements of the deployed sensing elements. On the basis of this data, we analyze 
the possibility of identifying the leakages in the network, even without knowing the exact or 
complete topology of the WDN. Our solution exploits different machine learning techniques 
devised to indirectly retrieve topological information, by correlating the balance of the flows as 
the water demand varies over time. 
Introduction 
A Water Supply System (WSS) is the infrastructure that connects water suppliers and customers 
to provide water to households and businesses. A conventional WSS comprises a water source, a 
water treatment, a pumping station, a Water Distribution Network (WDN), and finally, the end 
users. Over the past 100 years, the global water consumption has increased sixfold and this trend 
has continued at a rate of about 1% per year due to population growth and to the economic 
development [1]. According to the current literature, the world may face a global water deficit of 
40% by 2030. At the same time, massive amounts of water are wasted because of leakages in 
(aging) water distribution infrastructures. According to the more recent statistics of the European 
associations of water services (EurEau), the mean value for water wasted is about 26% in Europe 
[2], but such a value can be even higher than 50% in some networks. In this context, it is of 
paramount interest to exploit ICT solutions for improving the monitoring and management of 
WSSs. Indeed, most water utilities address the leakage control in a passive way; leaks are repaired 
only when they are visible. A standard way to facilitate the leakage control is to partition the 
network into District Metered Areas (DMAs), where the flow and the pressure at the inlet are 
monitored [3]. Recently, classifiers have been proposed to analyze the residuals in [4]. In this 
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paper, we focus on the distribution network of the WSS and, in particular, on the problem of 
leakage detection and localization. We consider three main technical solutions for addressing this 
problem: (i) the utilization of embedded devices to be deployed at the nodes and along the 
transportation pipes, for collecting demand measurements and acquiring vibration signals due to 
the water flows; (ii) a local form of intelligence, running at the gateway nodes collecting 
information about the vibration signals, for removing noise sources (such as the vibration signals 
caused by a vehicle on the road) not related to water leakages; (iii) an high-level aggregation 
scheme, responsible of mapping the data collected from the whole network or DMA (demand, 
pressure, presence of leakage) into a per-node estimate of presence/absence of leakages. For 
designing our scheme, we used a small-scale testbed, devised to optimize the local intelligence for 
filtering the vibration measurements, and a well known WSS simulation tool, called EPANET, for 
large-scale analysis. The simulator has been extended for emulating the innovative sensing system 
based on acoustic signals. Our solution has some interesting practical implications. First, it does 
not require a complete knowledge of the WSS topology and any calibration of an hydraulic model. 
Second, it only needs data from normal operation behavior. The remainder of the paper is 
organized as follows. An analysis of the state of the art can be found in Section 2. The design of 
the vibration sensor is presented in Section 3, together with the experimental results in the local 
testbed. In Section 4 we provide performance results on the considered large scale scenarios, and 
discuss the results of our simulations. Finally, some conclusions are drawn in Section 5. 
Related work 
A leakage detection technique using acoustic emissions is based on the principle that water flows 
due to losses passing through a perforation in the pipe create an acoustic signal [5]. When a leak 
occurs, acoustic sensors installed outside the pipe, track and detect the acoustic signal as it 
propagates along the pipeline. Acoustic signals are greatly influenced by the distance between the 
perforation and the sensor, as well as by the background noise from the environment and those 
produced by a pipe burst. Therefore, their utilization requires some signal processing techniques, 
which can be expensive in large-scale networks. An alternative approach for monitoring WDNs is 
the usage of Micro Electro-Mechanical System (MEMS). Indeed, MEMS are low-cost solutions, 
with a relatively small dimension and low weight, which make them suitable for identifying 
leakages by means of vibration signals. MEMS accelerometers can have a range of acceleration 
from 0.5g to 200g (being “g” the gravity acceleration) and a bandwidth spacing from 10 Hz to 
order of tens kHz, which make possible the analysis of most type of vibration signals in the WDN 
field. In some cases, sensing can exploit both acoustic and vibration signals [6]. In [7], a method 
to identify leaks is proposed for identifying leakages even when they are far from the sensing 
points (blind spots), while [8] proposes models of buried pipelines to estimate wave velocities. In 
our work, we propose a small footprint of the sensing devices, assuming that they can be installed 
inside a pipe during repairs with a no-dig technology; in perspective, we can envision a scenario 
where pipes are continuously monitored against water leaks. Apart from the sensing and noise 
filtering problem, several works focus on data aggregation for leak localization. For this problem, 
black-box models based on Machine Learning (ML) are becoming a dominant solution. Different 
approaches, such as Support Vector Machines (SVMs), k-NN classifiers or multi-layer neural 
networks have been investigated in [9] [10] [11], respectively. We also exploit ML for aggregating 
the data collected by the sensors deployed within the network. 
Leakage detection using vibration signals and AI on board 
In this section, we describe the design and implementation of our sensing element for water 
leakages, based on accelerometer measurements and on embedded processing. We chose a 
commercial device by STMicroelectronics, with a low noise MEMS-based accelerometer 
IIS3DWB, featuring a programmable full-scale measurement and set up to measure in a range of 
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±2g in each of the three axes. The system works with a sampling rate of 26.71 kHz, thus providing 
a new measurement every 37µs. Acquired data are digitally converted with a 16-bit Analog to 
Digital Converter (ADC) integrated into the accelerometer, reaching a nominal resolution of about 
61µg. Since terrestrial gravity, affecting vertical direction, contains no information related to pipe 
vibrations, it’s possible to remove the terrestrial acceleration component to maximize precision. 
The sensor is interfaced with a low power 32-bit microcontroller, namely STM32L4R9ZI by 
STMicroelectronics as well. The microcontroller is responsible of running the processing tasks for 
extracting some relevant features from a temporal sequence of measurements and classifying the 
sequence as a leakage/non-leakage event. Indeed, as discussed in [12] by Youngseok et al., the 
spectrum of the vibration signal in case of regular functioning of the pipe is quite different from 
the one acquired during the leakage: in presence of leakages, there are some frequential 
components in the range from 400 Hz to 5 kHz, according to the entity of the leakage and the 
dimension and material of the pipe. The amplitude of the sensed vibration varies based on the 
distance between the leakage and the sensor and it can change depending on the amount of wasted 
water. Since the vibrations are in the acoustic range, we designed a spectrum analysis scheme 
based on typical solutions for speech recognition: More into details, we extracted the Mel 
Frequency Cepstral Coefficients (MFCCs) [13] of different groups of measurements. We 
organized consecutive samples of the accelerometer measurements into temporal windows of 0.46 
s (corresponding to 6 groups of 2048 measurement samples). The sequence is divided into 9 sub-
windows of 2048 measurements, partially overlapping, and each window is converted in 40 
MFCCs with a float precision. 

 
Figure 1 - Scheme of the used pipe system (left), and confusion matrix of the model performance 

(right). 
The MFFCs matrix of 40x9 coefficients is then used as an input of a multilayer perceptron 

network, with two 256-neurons fully connected layers by a flattening layer. In order to classify the 
input as affected by a leakage, the output of the algorithm produces a number between 0 and 1 
which represents the probability of a regular working condition of the sensed pipe. For the purpose 
of classification, outputs greater than or equal to 0.5 have been classified as "no leak" while outputs 
less than 0.5 are considered "leak". 
 
Smart pipe performance evaluation in real testbed scenario 
For training our model, we collected some experimental data by exploiting a small-scale testbed 
with real pipes and taps to be used as controlled leakages. The taps are different in diameter and 
distance from the sensor, as depicted in Figure 1(left). During data acquisition, the electronic 
system has been placed on the pipe and various scenarios, in terms of taps opened over time, have 
been recorded as a ground-truth, together with the relevant measurements’ traces. The collected 
data has been split in training, validation and test set, and then used to train the model and evaluate 
its performances. The tested topology produced a model that is able to correctly classify samples 
extracted from a leaking condition 90.4% of the time and 90.6% of the time in the case of a regular 
functioning pipe, as shown in the confusion matrix represented in the rightmost part of Figure 1. 
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After the evaluation, the model has been tested on the complete recorded scenarios, even with 
unseen scenarios, showing promising results. The performance of the algorithm can be improved 
by introducing some memory effects: indeed, in case of leakages, it is very likely that the leakage 
will last for long time intervals and therefore consecutive outputs can be averaged for filtering 
sporadic classification errors.  
Leakage detection in large scale scenario 
For analyzing the possibility of identifying leakage events in real WDNs, we worked on 
simulation, where it is relatively easily to build a complex topology of a water grid, comprised of 
a number of links connected together to form loops or branches. Each link may contain one or 
more pipes (with different diameters) connected in series. A pipe is a segment of a link that has a 
constant flow with a constant diameter, and no branches. Two or more pipes are joined by node 
elements. Water can leave the network at these nodes, where we also assume that smart readings 
of water demand are possible. For simulating a realistic scenario, we made some assumptions on 
the sensors and meters available in the system, as well as on the communication networks deployed 
for transporting the data to a central aggregation server (working at different scales, including a 
district-level scale). These assumptions are used for filtering the whole trace produced by the 
simulator (which characterizes the complete view of the system) into a set of measurements visible 
to the leakage detection system. The system works on the basis of two ML models: a low level 
one, which only runs on the sensors for processing acceleration measurements and identifying 
leakage events related to the node where the sensor is deployed; a high-level one, which uses all 
the readings produced by smart meters and sensors and flow balancing conditions for identifying 
the overall leakages in the network (even where sensors are not available).  
 
Communication Network 
We assume that the system works thanks to IoT technologies. According to the WDN architecture, 
we can expect to adopt cellular technologies, or technologies working in unlicensed bands. For our 
analysis, we focused on the usage of LoRaWAN [14], a wireless technology offering low-cost, 
low-power, and long-range communications (up to a few kilometers). The architecture is based on 
a start of star deployment, where End Devices (EDs) transmit data to multiple nearby Gateways 
(GWs) deployed in their covered area, which in turns forwards frames to the Network Server (NS) 
and eventually to the corresponding IoT applications server. We assume that smart readers and 
sensing elements act as EDs, equipped with a LoRaWAN interface, and that at least one GW is 
able to collect the measurements provided by the EDs.  
 
Water system simulator 
Our work is based on the Water Network Tool for Resilience (WNTR) [15]. The tool is a Python 
package designed to simulate and analyze the resilience of water distribution networks based on 
EPANET, an open source software for modeling hydraulic and quality dynamics of a WDN) [16]. 
WNTR was developed to extend the capabilities of EPANET and simulate the dynamics of water 
flows across pipelines, taking into account bulk flows and pipe wall reactions, as well as the 
availability of water sources and reservoirs. WNTR has an application programming interface 
(API) that is flexible and allows the configuration of the network topology and the scheduling of 
disruptive incidents and recovery actions. We use the WNRT simulator to generate a suitable 
dataset to feed and test the ML approach. On one side, the simulator generates a complete trace, 
with the status of each node over time, by recording a log file containing the following fields: 
timestamp, nodeID, demand, head (elevation + pressure head), pressure, has_leak, smart_pipe. 
On the other side, we filter a subset of data corresponding to smart meters and sensors, together 
with the real status of nodes, for training a ML model whose input is the total set of measurements 
in a given time window, and whose output is a vector with the status leakage/non-leakage of each 
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node. An interesting feature of our model is the lack of input data related to the network topology. 
Indeed, topological information are indirectly retrieved thanks to the balancing of water flows over 
time, in presence of time varying water demands. For testing our approach, we used some pre-
defined network models offered by the Open Water Analytics's community public repository. 
Specifically, we considered three different sub-networks [17], named A, B, and C, with an 
increasing level of complexity (in terms of the total amount of nodes). At edge nodes, we also 
defined a set of demand-patterns, which represent water consumption at different timesteps. We 
also considered an interval of one hour as minimum time interval for changing the demand 
patterns. In one half of the nodes, we added the possibility of adding leakage events. We then run 
simulations for each network topology and for different demand-patterns, lasting a total duration 
of one week or one month.  Pipes with leaks are chosen from a pseudo-random function in the 
simulation script (coded in Python) and feed into the entire simulation's time intervals. 

Table 1 - Parameters of three considered network. 

Table 1 shows the list of the parameters present in each WDN network used to generate the 
dataset. For each network, we report the total amount of the demand from the nodes and the 
percentage of nodes involved in water leakages. The table also summarizes the total number of 
network nodes, the total number of reservoirs, the number of nodes with leakages and the number 
of installed smart pipes (equipped with the sensing element working on acceleration data). We 
represent our use case as a Supervised Classification problem in which we try to predict if there is 
a leakage on the pipe. From the simulation trace, we extracted our training set with the following 
features: demand, head, pressure, smart_pipe; this latter feature can assume three different values: 
0, if the vibration sensor is present and a leakage is not detected; 1, if the vibration sensor is present 
and the leakage is detected; 2 when there is no sensor. Since this is a classification problem, our 
test set also contains the status of each node, in the boolean variable has_leak.  
 
Performance results  
In order to choose the most adequate classification model, we applied different techniques and 
confronted them. We tested the following classificators: KNeighborsClassifier, LinearSVM, 
RBFSVM, DecisionTree, RandomForest, AdaBoostClassifier, GaussianNaiveBayes. Models have 
been compared in terms of accuracy on the node classification. We analyzed accuracy results for 
the trained model, in the three different network topologies (A, B and C), when only one week of 
data is available and without the usage of vibration sensors. Accuracy values are calculated after 
the fitting and prediction phases and after the confusion matrices generation. Specifically, we 
extract the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives 
(FN) values and calculate the accuracy as seen here: (TP + TN) / (TP + TN + FP + FN). Each 
classificator is evaluated through a series of k={7,4} cross-folds. The maximum accuracy (about 
70%) is reached for network A, which has a lower number of nodes and therefore a simpler 
topology to be inferred. The presence of the vibration sensor in all the considered networks, 
improve the accuracy of the system about the 10%. Finally, we analyze the impact of a longer data 
trace, corresponding to a whole month of data, for training the system equipped with the smart 
pipes. We note that longer traces are able to solve most of topological ambiguities and achieving 
very high accuracy (as high as 98% for a model based on Decision Trees) even for the more 
complex network topologies B and C.  
  

Network Total network 
demand [gal/min] 

Leak demand 
[%] 

# of nodes # of reservoirs # of nodes with 
leakage 

# of mart 
pipes 

A 0.00333947 43.45 83 1 41 20 
B 0.13837243 48.74 1038 1 518 259 
C 0.30645519 42.38 2099 2 1048 524 
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Conclusion 
This work presented a system architecture and a data-drivn approach to detect leakages in WDN. 
A LoRaWAN IoT network is considered to collect information at WDN nodes, where water 
demands are measured over time. Moreover, in a sub-set of nodes we also assume to deploy 
innovative sensors, equipped with embedded intelligence, for processing accelerometer 
measurements and identify leakage events. We demonstrate that demand measurements over time 
can be exploited for retrieving topological information of the network thanks to the balance 
conditions among flows. Starting from a realistic trace of water demand measurements and 
optional smart sensor readings, a model can be trained for identifying leakage events at each 
network node. Although our model has been trained and validated by exploiting numerical 
simulation, we expect that results can be easily generalized to real deployments.  
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Abstract. This paper presents a step-by-step procedure for the numerical integration of the 
fractional differential equation governing the response of a single-degree-of-freedom (SDOF) 
system with fractional derivative damping. The procedure is developed by extending the improved 
pseudo-force method proposed by the second author for the numerical integration of classical 
differential equations. To this aim, the Grünwald–Letnikov approximation of the fractional 
derivative is adopted. The proposed numerical procedure is exploited to compute response 
statistics of a SDOF system subjected to stochastic excitation by applying classical Monte Carlo 
Simulation. 
Introduction 
Within a deterministic setting, fractional differential equations are usually solved by using the step-
by-step Grünwald–Letnikov (GL) procedure [1,2]. The main issue of this approach is that at each 
new time step a new term appears in the summation representing the GL approximation of the 
fractional derivative (long tail memory) [2]. Moreover, in order to achieve good accuracy, a very 
small time step is necessary. This implies an increase of the computational effort which becomes 
prohibitive in stochastic analysis, especially when Monte Carlo simulation (MCS) is applied. 

In 1996, Muscolino [3] proposed an improved pseudo-force method (IPFM) for evaluating the 
solution of linear and non-linear classical differential equations by a step-by-step procedure. This 
method requires two main steps: i) to consider some (linear or non-linear) terms of the differential 
equation, depending on the structural response at the current time instant, as pseudo-forces; ii) to 
accordingly modify the so-called fundamental (or transition) matrix as well as the forcing terms 
involved in the step-by-step procedure. In this way, it is possible to increase the size of the time 
step of more than one order of magnitude with respect to classical step-by-step integration 
schemes, like the finite difference method (FDM). 

In this study, the IPFM is revisited and properly adapted to perform the numerical integration 
of the differential equation governing the response of a single-degree-of-freedom (SDOF) system 
with fractional derivative damping. Then, the IPFM is applied to evaluate response statistics of 
fractionally damped SDOF systems subjected to stochastic excitation by means of classical MCS. 
The IPFM can be extended to multi-DOF systems as well as to non-linear problems. 
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Grünwald–Letnikov definition of fractional derivative 
The fractional calculus started with the definition of the Riemann–Liouville (RL) fractional 
integral. After that, several definitions for the fractional-order derivative were introduced. Under 
appropriate conditions, such definitions are equivalent for a wide class of functions [1]. A very 
useful definition for engineering applications is the Grünwald–Letnikov (GL) representation of the 
fractional derivatives, given as: 
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( )
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where ( )Γ •  is the Euler’s gamma function and GL
a t

β •D  is the GL fractional time derivative 
operator. Notice that Eq. (1) holds if ( )f t  is continuous and differentiable up to the order 1n − . 
Unfortunately, explicit expressions of the GL fractional derivative are usually unavailable, so that 
numerical procedures are needed. To this aim, the time interval [ 0, ]na t=  is subdivided into small 
intervals of equal length t∆  such that 0 1 20,  , 2 , , , ,j nt t t t t t j t t n t= = ∆ = ∆ = ∆ = ∆   are the 
subdivision times. To numerically solve Eq. (1), the GL approximation of the GL fractional 
operator based on finite differences [2] can be adopted: 
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where ( )jλ β  may be easily evaluated in recursive form: 
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    (3) 

Note that, the GL approximation in Eq. (2) is asymptotically and absolutely stable. Since for 
1β →  the results reduce to those of the classical Euler methods, the GL approximation may be 

viewed as an extension of the classical explicit and implicit Euler methods [2]. 
Improved pseudo-force step-by-step integration procedure 
In the framework of stochastic dynamics, the most general procedure for evaluating the response 
of linear and nonlinear structural systems is the Monte Carlo Simulation (MCS) method. The main 
advantage of this method is the ability to obtain sufficiently accurate results for any problem for 
which a deterministic, analytical or numerical, solution is available. Therefore, MCS method is 
currently the only tool available to solve the widest range of stochastic problems involving non-
linearities of various kinds, for which there are no analytical solutions, as well as to validate 
approximate solutions. The main drawback of MCS is the heavy computational burden needed to 
obtain statistically meaningful solutions, which, in some cases, can involve particularly long 
computation times. This drawback is almost insurmountable for devices having long memory 
leading to fractional differential equations with stochastic excitations. Indeed, the solution of a 
problem by MCS involves the following three main steps: i) Generation of Samples - the number 
of samples depends on the purposes of the analysis and the precision required in determining 
response statistics; ii) Deterministic Dynamic Analysis - for each sample of the forcing process, 
the corresponding sample of the response process is determined by means of the methods of 
deterministic dynamics; iii) Evaluation of Response Statistics - the various probabilistic 
characteristics of the response process of interest are estimated “downstream” by means of a 
statistical analysis. 
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In this section, a very efficient and accurate method, based on the so-called improved pseudo-
force method (IPFM) [3] to evaluate the response of fractional oscillators is proposed. To illustrate 
the proposed method, let us consider the following fractional differential equation ruling the 
motion of a SDOF system: 

 2
0 0( ) ( ) ( ) ( )GL

tx t c x t x t p tβ
β ω+ + = D  (4) 

where 0ω  is the natural circular frequency, cβ  is the fractional viscoelastic factor, and ( )p t  is the 
forcing function which may be the generic sample of a stochastic process. In order to numerically 
solve Eq. (4), first the state variable vector [ ]T( ) ( ) ( )t x t x t=y   is introduced. Then, Eq. (4) is 
rewritten in terms of state variables as follows: 
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where 

 2
0

0 1 0 0
; ; .0 1pcβ

βω
        = = =    − −        

D v v  (6) 

The solution of Eq. (5) can be formally written as: 
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where the transition matrix of the undamped system and the pseudo-force vector are introduced: 
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It has to be emphasized that in Eq. (8), ( )p t  is the known external force, while the term 

0 ( )GL
t x tβD , which depends on the response ( )x t , is an a priori unknown quantity.  

In order to evaluate the integral appearing in Eq. (7), formal solution of the differential Eq. (5) 
where a fractional derivative appears, a step-by-step procedure is adopted. To this aim, first the 
time axis is subdivided into small intervals of equal length t∆ , with 0 1 1 10, , , , , ,n n nt t t t t− +=    

denoting the subdivision times. Then, the pseudo-force vector, ( )tβf , in Eq. (8) is assumed 
piecewise linear in each time interval. Finally, by adopting the GL approximation of fractional 
derivative given by Eq. (2), the following relationships can be written: 
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where βV  is a matrix defined in Eq. (11). By substituting Eq. (9) into Eq. (7), and according to 
the assumption that the pseudo-force vector ( )tβf  is linear in each time step, the following 
recursive equation, numerical solution of Eq. (5), can be written [3]:  
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where ( )t∆Θ  is the transition matrix of the undamped SDOF system and: 
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Equation (10) gives the exact response if the forcing term is piecewise liner. When the latter 
condition is not strictly verified, Eq. (10) provides much more accurate solutions than all other 
numerical procedures proposed in literature, with the same integration step. 

The main idea of the IPFM [3] consists of moving all terms containing the unknown vector 
1( )nt +y  from the right- to the left-hand side, so that, after some algebra, the following step-by-step 

procedure is obtained: 
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where 
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The step-by-step procedure (12) gives the numerical solution 1( )nt +y  of the set of fractional 
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differential equations (5) at time step 1nt + . It has been proved that this procedure is unconditionally 
stable [3]. 

The use of the GL approximation (2) in the framework of step-by-step integration procedures 
may be time-consuming. Indeed, due to the memory of the response, the summation in Eq. (3) 
involves a larger number of terms as time increases. This implies that computational times become 
prohibitive, especially when MCS is applied to perform the stochastic dynamic analysis of 
structures with fractional damping. To cope with this issue, the decreasing feature of the absolute 
value of the weights ( )jλ β  (see Eq. (3)) as the number of the time step increases (see e.g. [4,5]) 
may be exploited to truncate the GL approximation. In this way, the calculation at each time step 
needs not to go back to the beginning of the motion [4], i.e.: 
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where Tn  is the number of time instants that must be considered in the analysis to achieve good 
accuracy. Notice that the truncation can be applied if and only if 1β < . 

Numerical application and discussion 
The accuracy of the proposed IPFM is assessed by analyzing the response of a SDOF system with 
fractional damping characterized by the following parameters: 0 1.0 rad/sω =  and 1.0cβ = . 
Different values of the fractional derivative order β  are considered. It is assumed that the SDOF 
system is subjected to a Gaussian white noise ( )W t  with Power Spectral Density 0 1/ 2S π= . The 
generic sample of the excitation is generated by means of the well-known spectral representation. 
The corresponding sample of the response is obtained by applying the proposed IPFM with (

500Tn = ) and without truncation assuming a time step 0.03 st∆ = . For comparison purposes, the 
response obtained by applying the finite difference method (FDM) with a time step 0.0001 st∆ =  
is assumed as reference solution.  

Figure 1a displays the time-history of the generic sample of the displacement ( )x t  for 0.2β =
. The responses provided by the IPFM and the FDM with a time step 0.03 st∆ =  are contrasted 
with the reference solution. It is observed that the proposed IPFM is much more accurate and 
efficient than the FDM as it yields a solution in excellent agreement with the reference one by 
using a much larger time step. The enlargement in Fig. 1b shows that the IPFM achieves a very 
good match with the reference solution also when the GL approximation of the fractional 
derivative is truncated to the first 500Tn =  terms. This implies a drastic reduction of the 
computational effort. Numerical investigations, omitted for brevity, have shown that the same 
degree of accuracy is achieved for other values of β .  

Figure 2 shows the time-history of the variance of the displacement provided by MCS 
( 5000sN =  samples) along with the exact steady-state value for 0.2β =  and 0.5β = . It can be 
seen that a very accurate prediction of the displacement variance is provided by the IPFM with a 
time step 0.03 st∆ =  even when a truncation step 500Tn =  is considered. Conversely, the FDM 
with 0.03 st∆ =  highly underestimates the variance of the response. A smaller time step is needed 
to improve the accuracy of the FDM. 
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Figure 1. a) Sample of the displacement provided by the FDM and the IPFM; b) enlargement 

showing the accuracy of the IPFM with truncation ( 0.2β = ). 

 

           
Figure 2. Variance of the displacement provided by MCS ( 5000sN =  samples) along with the 

exact steady-state value (black dashed line): a) 0.2β =  and b) 0.5β =  ( 0.03 st∆ = ). 

 
Numerical results demonstrate that the IPFM allows a drastic enhancement of the 

computational efficiency of MCS since it is able to provide accurate estimates of the response 
using much larger time steps than the classical FDM. The computational burden can be further 
reduced by truncating the GL approximation of the fractional derivative. 
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Abstract. Double-skin façades (DSFs), widely used in buildings to provide specific thermal 
efficiency, acoustic isolation, and weather resistance properties, have been recently used as passive 
control systems. The present study focuses on the stochastic analysis of a shear-type frame 
equipped with a DSF subjected to ground motion acceleration modelled as a zero-mean stationary 
Gaussian random process fully characterized by an imprecise power spectral density function i.e., 
with interval parameters. The influence of imprecision of the seismic excitation on the 
performance of the DSF is investigated by evaluating the bounds of the interval reliability function 
for a selected displacement process of the frame structure, in the framework of the classical first-
passage problem.  
Introduction 
A double-skin façade (DSF) is a multi-layered structure composed of a second “skin” placed in 
front of a regular building façade. DSFs are becoming increasingly popular for their capability of 
improving the energy performance and the aesthetics of buildings. Recently, the application of 
DSFs as vibration absorbers has been investigated assuming either deterministic [1] or stochastic 
excitation [2]. Previous studies mainly focused on the optimal design of the DSF by varying the 
layout of panels and design parameters such as the stiffness of links to the building.  

The present study addresses the stochastic analysis of a shear-type frame equipped with a DSF 
subjected to ground motion acceleration taking into account epistemic uncertainties affecting the 
excitation. Following Pipitone et al. [2], the DSF is modelled as a set of independent panels, each 
one described as a mass lumped system connected to the main structure by elastic springs at the 
floor level. Within the strong motion phase, seismic excitation is modelled as a zero-mean 
stationary Gaussian process, fully characterized by an imprecise power spectral density (IPSD) 
function, recently proposed by Muscolino et al. [3]. The three parameters characterizing the 
assumed spectral model are described as interval variables by applying the so-called Improved 
Interval Analysis [4]. The bounds of the spectral parameters are estimated through the analysis of 
a set of accelerograms recorded on rigid soil deposits. Since the IPSD function has an interval 
nature, response statistics of the seismically excited system are described by intervals. To assess 
structural safety, the IPSD function of ground motion acceleration is incorporated into the 
formulation of the classical first-passage problem and the bounds of the interval reliability function 
for a selected response process are estimated.  
Problem formulation 
Let us consider a combined system (see Fig. 1) consisting of a s − storey shear-type frame (primary 
system) equipped with a DSF (secondary system) subjected to seismic excitation modelled as a 
zero-mean stationary Gaussian random process fully characterized by an IPSD i.e., with interval 
parameters. The primary system is characterized by storeys having equal mass m , lateral stiffness 
k  and inter-storey height h . A constant viscous damping ratio 0ζ  is assumed for all modes of 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 555-560  https://doi.org/10.21741/9781644902431-90 

 

 
556 

vibration. Following Pipitone et al. [2], the DSF is modelled as a set of N  independent panels 
connected to the main structure by elastic springs at the floor level. The generic panel is modelled 
as a system composed by j  lumped masses equally spaced by /2h . Each lumped mass has two 
degrees-of-freedom (DOFs), namely the horizontal displacement ( )jx t  and the rotation ( )j tθ  (see 
Fig. 1). The flexural stiffness of the panels Pk  and the stiffness of the springs are assumed 
proportional to the lateral stiffness k of the frame through the dimensionless coefficients υ  and α, 
respectively. The same viscous damping ratio Pζ  is assumed for all the  panels. 

 
Figure 1: Shear-type primary structure with double-skin façade. 

 
After a static condensation of the rotational DOFs of the panels, the equations of motion of the 

coupled system subjected to imprecise seismic excitation can be written as: 

g( ) ( ) ( ) ( )I I I It t t U t+ + = −MU CU KU Mτ    (1) 

where a dot over a variable denotes differentiation with respect to time t ; ( )I tU  is the interval 
vector random process that collects the n  dynamically significant nodal displacements, with the 
apex I denoting interval quantities; g ( )IU t  is the ground motion acceleration characterized by an 
IPSD function; τ  is the n -vector listing the influence coefficients; M  and K  are the n n×  mass 
and stiffness block matrices of the coupled structure: 

0 0 0 01 0
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 (2) 

where 0M  and 0K  are the mass and stiffness matrices of the primary structure; iM  and iK  
are the mass and stiffness matrices (after static condensation) of the -thi panel; 0SK  represents the 
increment of the stiffness matrix of the primary structure due to the secondary system; S iK  and 

0iK  contain the stiffness of the elastic springs at each storey level; O  is a zero matrix of 

N
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appropriate dimensions. The primary building and the panels are individually considered as 
classically damped subsystems. In Eq. (1), the damping matrix C  of the coupled system is defined 
as: 

1 T− −=C Γ Ξ Γ  (3) 

where Γ  is a convenient transformation matrix while Ξ  is the modal damping matrix. 
 
Imprecise power spectral density function 
The model of the IPSD function of ground motion acceleration recently proposed in [3] is assumed:  

( ) ( ) ( )
( )
( ) ( ) ( )g g

4
2

2 0
0 2 4 2 22 4 2 2

0 0 0 0

1 1
π ( ) ( )

ω ρωω σ β
ω ω ω ω ρ ω ρ ω

    
    = +
    + + + +Ω + −Ω   

I
I LI I

U U I I I I I I
H L

G  

 (4) 

where 0β
I  is defined so as to ensure that the interval stochastic process g ( )IU t  possesses 

variance ( )g

2 ,
I

Uσ   while 0 00.8ω ρ= Ω +I I I
L  and 00.1ω = ΩI I

H  are, respectively, the interval 

frequency control of the second order low-pass and first order high-pass butterworth filters, that in 
turn depend on the interval predominant circular frequency 0ΩI  and frequency bandwidth 0ρ

I  of 
the filtered stationary process [5]. Since the one-sided PSD function in Eq. (4) depends linearly on 

( )g

2
I

Uσ  , this variable could be set a posteriori. 

In Eq. (4), the generic interval variable I
iz  is expressed by using the Improved Interval Analysis 

[4] as follows: 

mid, mid, ˆ, (1 ) (1 )I I I
i i i i i i i iz z z z z eδ δ = ≡ + = + ∆   (5) 

where the symbols iz  and iz  denote the lower bound (LB) and the upper bound (UB) of the 

interval, respectively; [ ]ˆ 1,1I
ie = −  is the so-called extra unitary interval (EUI) associated with the 

i-th interval variable. In Eq. (5), mid,iz  and iδ∆  are the midpoint value (mid) and the normalized 
deviation amplitude of I

iz , given, respectively, by:  

mid,
mid,

;      0
2 2

i i i i i
i i

i

z z zz
z

δ δδ
+ ∆ −

= ∆ = = >  (6) 

where ( ) / 2i i iz z z∆ = −  is the deviation amplitude (dev) of I
iz . In Eq. (5), ˆI I

i i ieδ δ= ∆  denotes 
the dimensionless interval fluctuation  around mid,iz  such that 1iδ∆ < . 

Interval reliability analysis 
The interval displacement vector ruled by Eq. (1) is described by an interval zero-mean stationary 
Gaussian random vector process, completely characterized in the frequency domain by the 
knowledge of the interval one-sided PSD function matrix, given by: 

1* T T 2( ) ( ) ( ) ( ); ( ) j ;I I
UGω ω ω ω ω ω ω

−
 = = − + = − gU H pp H   H K M C   p MG  τ  (7) 

where ( )ωH  is transfer matrix; j 1= − ; the asterisk means complex conjugate. 
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To perform structural safety assessment under seismic excitation, the IPSD function is herein 
incorporated into the formulation of the classical first-passage problem. Let I

hU  be the interval 

displacement process of interest and max, 0
( ) max ( )I I

h ht T
U T U t

≤ ≤
=  the associated extreme value process. 

Adopting the Vanmarcke’s failure criterion [6], the interval cumulative distribution function 
(ICDF) or interval reliability function ( )

max,
,

h

I
UL b T  can be expressed as [3]: 
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 (8) 

where , h

I
i Uλ  ( 0,1, 2i = ) are the interval spectral moments of the response process 

g
( ) ( ) /I I I

h h UU t U t σ= 
  under unit variance seismic acceleration; 

h

I
Uδ  is the interval bandwidth 

parameter; b  represents the barrier level; T is the observation time. The LB and UB of the ICDF 
can be evaluated by performing global optimization for each value of the barrier level b  under the 
constraint that the uncertain spectral parameters range within the pertinent intervals. Alternatively, 
accurate estimates of the bounds of the ICDF can be efficiently obtained as [3]: 
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 (9) 

where , hi Uλ  and , hi Uλ  are the bounds of the interval spectral moments , h

I
i Uλ  ( 0,1, 2i = ). Since 

the monotonic behaviour is not guaranteed, such bounds might correspond to intermediate values 
of the interval spectral parameters 0ΩI  and 0ρ

I , and can be evaluated by optimization. 

Numerical application and discussion 
A six-storey shear-type frame equipped with a DSF consisting of two independent panels is 
considered [2]. The primary building, having a fundamental period of vibration 1 0.582 sT = , is 
characterized by the following parameters: floor mass 20000 kgm = , lateral stiffness

74 10 N/mk = × ; inter-storey height 3.32 mh = ; constant viscous damping ratio 0 0.02ζ =  for all 
modes of vibration. The total mass of the two panels is assumed as 10% of the mass of the primary 
building [2]. For the two panels, 0.392υ =  and 0.13Pζ =  are considered. Different values of the 
stiffness of the links to the frame kα  are considered such that min maxα α α≤ ≤ , with 

3
min 1.72 10α −= ×  and 3

max 5.16 10α −= × . The value 3
0 3.44 10α −= × is assumed as the nominal 

one. The displacement of the first floor of the primary structure, 1 ( )IU t , is selected as response 

quantity of interest. The bounds of the interval parameters 0ΩI , 0ρ
I , ( )g

2σ
I

U  entering the IPSD 

function in Eq. (4) are estimated by analysing 10 site-compatible accelerograms, recorded on rigid 
soil deposits, downloaded from PEER [8] and Engineering Strong Motion [9] database. All the 
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selected accelerograms are scaled to the target peak ground acceleration value 23.33 m/sga = . 
Table 1 lists the LB, UB, mid and percentage ratio (dev/mid)% of the spectral parameters. 

 
Table 1: Main characteristics of the interval spectral parameters. 

Parameter LB UB mid (dev/mid) % 
2 2 4m /s

gUσ     0.64 1.47 1.06 39.09  

0 [rad/s]Ω  23.91 45.22 34.57 30.82 

0[rad/s]ρ  12.10 22.56 17.33 30.17 

The realizations of the IPSD function ( )g g g

2( ) ( ) /
I

I I
U U UG Gω ω σ=  
  pertaining to the extreme 

values of the interval parameters 0ΩI  and 0ρ
I  along with the nominal spectrum are reported in Fig. 

2a. The ratio 
1 1 1

2 2
,c ,u/U U UJ σ σ=    between the variance of the displacement 

g1 1( ) ( ) /I I I
UU t U t σ= 

  of 

the primary structure with and without the DSF [2] is herein taken as representative of structural 
performance under seismic excitation. The subscripts “c” and “u” stand for controlled and 
uncontrolled. Fig. 2b displays the ratio 

1UJ  versus the coefficient α  for all possible combinations 

of the endpoints of the interval spectral parameters 0ΩI  and 0ρ
I  as well as for the nominal values. 

The value of the dimensionless coefficient α  which minimizes 
1UJ  is nearly 0.00392Mα =  in all 

the considered cases. Furthermore, over the whole range of α , the smallest value of the ratio 
1UJ  

pertains to 0Ω  and 0ρ  which indeed provide the LB, 
10,Uλ , of 

10,
I
Uλ . 

 

 
Figure 2: a) some realizations of the IPSD function of ground motion acceleration; b) associated 

ratios between the variance of 
g1 1( ) ( ) /I I I

UU t U t σ= 
  with and without DSF versus α. 

 
Fig. 3a shows the LB and UB of the ICDF, ( )

max,1
,I

UL b T , of the extreme value process max,1( )IU T , 

along with the nominal solution for 30sT =  and 0α α= . Notice that the proposed bounds (Eq. (9)
) are in excellent agreement with the “Exact” ones obtained by applying the scanning method. As 
expected, neglecting the uncertainties affecting the main parameters of the IPSD function of 
ground motion acceleration may lead to serious overestimation of the safety level. To ensure a 
conservative design, the worst-case scenario, corresponding to the LB of the ICDF, needs to be 
considered [3]. To assess the influence of the DSF on structural reliability, in Fig. 3b the bounds 
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of the ICDF, ( )
max,1

,I
UL b T , provided by Eq. (9) for min max, ,Mαα α α=  are contrasted with the ones 

pertaining to the frame without DSF. It can be noticed that the DSF significantly improves the 
seismic performance of the primary structure. In particular, the DSF with link stiffness Mkα  
ensures the highest safety level.  

 

 
Figure 3: ICDF of max,1( )IU T : a) comparison between the proposed and “Exact” bounds ( 0α α= ); 

b) proposed bounds for different configurations. 
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Abstract. Stochastic dynamic analysis of linear or nonlinear multi-degree-of-freedom systems 
excited by multi-variated processes is usually conducted by using digital Monte Carlo (MC) 
simulation. Since in structural systems few modal shapes contribute to the response in the nodal 
space, the computational burden of MC simulation is mainly related to the digital simulation of 
the input process. Usually, the generation of multi-variated samples of Gaussian input process is 
performed with the aid of the Shinozuka formula. However, since in this procedure the stochastic 
process is given as a summation of waves with random amplitude amplified by the square root of 
the power spectral density, the randomness is due to a random phase angle of each wave, therefore 
a very large number of waves is required to reach the Gaussianity, i.e. the process is only 
asymptotically stable. Moreover, the computational burden increases in case of multi-variated 
processes. The paper aims to drastically reduce the generation time of the input process through 
the use of a two-step procedure. In the first step, by using the Priestley formula, each wave is 
normally distributed. This first aspect allows to drastically reduce the computational effort for the 
mono-variate process since few waves are sufficient to reach the Gaussianity. In the second step, 
the multi-variate process is reduced as a summation of independent fully coherent vectors if the 
quadrature spectrum (q-spectrum) can be neglected. An application of digital simulation of the 
wind velocity field is discussed to prove the efficiency of the proposed approach. 
Introduction 
Monte Carlo (MC) simulation is commonly used in the stochastic dynamic analysis of linear or 
nonlinear multi-degree-of-freedom systems excited by multi-variated processes [1,2]. It consists, 
initially, in the generation of samples of an input process characterized in probabilistic setting; 
then the output process is calculated by performing a deterministic analysis [1, 2]. Finally, a 
probabilistic analysis of the results is performed [1, 2].  

As far as the input process generation are concerning it can be used for different purposes [3-7] 
and, if the input process is Gaussian, then it is fully characterized in probabilistic setting by its 
Power Spectral Density (PSD). The generation of samples of a Gaussian multi-variate input 
process can be performed in different ways; such an example Auto Regressive (AR) or Auto 
Regressive Moving Average (ARMA) techniques can be used for this purposes [1,8]. Although 
AR or ARMA techniques lead to good results, these kind of techniques requires a very high 
computational burden [1]. Nowadays, the generation of samples of the input process is usually 
performed through the use of the Shinozuka’s formula [9] that consists in a summation of harmonic 
waves each of which has a different frequency and a random phase angle. The latter is the 
realization of a random variable uniformly distributed in the range [0 – 2π]. However, since the 
phases are uniformly distributed random variables, a high number of waves is required to reach 
the Gaussianity [1,8]. For this reason, the Priestley’s formula is preferable [8]. It is similar to the 
Shinozuka’s formula but, in this case, each harmonic wave is multiplied by the realization of a 
zero-mean complex random variable having normal distribution. This difference, drastically 
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reduces the number of waves required to reach the Gaussianity since the random variables in the 
Priestley’s formula have normal distribution unlike the random phases present in the Shinozuka’s 
formula that are uniformly distributed. 

A multi-variate stochastic process can be decomposed as a summation of fully coherent vectors 
[1,8]. This decomposition can be performed by using different method to decompose the PSDs 
matrix. One of these ways has been consists of decomposing it into the basis of the eigenvectors 
of the PSDs matrix [1,8]. This way is preferable to the decomposition of the PSDs matrix into the 
product between two triangular matrices not only because it is faster than the second one, but also 
because, in the wind field simulation, it has a strong physical significance. In fact, the eigenvalues 
are related to the power of the process that will be generated, while the eigenvectors, usually called 
blowing mode shapes, represent the modal shapes associated with the wind field velocity [1,8]. 

In this paper an innovative method for the simulation of multi-variate stationary processes is 
proposed. It exploits the advantages deriving from the use of the Priestley’s formula that allows to 
reach the Gaussianity with a little number of harmonics. Moreover, the decomposition of the PSDs 
matrix, performed by using its eigenvalues and its eigenvectors, is used to select only the first 
eigenvalue and the first eigenvector that give the major contribution to the total input process. 
However, since the contribution of the other eigenvalues and eigenvectors can be not negligible, a 
simple technique to preserve the variance of the input process is adopted. The proposed method 
allows to generate a multi-variate stochastic process with good precision and it is faster than the 
methods commonly used.  

In order to prove the reliability of the proposed method a numerical simulation concerning the 
generation of multi-variate wind field velocity has been performed and the results obtained are 
discussed in detail. 
Proposed Method 
Let ( )V , , ;x y z t  be the velocity field. It can be expressed as [1,8] 

( ) ( ) ( )V , , ; , , ;x y z t V z V x y z t= +  (1) 

in which ( )V z  represents the mean value and ( ), , ;V x y z t  is a zero-mean stationary process that 
represents the fluctuating component of the wind speed. The mean value ( )V z  can be expressed 
by the logarithmic law ( ) ( )* 0lnV z u z z k=  in which k  is the Von Karman’s constant, 0z  is the 
roughness length and *u  is the shear velocity [1,8]. In this paper, the mean value ( )V z  is expressed, 
without loss of generality, as the logarithmic law 

( ) ( ) ( )
( )

10 ln 1
ln 11

z
V z V

+
=  (2) 

being ( )10V  the wind velocity at 10mz = . 
The one-side PSD of ( ), , ;i i i iV V x y z t=  and ( ), , ;j j j jV V x y z t=  can be calculated, considering that its 
imaginary part can be neglected [1,10], as [1,8] 

( ) ( ) ( ) ( )( )exp
i j i i j jV V V V V V ijG G G fω ω ω ω= −  (3) 

in which ( )
i iV VG ω  is the auto-PSD of the process iV  and ( )ijf ω  is expressed as [1,8] 

( )
( ) ( )

( ) ( )( )

2 22 2

2
y i j z i j

ij
i j

C y y C z z
f

V z V z
ω ω

π

− + −
=

+
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In Eq.(4) yC  and zC  are decay coefficients that must be determined experimentally [1,8]. The auto-
PSD ( )

j jV VG ω  can be calculated by using the Solari’s formula [11], i.e. 

( ) ( )

( )( )

2

5
3

6.868

1 10.302
2

j j

V j V j
V V

j V j

L z
G

L z

σ γ ω
ω

ω γ ω
π

=
+

 (5) 

in which VL  is the integral length scale of the turbulence, 2
Vσ  is the variance of the longitudinal 

component of the velocity fluctuations and ( )jγ ω  is the Monin coordinate expressed as [1,8] 

( ) ( )2
j

j
j

z
V z
ω

γ ω
π

= . (6) 

Defining the multi-variate vector process ( ) [ ]1 2
T

nt V V V=V  , its PSDs matrix, denoted as 
( )ωVG , can be calculated through the use of Eq.(3) and then ( )ωVG  can be decomposed as [1,8] 

( ) ( ) ( ) ( )Tω ω ω ω=VG Ψ Λ Ψ  (7) 

in which ( )ωΨ  is a matrix whose columns are the eigenvectors of ( )ωVG  while ( )ωΛ  is a diagonal 
matrix that contains the eigenvalues of ( )ωVG .  
The vector process ( )tV  can be decomposed into a summation of multi-variate fully coherent 
normal vectors ( )j tQ  in the form [1,8] 

( ) ( )
1

n

j
j

t t
=

= ∑V Q  (8) 

and each vector ( )j tQ  can be generated through the use of the Priestley’s formula, taking into 
account the decomposition of the PSDs matrix in Eq.(7), as [1,8] 

( ) ( ) ( ) ( )

1
2

N
j

j j r j r r
r

t Pω ω ω
=

= Λ ∆∑Q Ψ  (9) 

in which ( )j rωΨ  is the j-th eigenvector of ( )rωVG , ( )j rωΛ  is the j-th eigenvalue of ( )rωVG , N  is 
the number of harmonics waves considered in the summation, N ω∆  is the cut-off frequency and 

( )j
rP  is the r-th realization of a zero-mean normal complex random variable obeying the condition 

( ) ( )*i j
s r ij srE P P δ δ  =  . Eq.(9) can be expressed in its real form as [1,8] 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1

2 cos sin
N

j j
j j r j r r r r r

r
t R t I tω ω ω ω ω

=

= Λ ∆ +∑Q Ψ  (10) 

being ( )j
rR  and ( )j

rI , respectively, the real part and the imaginary part of ( )j
rP . 

The use of Eq.(10) allows to generate samples of the fully coherent vector ( )j tQ  faster than the 
Shinozuka’s formula. In fact, since ( )j

rP  is normally distributed, a small number of harmonic waves 
can be considered in the summation and thus the computational burden can be drastically reduced. 
The time needed for the computation of the process ( )tV  can still be significantly reduced taking 
into account only 1j =  in Eq.(8). However, if only the first terms of the summation in Eq.(8) is 
considered, then the variance of the process ( )iV t  is not well estimated and thus, to have good 
results, the variance has to be preserved. To do this, firstly, the exact value of the variance of ( )iV t  
can be simply calculated as  
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( )2

1
i i i

N

V V V r
r

Gσ ω ω
=

= ∆∑  (11) 

and then the vector process ( )tV  can be approximated as 

( ) ( )1t t≈V Q  (12) 

in which the elements ( )iQ t  of the vector ( )1 tQ  are defined as 

( ) ( ) ( ) ( )

1

1 2
1 1

1

1 2
i

i

N

i i r r r V
rQ

Q t Pω ω ω σ
σ =

= Ψ Λ ∆∑  (13) 

being 2
iVσ  the standard deviation of ( )iV t  and 

1iQσ  the standard deviation of the i-th row of the 
vector ( )1 tQ . The vector ( )1 tQ  can be simply obtained considering 1j =  in Eq.(10). 

In this way, the computational burden required is drastically reduced since only the first blowing 
modal shape is considered. Particularly the time required to generate the process ( )tV  by using 
the proposed method can be expressed as a percentage of the time required to generate the process 
( )tV  considering all the terms in the summation present in Eq.(8). This percentage is labelled as 

* %T  and can be expressed in the form 

* % 100T n≈ . (14) 

From Eq.(14) it is clear that the proposed method allows to drastically reduce the time required to 
generate a stationary Gaussian multi-variate stochastic process. 
Numerical Simulation 
To assess the reliability of the proposed method a numerical simulation has been performed 
considering three different points, ( )1 1 1 1, ,P x y z ; ( )2 2 2 2, ,P x y z  and ( )3 3 3 3, ,P x y z , having 1 2 3x x x= = , 

1 2 3y y y= = , 1 10 mz = , 2 20 mz =  and 3 30 mz = . The velocity ( )10V  is equal to 22 m s ,while VL , 2
Vσ  

and zC  has been assumed as unitary values. In this simulation 1000 samples of the process ( )tV  
have been generated. Each sample has a duration of 100 s discretized with a sampling frequency 
of 100 Hz. The components of PSDs matrix of the process ( )tV  have been calculated by using 
Eq.(3) and are represented in Fig.1. 

 
Figure 1 – Components of the PSDs matrix of the process ( )tV  

From Fig.1 it is clear that the cross-PSDs decrease if the distance between the point increases. 
Moreover, all the components of the PSDs matrix decrease when the frequency increases.  
The eigenvalues and the eigenvectors of the PSDs matrix have been calculated and are reported in 
Fig.2. 
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Figure 2 – Eigenvalues ( ( )j ωΛ ) and components of the eigenvectors ( ( )ij ωΨ ) of ( )ωVG  

From Fig.2 can be observed that the eigenvalues have the same behavior of the PSDs matrix, 
i.e. they decrease when the frequencies increases. Moreover, from Fig.2, it can be seen that the 
first eigenvalue gives the major contribution to the total vector process.  

Once that the PSDs matrix of the process ( )tV  and its eigenvalues and eigenvectors have been 
calculated, Eqs.(12, 13) have been used to generate the process ( )tV . 
Since Priestley's formula has already been applied in the literature to reduce the computational 
burden required to generate a process ( )tV [1,8], the main innovation of this paper is the truncation 
of the summation in Eq.(8) linked to the way suggested to preserve the variance. For this reason, 
in this numerical simulation, two processes have been generated considering the same number of 
waves: the first one has been obtained by using Eqs.(8,10) without any truncation, while the second 
one has been generated through the use of the proposed method, i.e. by using Eqs.(12,13). In Fig.3 
few second of a sample of the two generated processes are reported. 
From Fig.3 it is clear that the proposed method leads to good results. Moreover, the discrepancies 
between the variances of the processes calculated by using Eq.(12) and the variances of the 
processes calculated by using Eq.(8)  are computed as 

( ) ( )

( )

2 2

0

2

0

% 100

f

j j

f

j

t

V Q

j t

V

t t dt

t dt

σ σ
ε

σ

−
=

∫

∫



 (15) 

The results obtained from Eq.(15) are reported in Tab.1 
Table 1 – Discrepancies between the variances of the processes ( )iV t  generated by using Eq.(8) 

and the variances of the processes ( )iV t  generated by using Eq.(12) 

1%ε  2 %ε  3 %ε  
3.5464 3.0232 2.5727 
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From these results it is clear that the proposed method can be considered reliable. 

 
Figure 3 – Comparison between the processes ( )iV t  generated by using Eq.(8) and the processes 

( )iV t  generated by using Eq.(12) 

The time taken to generate 1000 samples of the process ( )tV  by using Eq.(8) is equal to 176 
min, while the time taken to generate the same number of samples by using Eq.(12) is equal to 
59.33 min, thus, according to Eq.(14), * % 33.71% 1T n= ≈ . Furthermore, the computational burden 
can still be reduced by exploit the advantages deriving from the use of the Priestley’s formula. To 
this regard, the PSDs in Fig.1 and its eigenvalues reported in Fig.2 can help to choose the cut-off 
frequency N ω∆ .  

Conclusions 
In this paper an innovative method to simulate multi-variate stochastic processes is proposed. It 
uses the Priestley formulation since it is more performant than the Shinozuka’s one for the 
generation of Gaussian processes. The computational burden required to generate a multi-variate 
stochastic processes is drastically reduced taking into account only the first blowing mode shape 
provided that the variance of the process is preserved. The numerical simulations performed show 
that the proposed method is reliable, thus it can be used to drastically reduce the computational 
burden required to generate multi-variate stochastic processes. 
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Abstract. Tie-rods are simple structural elements that have been commonly used throughout the 
centuries to improve the stability of old masonry buildings. Measuring the dynamic vibrations of 
such elements can give important information on the structural performance variation with time if 
proper system models can be calibrated taking into account all the relevant sources of uncertainties. 
This paper poses and solves the inverse problem of quantifying the uncertainty in the mechanical 
properties, tensile axial force and boundary conditions of tie-rods from measurements of their 
experimental frequencies of vibrations. It is assumed that the probabilistic models of the random 
entries of the problem, i.e., the mass per unit length, the bending stiffness, the tensile force and the 
boundary conditions, are known up to some parameters which need to be estimated. Both the 
physical and probability spaces are discretized using finite dimensional (FD) models, i.e., 
deterministic functions of time and/or space and finite numbers of random variables. Monte Carlo 
simulation is finally used to completely characterize the uncertain features obtaining the best 
estimation of all the unknown features such as mass per unit length, stiffness, boundary conditions 
and tensile force that give the target free vibration modal parameters, i.e. natural frequencies. 
Introduction 
The accurate estimation of the axial tensile force in tie-rods is one of the concerns when dealing 
with the performance assessment of old masonry structures. The problem is complex and it is yet 
far from having a unique solution. Tie-rods are simple structural elements that, when placed at the 
arches or vaults springings, contribute to the construction stability balancing the horizontal thrusts. 
Monitoring the changes in time of the tensile axial force in these elements can give information on 
possible mechanical failures causing a new internal forces distribution among the structural 
elements. As an example, cracks in the masonry walls or differential settlements, which can 
compromise the stability and the integrity of the whole building, can initiate this process of change 
in the internal forces in the structural elements, including the tie-rods. 

Several approaches have been proposed in the literature to estimate the axial tensile force, 
starting from the assumption to consider the tie-rod as a vibrating wire and measuring its first 
modal frequency [1]. Among all the proposed approaches it is worth recalling the first works where 
non-destructive static and/or dynamic tests were used [2-7] up to the most recent contributions 
where the combined use of experimental measures of the frequency response funct- 

mailto:mdg12@cornell.edu
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Figure 1. Structural model for the tie-rod. 

 
ions and numerical solutions of the structural problem with unknown parameters gave interesting 
results [8-12].  

The axial tensile force in tie-rods estimation is a classical inverse problem that can be ill-posed 
or ill-conditioned, depending on the available information, and the majority of the solution 
approaches proposed in the literature are set in a deterministic environment. On the other hand 
most of the geometrical and mechanical parameters, together with the boundary conditions are 
significantly affected by uncertainties, making the estimation problem even more difficult. A 
recent work investigated the influence of significant parameters on the evaluation of axial load 
through the application of frequency identification methods using the General Polynomial Chaos 
Expansion (gPCE) to perform sensitivity analysis [13]. 

This paper proposes a first approach to identify the random features of all the tie-rods uncertain 
quantities using numerical structural analysis and Monte Carlo simulation. First, initial assumption 
on the random models are proposed. Second, samples of all the involved tie-rod random 
parameters are generated and the corresponding numerical solutions of the tie-rod free vibration 
problem are obtained. Third, a suitable error function between the numerical natural frequencies 
and the target experimental values is minimized changing the main features of the assumed random 
models. The optimal solution is finally used to generate samples of all the involved uncertain tie-
rod characteristics and to describe their main random properties. The proposed approach provides 
the tensile axial force probability density function estimation.   
Problem definition 
The structural model of the tie-rod considered in this paper is summarized in Fig. 1. The tie-rod 
deflection is a vector-valued function of time and space which depend on the cable mechanical 
properties and tensile force T . In this paper, for simplicity, the projection {V (z; t); 0 ≤ z ≤ l; t ≥ 
0} of the deflection on the y − z plane will be considered. V (z; t) is a real-valued function of time 
and space which satisfies the partial differential equation 

 
𝜕𝜕2

𝜕𝜕𝑧𝑧2
 �𝐸𝐸𝐸𝐸(𝑧𝑧) 𝜕𝜕

2𝑉𝑉(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝑧𝑧2

� + 𝑇𝑇 𝜕𝜕
2𝑉𝑉(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝑧𝑧2

= 𝑅𝑅(𝑧𝑧) 𝜕𝜕
2𝑉𝑉(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝑡𝑡2

 , 0 < z < l (1) 

 
with arbitrary initial conditions, V (z, 0) and �̇�𝑉 (z, 0), and the boundary conditions, 
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𝑉𝑉(0, 𝑡𝑡) = 0,           𝑉𝑉(𝑙𝑙, 𝑡𝑡) = 0    

𝐸𝐸𝐸𝐸(𝑧𝑧) 𝜕𝜕
2𝑉𝑉(0,𝑡𝑡)
𝜕𝜕𝑧𝑧2

− 𝐾𝐾1
𝜕𝜕 𝑉𝑉(0,𝑡𝑡)
𝜕𝜕𝑧𝑧

= 0

𝐸𝐸𝐸𝐸(𝑧𝑧) 𝜕𝜕
2𝑉𝑉(𝑙𝑙,𝑡𝑡)
𝜕𝜕𝑧𝑧2

− 𝐾𝐾2
𝜕𝜕 𝑉𝑉(𝑙𝑙,𝑡𝑡)
𝜕𝜕𝑧𝑧

= 0   

                 (2) 

 
where EI(z) denotes the flexural stiffness, R(z) = ρ(z)A(z) is the mass per unit length, ρ(z) is the 
mass density, A(z) is the cross-section area, and Ki, i = 1, 2, denote the stiffnesses of the end rotational 
springs. The solution V (z, t) of this equation describes the free vibration of the tie-rod in Fig. 1. It 
depends on the beam properties described by the parameters K1, K2 and T and the functions EI(z) 
and R(z).  

The objective of this study is to identify the tie-rod mechanical properties from experimental 
measurements giving natural frequencies and corresponding modal shapes. This problem does not 
admit an analytical solution even in the deterministic setting. The uncertainty in the beam 
mechanical properties is captured by the random variables K1, K2 and T and the random fields 
EI(z) and R(z). The main task in the stochastic setting is to identify the probability laws of the 
random variables K1, K2 and T and of the random fields EI(z) and R(z). 
Assumptions 
The random entries of Eq. 1 must satisfy physics constraints, i.e., the samples of the random 
variables K1, K2 and T and the samples of the random fields EI(z) and R(z) must take values in 
bounded intervals of (0, ∞). These constraints impose restrictions which are used to partially 
specify probabilistic models of the random elements in Eq. 1.  

The case study of this work is one of the four tie-rods in Santa Maria della Consolazione 
Temple, one of the most important monumental buildings in Umbria Region, Central Italy, located 
in the South West Area of Todi’s city. Laser vibrometer and radar interferometer experimental 
vibration measurements where performed with the aid of drones (Unmanned Arial Vehicles) 
because of the inaccessibility of the tie-rods [14]. The following probabilistic models are assumed: 

 
– Cross-section dimensions, B(z) = H(z) = 7 cm, can be considered constant along the tie- 

rod. It follows that the cross-section area, A(z) = A, and second moment, I(z) = I, are also 
constant. 

– Rotational springs K1 and K2 are independent Beta random variables with known support 
[0, 2x106] N m and unknown shape parameters (pi,qi), taking values in the bounded 
triangles Ji ={(u, v) : 1 ≤ u ≤8, 0 ≤ v ≤ u}, i = 1, 2. 

– Tension T is a Beta random variable with specified shape parameters p = q = 8 but unknown 
mean µT , and support [µT −α, µT + α], 0 ≤ α ≤ µT , , i.e., T = µT +2 α (X −1/2), where X 
denotes the standard Beta variable with support [0, 1] and p = q = 8. 

– Mass per unit length R(z) = FR ◦Φ (GR(z)) is a Beta translation random field whose image 
GR(z) is a homogeneous Gaussian field with zero-mean, unit-variance and correlation 
function E[GR(z) GR(z + y)] = exp − λR |y| , λR > 0. The map GR(z) → R(z) is defined by the 
marginal distribution FR of R(z) and the distribution Φ of the standard Gaussian variable. 
It is assumed that the support of FR is [0.8, 1.2] µρ , where µρ = 7500kg/m3, the shape 
parameters (pR, qR) of FR are unknown with values in [1, 8]2 and the decay parameter λR is 
in [0, 2]. 

– Joung modulus E(z) = FE ◦ Φ GE (z) is assumed to be a Beta translation random field with 
the same form as R(z) but independent of this field. Its samples take values in the range 
[0.8, 1.2] µE , where µE = 1.8 x1011 Pa, the shape parameters (pE, qE ) of the Beta distribution 
take values in [1, 8]2 and the decay parameter λE of the correlation function of GE (z) is in 
[0, 2]. 
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The ranges of the unknown parameters are selected after a preliminary sensitivity analysis 
solving the direct problem in Eq. 1 with the finite element (FE) approach. 

Since the probabilistic models of the random variables K1, K2 and T and the random fields R(z) 
and E(z) are mutually independent, samples of these random elements can be generated by standard 
algorithms, provided that the unknown parameters of their models are specified. The discretization 
of the probability space requires to approximate the random functions R(z) and E(z) in the 
definition of the stochastic problem, which constitute uncountable families of random variables 
indexed by time and/or space, by finite dimensional (FD) models, i.e., deterministic functions of 
time and/or space and finite numbers d < ∞ of random variables. In this case study, samples of the 
Gaussian image of R(z) are generated from the recurrence formula G(z + ∆z) = (1 − λG ∆z) G(z) 
+ (2 λG ∆z)1/2 Nz with the initial condition G(0) ~ N(0, 1), where ∆z > 0, N(0, 1) is a standard 
Gaussian variable and {Nz} are independent N(0, 1) variables which are independent of G(0) [15]. 
Identification of unknown model parameters 
Denote by (ν1(ξ, ω), ν2(ξ, ω),...) the modal frequencies of the system in Eq. 1 obtained from a sample ω 
of the random variables K1, K2 and T and the random fields R(z) and E(z) corresponding to a given value 
of the vector ξ = ( p1,  q1, p2,  q2, µT , α, pR,  qR,    λR, pE, qE, λE) of unknown parameters of the probabilistic 
models of these random elements. Samples (ν1(ξ, ω), ν2(ξ, ω),...) of the modal frequencies are delivered by 
the FE numerical solution of Eq. 1. 

Denote by (νexp,1, νexp,2,…) the experimental values of the modal frequencies. The mean square 
error E[(νq(ξ ) − νexp,q)2], q = 1, 2,... , is used to quantify the discrepancy between calculated and 
measured modal frequencies and can be estimated from samples (ν1(ξ, ω), ν2(ξ, ω),...) of the modal 
frequencies. The discrepancy between the first 𝑞𝑞� calculated and measured modal frequencies is 
measured by the objective function 

 

𝜀𝜀(𝜉𝜉 ) =  ∑ 𝑤𝑤𝑞𝑞𝐸𝐸[�𝜈𝜈𝑞𝑞(𝜉𝜉) − 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒,𝑞𝑞�
2

]𝑞𝑞�
𝑞𝑞=1                 𝑞𝑞� = 1,2, … (3) 

 
where {wq} are weighting factors. The optimal value ξopt of ξ minimizes the objective function, 
i.e., ε(ξopt) = minε {ε(ξ )}. 
Standard genetic algorithms are used to find ξopt, i.e., identify the optimal models of the random 
elements in the definition of  Eq. 1, by a two step procedure. First, the initial vector of parameters 
ξ0 = ξˆ0 (first row of Table 1) using, as much as possible, the information obtained from a site 
survey are set. Second, the objective function in Eq. 3 is minimized by genetic algorithms varying 
the number of samples, ns of the random variables K1, K2 and T and the random fields R(z) and 
E(z) corresponding to a given value of the vector ξ of unknown parameters of the probabilistic 
models, i.e. ns = [10, 50, 100], between the limits fixed in rows two, ξmin, and three ξmax of Table 
1. 

Table 1. Values of the parameter vector ξ and corresponding ε(ξopt). 

 p1 q1 p2 q2 µT 
105 N 

α 
105 N pR qR λR pE qE λE ε(ξopt) 

ξˆ0 5 1.5 5 1.5 2 0.30 2 3 0.3 3 2 0.3 — 
ξmin 1 1.0 1 1.0 0 0.05 1 1 0.0 1 1 0.0 — 
ξmax 8 8.0 8 8.0 5 0.90 8 8 2.0 8 8 2.0 — 
ξopt10 5.9 2.8 5.6 2.2 4.2635 0.6051 3.7 5.4 1.7 4.1 3.0 1.3 0.0222 
ξopt50 6.3 3.3 6.2 3.3 4.2823 0.6033 3.5 5.2 1.8 4.7 3.5 1.7 0.0215 
ξopt100 7.2 3.0 6.1 2.8 4.1027 0.6206 3.1 6.5 1.9 4.8 4.7 1.5 0.0239 
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Table 2. First two tie-rod natural frequencies statistics estimated from ns = 10000 samples. 

 νexp,1 = 4.4920 νexp,2 = 9.4320 

 E[ν1(ξopt,ω)] cov γ3 γ4 E[ν2(ξopt,ω)] cov γ3 γ4 

ξopt10 4.4613 0.0191 -0.0324 2.8871 9.4321 0.0178 -0.0324 2.9338 

ξopt50 4.4613 0.0190 -0.0264 2.9221 4.4280 0.0176 -0.0264 2.8619 

ξopt100 4.4629 0.0191 0.0126 2.8636 4.4394 0.0177 0.0126 2.8743 

Results 
Using the described assumptions, the objective function in Eq. 3, with 𝑞𝑞� = 2 (νexp,1 = 4.492, νexp,2 
= 9.432) and wq = [1, 1], is minimized considering the optimum reached when the variation in the 
objective function in Eq. 3 using the last 50 populations is lower than 0.01. The results of the 
optimization are listed in Table 1, that shows the optimal parameter vectors, ξopt10 , ξopt50 , ξopt100. 
Table 2 shows the estimated first four statistical moments for the two natural frequencies ν1(ξopt, 
ω) and ν2(ξopt, ω) based on ns = 10000 samples of the involved random variables K1, K2, T , and 
fields, R(z), E(z), corresponding to each of the optimal vectors ξoptns. Given the limited space 
available the estimated probability density functions of the tensile axial force and the estimated 
numerical natural frequencies are not shown. 

Two main findings can be highlighted. First, Table 1 shows slight variations on the compo- 
nents of the optimal parameter vectors ξoptns obtained with different values of ns ∈ {10, 50, 100}. 
These variations seem to be related to the inherent statistical variability of the proposed method. 
Second, this apparent variability in the optimal results is not reflected in the estimated random 
features of both tensile force and natural frequencies. The coefficient of variation is about 3% and 
lower than 2% (Table 2) for the axial tensile force and natural frequencies, respectively. 
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Abstract. In this paper the results of over two years of continuous monitoring of the twin bell 
towers of the Cathedral of Camerino (Italy) are presented. The monitoring activity target is the 
evaluation of the dynamic behavior of the twin belfries after the damages occurred during the 
seismic events of 2016 and the application of fast securing. The experimental data are acquired in 
continuous using four triaxial MEMS accelerometers, two for each structure, on two opposite 
corners of the bell cells. Data processing is managed with an automatic system which elaborates 
the signals and executes Operational Modal Analysis to track the modal characteristics of the 
structures and their evolution in time. Correlation with environmental factors allows to discern the 
effect of climatic conditions on the variations of dynamics. 
Introduction 
The preservation of masonry Cultural Heritage (CH) buildings has become one of the main goals 
for civil engineering [1-3]. Over the last decades, due to their vulnerability to natural hazards, i.e.  
earthquakes, different methodologies have been developed to assess their health status and 
consequently design intervention plans. Among the various Non-Destructive Tests (NDT) 
methods available, one of the techniques that mostly attracts the interest of researchers is the 
Ambient Vibration Testing (AVT) [4], which consists in monitoring the environmental and 
anthropogenic vibrations induced on the structure in its operating conditions [5-7], and finally 
extracting the main dynamic parameters (frequencies, modal shapes, and damping factors) [8, 9], 
after filtering of the non-structural effects [1,10-12].  

A particular application of this technique is the system, composed of four MEMS 
accelerometers, installed on the 4th February 2020 in the bell towers of the Cathedral of Santissima 
Maria Annunziata of Camerino. This monument suffered severe damage during the seismic 
sequence of 2016 that stroked Central Italy, leading to reinforcement interventions that made the 
church an iconic case study for the development of a continuous monitoring system. In the paper, 
the first results of the modal parameters tracking are presented, automatically executed [13] with 
a self-made Matlab© script, on the vibrations data acquired for the twin bell towers during over a 
year of monitoring activity. 
The Case Study: Camerino Cathedral Bell Towers 
The city of Camerino (Fig. 1a) arises on a hill (661 m a.m.s.l.) of the Macerata Province, in the 
Marche region (Italy). In the main square is locate the Cathedral (Fig. 1b), nowadays known as 
Santissima Annunziata of Camerino, originally built during the V century d.C. as a Roman basilica 
dedicated to San Giuseppe. Starting from XIII century, according to the historical documentation, 
the structure is subject to great alterations because of the Swabian devastations and the evolution 
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of the economy and demography of the city. The renovation culminated with the restoration works 
following the complete collapse of the bell tower caused by an earthquake in 1279. New restyling 
operations started between 1748-1749, when the XIII century façade was completely rebuilt with 
baroque canons.  

 

 
Figure 1. Localization of the city of Camerino (a) and a view of Santissima Maria Annunziata 

Cathedral (b) 
Due to the 1799 seismic events, the building was destroyed, thus re-building works started 

under the direction of Andrea Vici. This project contemplated the complete reconstruction of the 
church with a Latin-cross planimetry and the expansion of the square in the front. 

After a stop, due to the French occupation in 1807, the restoration works were resumed 10-20 
years later and the Cathedral assumed the shape we observe nowadays, with the two robust 
symmetrical belfries and the front gallery. The works finished in 1832, when the church was 
consecrated to Santissima Annunziata.  

Other earthquakes occurred in the following years (i.e., 1873, 1897, 1979) and only after the 
seismic events of 1997 steel curbs were installed in the roof. 
The geometrical and material surveys of the Church were operated through laser scanning 
technology, which allowed to extract the planimetry, the lateral views and the sections of the 
building.  From the right aisle, it is possible to access the relative tower, otherwise the left tower 
(Fig. 1) is accessible through a door from the outside.  The towers are symmetrical, with a peak 
height of 40.8 meters above the countryside level, with an irregular octagonal cross-section and a 
planimetric footprint of around 7.40 x 6.92 m2. The belfries floors stand at around 25 m of altitude 
and present four vast arch opening on the sides (Fig. 1b). 

Several types of masonry texture [14], the presence of opening and different heights of the 
foundations constitutes vulnerability elements which contributed to reach the observed level of 
damage. 
Ambient Vibration Testing 
The continuous monitoring system is composed of four triaxial MEMS accelerometers, installed 
in pairs on two opposite corners of the towers, at a height of around 4 meters above the bell cell 
floors (Fig. 2). All the sensors are connected in chain, assuring the synchronization of the 
measures. Data are acquired for 20 minutes every hour, with a sampling frequency of 200 Hz. 
When the continuous acquisition process stops, acquisition on trigger activates and, in case of 
events, registrations start with sampling frequency of 1000 Hz and duration of 90 seconds of pre- 
and post-triggering. 
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Figure 2. Sensors’ layouts: respectively the continuous monitoring system (in green) and the 

short-time monitoring system (in blue). 
Environmental data, concerning external temperature, external humidity, and wind speed, are 

collected through a weather station positioned in the proximity of the structure, available for 
consultation on the site http://app.protezionecivile.marche.it/sol/info.sol?lang=it. 

In order to assess the initial conditions of the towers at the start of the long-time monitoring 
process, a short-time acquisition has been made, using 18 monoaxial piezoelectric accelerometers 
(Fig. 2), with a sensitivity of 10 V/g, fixed in groups of three sensors in six corners of the bell cell 
(in proximity of the MEMS sensors). This acquisition lasted 40 minutes with a sampling frequency 
of 1000 Hz. 
Modal identification 
Data are elaborated automatically through a self-made script developed in Matlab© environment. 
The towers data are analyzed separately, to highlight the difference in dynamic behavior including 
the influence of temporary (safety provisions) reinforcement interventions. 

The script firstly pre-processes the short-time acquisition, applying de-trending, low-pass 
filtering and then decimating data in the range of 0-12.5 Hz, which is the one of interest for this 
type of structure. Then modal parameters identification is operated through automatic Enhanced 
Frequency Domain Decomposition (EFDD) [15] and Stochastic Subspace Identification - 
Covariance Based (SSI-Cov) methodology [16] for both towers, and the resulting modal 
frequencies and mode shapes (Fig. 3) become the targets for modal tracking over the continuous 
monitoring data.  

From the identification operated over the first dataset (Table 1), it is observable that the two 
towers, have similar in terms of modal frequencies values. In Fig. 3 is reported the modal shapes 
of only the right tower for brevity reasons.  

 

 
Figure 3. Target frequencies and mode shapes obtained from short-time monitoring data 

analysis for the right tower 
Acceleration files stored through MEMS sensors are initially pre-processed, repeating the 

operations described for the short-time data. The parameters extraction process is instead operated 
recurring to two clustering levels: in the first step, hard validation, and minimization of a two terms 
objective function in Eq. 1 [17] which considers both frequencies variation and MAC values [18] 

http://app.protezionecivile.marche.it/sol/info.sol?lang=it
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between consecutives model orders; the second step starts from grouping the parameters 
corresponding to the same modes and then comparing these ones to the target ones, selecting the 
values with the best fitting. 

 

 
Figure 4. Example of interpolation of environmental data (Temperature, Humidity, Wind Speed) 

with the first two frequencies of the right tower 
Automatically identified parameters are reported and their mean values are compared with the 

target ones in Table 1. 
 

Table 1. Comparison between target and median automatically identified parameters 

 Left Tower Right Tower  

Mode fTarget        
[Hz] 

fMean       

[Hz] 

ΔfTarget-

Tracked               
[%] 

fTarget          
[Hz] 

fMean            

[Hz] 

ΔfTarget-

Tracked                 
[%] 

ΔfL-R             
[%] 

1 1.805 1.904 5.20 1.719 1.815 5.29 4.90 
2 2.318 2.310 0.35 2.218 2.331 4.85 0.90 
3 4.218 4.287 1.61 4.198 4.103 2.32 4.48 
4 5.906 5.913 0.12 5.848 5.872 0.41 0.70 

 
 

�𝑓𝑓𝑖𝑖  −  𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�
 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

+ �1 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�  ≤  0.05 (1) 

 
By overlapping the data before and after environmental effect removal, an interesting 

phenomenon is highlighted in the fourth modes of both towers: the occurrence of a freezing 
condition on 15th of February 2021 (day when the minima temperatures of the year were 
registered), due to the freezing of the water particles contained in masonry micropores, testified 
by a sudden increment in towers rigidity [5]. In Figure 5, for brevity issues, the results of only the 
right tower are reported. 
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Figure 5. Two years of modal frequencies tracking after removal of environmental effects. The 

red circle highlights the freezing condition. 
Summary 
The paper shows an application of continuous structural monitoring by a particular type of 
accelerometric sensors, i.e. MEMS. Through a Matlab© script it was possible to identify the 
dynamic characteristics associated to the first four modes of the two twin towers of Santissima 
Maria Annunziata Cathedral in Camerino, a historical building strongly damaged by the seismic 
events of 2016-‘17, and then subdued to temporary reinforcement interventions. 

The procedure produced interesting results, allowing to understand the differences in the 
dynamic behavior of the two towers, despite their symmetry. Moreover, it was possible to prove 
the efficiency of MEMS sensors for continuous monitoring activity. 
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Abstract. In this work, we employ recent deep learning techniques for time-series forecasting to 
inspect and detect anomalies in the large dataset recorded during a long-term monitoring campaign 
conducted on the San Frediano bell tower in Lucca. We frame the problem as an unsupervised 
anomaly detection task and train a Temporal Fusion Transformer to learn the normal dynamics of 
the structure. We then detect the anomalies by looking at the differences between the predicted 
and observed frequencies.  
Introduction 
Heritage structures are threatened worldwide by aging, material deterioration, environmental 
actions, and extreme meteorological events due to climate changes, and therefore they need 
maintenance and restoration. Structural health monitoring (SHM) provides a relatively 
inexpensive tool for promptly assessing the structural conditions, planning, and controlling 
maintenance interventions. 

The availability of high-sensitive instrumentation and extensive data sets from long-term 
monitoring protocols opened new issues about data analysis, particularly regarding the 
implementation of automatic anomaly detection and early warning procedures. In this data-driven 
context, exploiting artificial intelligence (AI) represents a significant opportunity. Machine 
learning (ML) algorithms originated from the broader domain of AI and have recently had a 
significant diffusion, with applications in many research and industrial areas. ML covers a wide 
range of algorithms that recognize patterns and build regression models for large multi-source 
heterogeneous datasets: this approach naturally fits with data collected by SHM systems [1]. 

Bridges’ construction and maintenance represent the classical application fields for automated 
vibration monitoring. Many papers regarding algorithms for operational modal analysis and 
damage detection in the domain of ML are available in the literature [2], [3], [4]. The application 
of ML to the preservation of architectural heritage is relatively recent [5].  

In recent years, Deep Learning (DL) techniques have become the state-of-the-art for processing 
sequential data, like text or audio. The recent astonishing advancements in this field brought 
important innovations also in the context of time-series processing, obtaining interesting results in 
time-series forecasting, classification, and anomaly detection [6, 7]. The key to the success of DL 
in these tasks can be attributed to some neural architectures, such as the Recurrent Neural Networks 
or the recently introduced Transformer Networks [8]. Despite the fast and pervasive development 
of DL techniques for time-series processing, relatively few works [9, 10] tried to apply this 
promising technology to monitor heritage structures and find possible anomalies. 

In this paper, we propose to use a recently developed Transformer Network [11] to reveal 
possible anomalies from the data recorded by the high-sensitive instrumentation installed on 
heritage structures. We analyze the San Frediano bell tower in Lucca [12], subject to a long-term 
vibration monitoring campaign from October 2015 to November 2017. The Transformer network 
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is trained to predict the main natural frequencies of the tower starting from some environmental 
data and the frequencies observed in the very recent past. Anomalous events are then found by 
comparing how much the actual frequencies deviate from the predicted ones. The data analysis 
shows promising results, highlighting anomalous events like the Amatrice earthquake that 
happened on 24 Aug 2016 or the Santa Croce celebrations on 13 Sep 2016. 
Description of the algorithm 
The proposed approach belongs to a set of techniques that pertain to the domain of unsupervised 
anomaly detection. Specifically, a network is trained to understand the normality patterns present 
in some data and then, at inference time, the more significant deviations from the learned normality 
patterns are considered anomalies. In order to learn the concept of normality during the training 
process, the network is usually trained to predict one or more samples in the future, given 
observations from the recent past. In this way, the network learns to approximate the normal 
dynamics of the system under observation. In this work, we use a state-of-the-art deep neural 
network for learning the structure’s dynamics directly from data. This network is called Temporal 
Fusion Transformer (TFT) [11]. In the following two paragraphs, we discuss how the TFT can 
predict the structure dynamics while characterizing its uncertainty and how this output can be used 
for anomaly detection. 

The Temporal Fusion Transformer. In heritage structure monitoring, data are usually composed 
of post-processed sensor measurements from the monitored structure, plus some environmental 
data, like temperature, wind speed, rain, or humidity. The core part of the algorithm is constituted 
by the network, which predicts the structure’s dynamic evolution, given the sensor and 
environmental data from the recent past. In this study, we use TFT [11], one of the state-of-the-art 
Transformer Networks for time-series forecasting. Apart from using state-of-the-art attentive 
modules for processing time-series, the TFT can also estimate the uncertainty of the prediction. 
This output is fundamental during the anomaly detection phase: we can quickly know whenever 
the observed actual values fall inside the predicted confidence interval and, if not, easily quantify 
the deviation from these margins. In the light of this, the system that we develop can be formalized 
as follows: 

𝑋𝑋𝑇𝑇+1  =  𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑇𝑇;  𝑢𝑢1,𝑢𝑢2, . . . ,𝑢𝑢𝑇𝑇),  (1) 

where xt is a vector encoding the values measured from the instrumentation in the structure at time 
t, ut is a vector encoding the environmental (external) factors like temperature, wind speed, rain, 
or humidity at time t, while the output XT+1 is a random variable encoding the predicted sensor 
data at time T+1. The model characterizes this output random variable by predicting its mean value 
and 1, 10, 25, 50, 75, 90, 99 percentiles. The training procedure can be treated as a regression 
problem, where the objective consists of estimating the parameters of the TFT model given some 
training data. In TFT, the optimization is performed using a quantile loss, which estimates the 
aleatoric uncertainty of the data. More details in the original TFT paper [11]. 

Anomaly Detection. Once the TFT has been trained on some non-anomalous data, it should 
have learned the normal dynamics of the given system to some extent. Therefore, it should be able 
to predict the next system state while also quantifying the uncertainty of this prediction. At this 
point, we can search for anomalous events in a time interval never seen from the network at training 
time. Given the aleatoric prediction XT+1 and the actual observed state xT+1, we can define the state 
xT+1 as anomalous if it is an outlier with respect to the estimated distribution of the random variable 
XT+1. More formally, we can define xT+1 as an outlier – or an anomalous sample – by checking if 
the following condition is NOT satisfied: 
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𝜋𝜋100−𝑝𝑝 (𝑋𝑋𝑇𝑇+1) ≤ 𝑥𝑥𝑇𝑇+1 ≤ 𝜋𝜋𝑝𝑝 (𝑋𝑋𝑇𝑇+1),  (2) 

where 𝜋𝜋p (X) represents the p-percentile of the random variable X. In our experiments, we use p = 
99. This procedure is repeated over a sliding window having width T over the whole observation 
period so that we can predict the presence of anomalies at each timestep t given the sensor and 
environmental data from the timesteps {t-1, t-2, …, t-T-1}. 
Case study: The San Frediano bell tower 
The San Frediano bell tower in the historic center of Lucca has been subjected to a long-term 
vibration monitoring campaign from October 2015 to November 2017 [12]. Data from the first 
year of monitoring (28 Oct 2015 – 13 Aug 2016) are used in the paper to train and validate the 
TFT model. They were measured by four seismic stations placed alongside the tower’s height, 
each equipped with a tri-axial velocimeter and a 24-bit digitizer of the SARA Electronic 
Instruments firm. Data were sampled at 100 Hz and continuously acquired over the monitoring 
period. The training dataset was built by processing data via the covariance-driven Stochastic 
Subspace Identification technique to extract the first five natural frequencies from the tower’s 
response. We organized data in hourly packages; therefore, the training set consisted of hourly 
samples of the five frequencies. Together with the frequencies, we considered other environmental 
variables in the model: air temperature, rainfall and air humidity, wind speed (average and peak 
values), and wind direction. Furthermore, we conditioned the model on the temporal fingerprints 
of the observations to better capture periodical patterns at different time scales. Specifically, we 
conditioned the model on the hour (1-24), the day (1-30), and the month (1-12).  

We run the trained model on a time interval not used during the training phase. Specifically, we 
considered the period from 19 Aug 2016 to 16 Oct 2016, with a window width T = 96 hours (4 
days). The results of the analysis are shown in Fig. 1 and Fig.2, reporting the predictions of the 
model and the observed frequencies. Every prediction is accompanied by the estimated 
uncertainty, represented by the area between the 1st and 99th percentiles at every prediction 
timestep. Vertical bars show the time locations when at least one of the frequencies violates the 
condition expressed in Eq. 2. The color intensity of these lines depends on how much the actual 
observed value falls outside the estimated uncertainty margins. The final color intensity (yellow 
low - red high) is obtained by summing the anomaly contributions from each frequency, using the 
inverse of the frequency as a weight, to attenuate the contribution from higher frequencies. Fig. 1 
highlights two major anomalous events, on 24 Aug and 13 Sep 2016. The former event corresponds 
to the Amatrice earthquake that struck central Italy with a 6.0 magnitude and, despite the distance 
of 400 km between Amatrice and Lucca, was clearly detected by the sensors installed on the tower 
and induced vibrations in the same order of magnitude as those caused by the bells’ swinging. The 
latter anomaly corresponds to the Santa Croce celebrations and relates to the presence of many 
people moving in the town and affecting the tower’s vibrations. The algorithm can also detect the 
vibrations induced by the swinging bells. This anomaly involves the second frequency (related to 
the swinging direction) and corresponds to the main religious ceremonies held in the Cathedral, 
particularly on Saturday afternoon and Sunday morning. 
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Figure 1: First five predicted and experimental (observed) frequencies, in the period 19 Aug 

2016 - 14 Sep 2016. 

 
Figure 2: First five predicted and experimental (observed) frequencies, in the period 19 Sep 

2016 - 16 Oct 2016. 
 
The anomalous events detected by the TFT procedure are better emphasized in Fig. 3, reporting 
the observed and predicted values of the first two frequencies from 20 to 26 August 2016, together 
with the confidence interval evaluated by the algorithm and reported in a dashed line. The 
anomalies caused by the swinging bells on Saturday (20 Aug, h 17:00) and Sunday (21 Aug, h 
10:00 and h 12:00) and by the Amatrice earthquake (24 Aug, h 3:00) are highlighted in the figure; 
the first two affect mainly the second frequency of the tower, while the effects of the earthquake 
are evident in the whole dynamic response of the structure. 
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Figure 3: First two predicted and experimental (observed) frequencies, 20-26 Aug 2016.  
Conclusions 
In this paper, we explored the potential of state-of-the-art attentive deep neural networks for 
monitoring heritage structures and spotting possible anomalies. We employed the Temporal 
Fusion Transformer to learn the normal dynamics of the structure. The tower’s dynamic behavior 
was encoded as its first five natural frequencies, extracted through the covariance-driven 
Stochastic Subspace Identification technique. The predicted distributions of the frequencies were 
then used to spot outliers in the test data. This preliminary work showed promising results in the 
case study of the San Frediano bell tower in Lucca, where we were able to correctly identify some 
important events, like the Amatrice earthquake and the Santa Croce celebrations.  

Further investigations are necessary to confirm the good performance and reliability of the 
adopted method. A comparison between the anomaly detection techniques used in the literature 
and the TFT model will be carried out in a future work, where the performance of the Transformer 
network will be tested on artificial damage scenarios. Furthermore, it would be interesting to 
characterize the found anomalies by inspecting and clustering the hidden representations learned 
by the model. This characterization would be helpful, for example, for distinguishing a celebration 
event happening near the tower from an unexpected structural failure. 
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Abstract. Bell towers are masonry slender structures prone to damage caused by vibrations due to 
human activities, such as motor-vehicle traffic and operating machines in building sites, to bells’ 
ringing and, of course, vulnerable to strong vibrations induced by earthquakes. Several studies 
with Operational Modal Analysis applications to masonry historical slender towers demonstrate 
that their modal properties are typical and recurrent and depend mainly on the geometric features 
determining mass distribution and on the boundary conditions due to adjacent buildings and 
subjacent foundation soil. In the paper a sensitivity analysis of modal frequency obtained by FEM 
eigenvalue analysis to the soil modelling approach is carried out. The case study is the historical 
bell tower of San Giuseppe in Aci Castello church. The natural frequencies of the tower, identified 
through OMA procedure are considered for comparison. 
Introduction 
Italy has a rich architectural heritage which belong to thousands of years of history. Among the 
architectural monuments, one of the most iconic categories is represented by bell towers, typical 
landmarks of the Italian landscape since the Middle Ages. Depending on their geometric and 
architectural features, bell towers are masonry slender structures characterised by intrinsic 
vulnerability to dynamic loads. Therefore, complete dynamic identification coupled with a 
calibrated numerical model is a major issue as a starting point for seismic vulnerability evaluation, 
damage prediction and preliminary effectiveness assessment of structural interventions. 

Operational Modal Analysis (OMA) technique appears a proper method to perform dynamic 
identification [1], i.e. to experimentally determine modal frequencies, modal shapes and modal 
damping of a structure through to environmental vibrations. OMA methods present several 
advantages such as non-destructiveness, cost effectiveness, lightness, and portability of the 
required instrumentation and, above all, the possibility to measure values of the accelerations in 
the actual service conditions. 

Several studies about masonry historical towers have been published showing that their modal 
shapes and frequencies are typical and recurrent and depend mainly on height and width of the 
structure, that is on the geometric features determining mass distribution, on the boundary 
conditions due to adjacent buildings [2, 3] and foundation soil characteristics [4, 5, 6]. 

OMA results allow the updating of input parameters of FEM analysis, such as elastic modulus 
and density, or the boundary conditions, improving the accuracy of the numerical model in 
representing the actual dynamic behavior of the structure [7]. 

In this paper the importance of the foundation soil modelling is highlighted with regard to the 
numerical evaluation of modal frequencies, especially in the case of soil characterised by low 
stiffness values. A refined FEM modelling of a historical masonry tower taking into account soil-
structure interaction effects was implemented after the architectural relief and the dynamic 
identification through OMA techniques. The practical application concerns the bell tower of the 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 587-592  https://doi.org/10.21741/9781644902431-95 

 

 
588 

church of San Giuseppe in the town of Aci Castello, (Eastern Sicily, Italy). Three different soil 
modelling approaches were followed to refine the model: fixed-base, Winkler model with linear 
springs, complete 3D model of the layered soil. Different arrangements of the tower foundation 
were tested. Mechanical and physical properties used as input parameters for the FEM modelling 
of the soil beneath the church were obtained through previous geological and geophysical surveys 
[8]. The eigenvalue analyses were carried out with Midas FEA NX Software [9]. The resulting 
values of modal frequencies were compared to those obtained through the experimental OMA 
measurements, to evaluate the influence and the accuracy of different soil modelling approaches. 
Description of the case study 
The bell tower of the church of San Giuseppe was chosen as a case study. The church is located in 
Aci Castello, a municipality of the Metropolitan City of Catania, Sicily (Italy), and was probably 
built around 1748 in the location in which another ecclesiastical building dedicated to Sant’Agata 
may has already existed previously, destroyed by an earthquake in 1547 [10]. According to this 
opinion, the bell tower may belong to a previous construction phase with respect to the church. 
This would be confirmed by architectural features of the tower and allows to suppose that there is 
no effective link between the two structures, so that they could be considered detached. The tower 
can therefore be studied as isolated. 

The location of the church and the tower with respect to the coastal cliffs is highlighted in Fig. 
1a. The tower stands at the south-eastern boundary of the town, about 25 meters away from a about 
6-metres-high coastal cliff characterised by near-vertical rock faces of jointed volcanic rock, with 
a massive to vesicular intact rock texture [11]. A crypt, used in the past as a burial site, lays beneath 
the church with the same extension of the nave. The original tapering pyramidal masonry spire on 
the top of the tower was demolished after 1908 earthquake of Messina; nowadays, there is only a 
simple four-pitched roof with clay tiles on wooden frame. 

An architectural survey was carried out to obtain geometrical and material information about 
the tower, shown in Fig. 1b. The tower has rectangular section, with sides of about 3.8 m and 4.8 
m at the bottom, reducing to 3.3 m and 3.8 m from 2.5 m to the top bell chamber, for a total height 
of 15.4 m (excluding the tiles roof). Fig. 1c reports the layout of the tower. 

 

   

(a) (b) (c) 
Figure 1. Church of San Giuseppe in Aci Castello (Catania, Italy): (a) View of the area, with the 

location of the church; (b) The church and (c) Plane of the ground floor of the bell tower. 
Methodological approach 
In order to experimentally determine modal parameters of the bell tower, an Operational Modal 
Analysis based on the Frequency Domain Decomposition (FDD) method was previously carried 
out. The estimated frequencies were: f1 = 3.94 Hz, associated to a flexural mode in the East/West 
direction, with a small translation component in the North/South direction and negligible torsional 
rotation; f2 = 4.50 Hz, associated to a flexural mode in the North/South direction, with a translation 
component in the East/West direction and negligible torsional rotation; f3 = 9.78 Hz, associated to 
a torsional mode, with a translation component in the North/South direction. 
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The mechanical characteristics of the masonry are analogous to that of the church both in terms 
of layout and materials. Masonry walls are made up by lavic rubble, clay tiles fragments and lime 
mortar; the thickness is between 0.65 m and 0.75 m. The mechanical parameters, derived from 
literature data for similar materials and updated after preliminary analysis have been set at: Young 
Modulus E = 2800 MPa, Poisson ratio ν = 0.3, unit weight γ = 17 kN/m3 [12]. 

In a previous in situ experimental campaign of measurements [8], Multichannel Analysis of 
Surface Waves (MASW) and seismic tomography tests were carried out to map and identify the 
soil in the tower construction site. Measurements of the profiles of shear waves and compression 
waves, Vs and Vp, up to a depth of 27 m were also conducted. Six soil layers with different 
mechanical characteristics were identified. A soft surface soil layer was found, laying on layers of 
fractured ancient lava of increasing stiffness with the depth. The soft layer consists of filling 
material used for leveling the foundation plane of the church. Density (ρ) and dynamic elastic 
modulus (Edyn) for each soil layer were derived from theoretical correlations. In Table 1 soil 
physical and mechanical parameters are summarised. 

 
Table 1. Soil parameters. 

Soil layer 
n. 

Depth 
[m] 

S-Waves 
velocity 

Vs 
[m/s] 

P-Waves 
velocity 

Vp 
[m/s] 

Density 
ρ 

[g/cm3] 

Dynamic 
elastic 

modulus 
Edyn 

[MPa] 

ν 
[-] 

1 0.00 355.06 1684.12 1.85 689 0.48 
2 3.90 351.46 1680.12 1.84 671 0.48 
3 7.06 446.68 1785.82 1.88 1100 0.47 
4 13.27 525.04 1872.79 1.90 1527 0.46 
5 21.85 621.05 1979.36 1.94 2163 0.45 
6 27.31 705.05 2072.61 1.96 2795 0.43 

 
A 3D FEM model of the tower was built in Midas FEA NX. A tetrahedral 4-node elements 

discretization was defined, with maximum element size 300 mm. Masonry was modeled as a 
linearly elastic isotropic material. A static dead load simulates the self-weight of the roof. Different 
boundary conditions were considered at the base of the tower. Footing structure and foundation 
soil were modeled to refine the model and analyse the effect of the soil modeling on the results of 
the eigenvalue analysis. Firstly, a fixed-base scheme, with hinges directly applied to each node at 
the bottom surface of the tower walls was analysed. Fig. 2 shows the FEM model. 

Then, the fixed-base idealization, characterised by bilateral contraints, was removed. A FEM 
modeling of the layered soil was built, according to data in Table 1, up to the depth of 30 m. The 
linear elastic isotropic material model was used. Three different widths (50, 100, 200 m) of the 
volume of soil were considered, as shown in Fig. 3a. 
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Figure 2. FEM model on Midas FEA NX. 
 

The soil was simplified as horizontally layered, with each layer discretized in tetrahedral 4-
nodes elements (Fig. 3b). The bottom nodes were constrained with hinges, while horizontal-axis 
roller boundary conditions were assigned to lateral boundaries. In the 200 m-side model, to 
simulate the presence of the coastal cliff (Fig. 3c) lateral nodes were not constrained along the 
height of the escarpment (Fig. 3d). 

 
 

    

(a) (b) (c) (d) 
Figure 3. (a) section detail of the layered soil FEM model (b) squared 50-, 100- and 200-meters 

side volumes of soil modeled in 3D FEM analysis and contour lines map. The dotted line 
highlights the coastal cliff; (c) The rocky front and (d) 200 m-side layered soil FEM model with 

B.C.. 
 

Finally, the Winkler's idealization of the soil was considered. Linearly elastic independent 
springs were introduced in the model, with stiffness given by Eq. 1: 

 

𝑘𝑘 =
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑∙

(1−ν)
(1+ν)∙(1−2ν)

1.5∙𝐵𝐵
 [N/mm3] (1) 

 
Two different foundation type were considered: a strip foundation 1.5 m deep; a slightly protruding 
slab foundation 1.5 m deep, with 5.3x4.3 m footprint area. Springs were applied to the three cases: 
directly to bottom nodes of the tower model, with k = 2.91 [N/mm3]; to the bottom nodes of the 
strip foundation, with k = 2.26 [N/mm3]; to the bottom nodes of the slab, with k = 1.4 [N/mm3]. 
Results, discussion and conclusions 
The eigenvalue analysis of the San Giuseppe’s Bell Tower was performed with Midas FEA NX 
software. The three dominant natural frequencies were identified. The first and the second one are 
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related to bending modes, associated to the Y-axis (i.e. North-South direction) and X-axis (i.e. 
East-West direction); the third one is related to a torsional mode around the vertical axis, Z.  

Fig. 4a shows a comparison between the numerical modal frequencies and the experimental 
frequencies obtained from OMA. As expected, the higher the stiffness of the constraint 
configuration, the higher are the frequency values. The role of the surface soft layer is denounced 
by the lowering of the frequencies compared to the model on a fixed base. This reduction is more 
pronounced when a foundation body is present between the base of the tower and the soil, both in 
the case of the simplified Winkler models (W2, W3 in Fig. 4a) and in the case of the complete 
layered model (50, 100, 200 in Fig. 4a). In the picture 4a, in the cases of layered soil the results 
related to the slab type foundation are reported, the other solutions being basically the same. This 
last statement is confirmed in Fig. 4b where the comparisons are made considering the 50x50x30 
m layered soil volume varying the foundation arrangement.  

 

  

Figure 4. Comparison between FEA main numerical frequencies and OMA identified frequencies 
(a) varying the soil model and (b) varying the foundation type. 

It is clear that in the study case it is sufficient to consider the smallest volume of soil and that, 
whatever the model of the foundations is considered, the Winkler hypothesis (W2, W3) leads to 
lower frequencies than those obtained by modeling the layered soil. It should be noted that the 
frequencies related to the bending modes are underestimated w.r.t. OMA frequencies, except in 
the Y direction in the case of the fixed-base tower model. On the contrary, the torsional frequency 
is always overestimated. The reasons for these differences can be found in two different factors. 
The first concerns the mass and stiffness properties of the masonry walls, which are derived from 
literature data. Provided that the geometric model is exact, in the absence of experimental data the 
masonry mechanical characteristics updating is therefore necessary. The second factor concerns 
the high torsional stiffness of the tower, denounced by overestimated numerical prediction of the 
twist eigenvalue. This factor can be attributed to the presence in the FEM model of helicoidal-like 
staircase inside the tower, shown in Fig. 2. The staircase was modeled perfectly connected to the 
perimeter walls and with mechanical properties identical to those of the load-bearing walls. Both 
hypotheses are unrealistic and can be considered as a source of the overestimation of the torsional 
frequency. 
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The overall results prove the need for a high level of knowledge in order to correctly identify 
the dynamic properties numerically [13]. Furthermore, when experimental measurements of the 
mechanical properties of the masonry are not available, the need of the FEM model updating is 
evident, by adjusting the properties of mass and stiffness. In the presence of soft foundation soils, 
the model should also include an accurate stratigraphy. 
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Abstract. Recent advances in computing power and sensing technology led to a significant 
evolution of Structural Health Monitoring (SHM) techniques, transforming SHM into a “Big Data” 
problem. The use of data-driven approaches for damage identification purposes,  specifically 
Machine Learning (ML) methods, has gained popularity. ML can help at various levels of the 
SHM process: to pre- and post-process input data, extract damage sensitive features, and operate 
pattern recognition in measured data and output valuable information for damage identification. 
In this paper, the role of ML in SHM applications is discussed together with a new scheme for 
classifying ML applications in SHM, especially focusing on vibration-based monitoring, given its 
consolidated theoretical base. Finally, the implications of the application of these methods to 
historic structures are discussed, with a brief account of existing case studies. The proposed 
classification is exemplified using the most recent studies available in the literature on cultural 
heritage structures. 
Introduction 
Structural Health Monitoring (SHM), as the process of implementing strategies for Damage 
Identification (DI) [6], is an interdisciplinary field which has been successfully investigated over 
the last decades. Meanwhile, advancements in computational power and data science have opened 
new avenues for the development of data-driven approaches for SHM and Machine-Learning (ML) 
[7]. The research effort in this direction led to a literature explosion in ML, with the number of 
papers published on the topic rapidly increasing in the last 20 years (Figure 1).  

 
Figure 1 – Number of publications per year in the last two decades. Research operated on 

Scopus for words in Title, Keywords and Abstract.  
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Since the knowledge and methodologies on Data Science (DS) and Artificial Intelligence (AI) 
are increasingly being transferred to Civil Engineering, the need for a shared, clear glossary and 
framework is arising, to allow professionals and researchers to explore all capabilities of ML 
algorithms and connect transversal topics in the growing interdisciplinarity of SHM. Numerous 
published reviews have successfully formulated guidelines to approach the state-of-the-art 
research on ML applications to SHM [2], [3], [4], [8], [9], [10], [11]. However, differences in the 
classification of existing studies can still be found. The objectives of this paper are: (i) to provide 
basic notions to approach the study of ML applications to SHM, focusing on the use of vibration 
signatures, (ii) to propose a new classification methodology to operate a review of existing studies, 
and (iii) to briefly discuss peculiarities related to historic structures in the framework of ML 
applications to data-driven and vibration-based SHM.  
Definitions 
ML was introduced, as a subset of AI, to overcome the limitations of knowledge-based approaches 
[2]. ML algorithms “learn” systematically from a sufficient amount of data without the use of 
explicit programming [13]. The construction of a ML model entails the presence of input data, 
commonly divided into training, validation, and testing sets. The datasets are kept independent to 
ensure a correct assessment of the prediction accuracy over the validation set, preventing an 
overfitting of the model against the training set [12]. After repeated training, once the model is 
optimized, the testing set is fed to the model to operate a check against new data. 

The ML training process is called supervised or unsupervised, based on the type of training 
data, which can be labelled or unlabelled, respectively. If both labelled and unlabelled data are 
used, the process is called semi-supervised ML. Moreover, in reinforcement learning, the use of 
unlabelled data is accompanied by agents that positively correct predictions in a trial-and-error 
process, reducing the requirements of training data. The availability and type of data is a key 
element in the choice of ML model.  

 
Figure 2 – Relationship between techniques related to CS, AI and data mining, the process of 

extracting useful knowledge and information from the bases of data. Pattern recognition is not a 
methodology or a technique [10], it is the problem of discovering automatically irregularities in 
data through the use of computer algorithms [13]. The expression Big Data is now often used to 

indicate a “field” of CS [14]. (Image adapted from [14]). 
Basic ML algorithms require the conversion of data in a fixed number of features. Big Data will 

often present higher sparsity requiring more features to describe it [1], lowering model reliability 
and statistical significance. The higher the number of features, the larger the data requirements of 
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the ML algorithms, hence the so-called curse of dimensionality [12]. Discarding redundant 
information is often applied to overcome this issue. Moreover, to avoid the handcrafting of features 
in complex applications, Deep Learning (DL) methodologies were developed, to operate the 
feature selection process autonomously. DL algorithms explain high-level and abstract features as 
a hierarchy of simple and low-level learned features, ultimately reducing the dimension of feature 
vectors [2]. Relationships between AI, ML, DL, etc. are shown graphically in Figure 2. 

The ML model is then finally used to solve a specific learning problem, such as classification, 
regression or prediction, clustering or density estimation problems [2]. The output of the 
application of such processes can yield both true and false “predictions”.  
ML in the SHM process 
In data-driven vibration-based SHM, ML applications can be found at different levels of the 
process [11]. The most relevant are feature extraction/selection, dimensionality reduction and 
discrimination of the effect of environmental and operational variabilities (EOVs), statistical 
pattern recognition (SPR) and, finally, DI.  

In an SPR framework, detecting the presence of damage means distinguishing between an initial 
“healthy” or undamaged state and a damaged state [12]. Detection problems represent the largest 
studied level of the DI hierarchy [15], comprised of detection, localization, assessment, 
quantification and prognosis. If operated unsupervised, damage detection is referred to as 
novelty/anomaly or outlier detection, a long-established statistical technique that can also be 
addressed through ML inference. Classification between damaged/undamaged is mostly operated, 
so much that ML algorithms are often called simply classifiers [2]. 

ML applications are steadily gaining recognition as viable techniques to operate data-driven 
vibration-based SHM. Several challenges are still to be addressed. The lack of data with damage 
is a long-standing obstruction to a more widespread use of ML. Over time viable solutions are 
being identified, by creating thresholds, synthetically generating data with damage and operating 
experiments. At the forefront of this research are the studies on Population-Based SHM (PBSHM), 
seeking to group similar structures in populations and using transfer-learning to overcome the lack 
of damaged data [20].  

The selection of damage sensitive features, namely factors that make explicit the damage 
pattern to be learned from data [6], is still an ongoing research topic. Finally, going beyond the 
detection stage with unsupervised techniques is still a challenge, and damage prognosis is still 
achieved only when the physics of damage progression is included in a hybrid data/model-driven 
approach. Physics-informed ML applications are working towards this goal [21].  
Proposed classification scheme for Machine-Learning Application to SHM 
Considering the complexity of the subject and the interdisciplinarity necessary to approach the 
state-of-the-art research on ML applications, a new classification scheme for the development of 
a detailed review is proposed herein. The methodology encompasses a bottom-up strategy from a 
civil engineering perspective while gathering the necessary information to draw relevant 
conclusions from the analysed literature, in terms of recurrence of the methodologies, 
performance, success rate, etc.  

According to the proposed classification, the level of the damage hierarchy reached is identified 
first. Then, a distinction is operated among three aspects: the type of extracted features (i.e., modal 
parameters, or statistical parameters in Autoregressive models etc.), the metrics used as a 
novelty/damage index (i.e., a distance metrics like the Mahalanobis distance), and the model built 
to highlight the presence of an underlying pattern (i.e., a simple Artificial Neural Network (ANN)).  

To summarise, four elements are at the core of the classification, which should be used to 
operate a clear distinction in applications, as follows. 

• The level of the damage hierarchy. 
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• The type of features. 
• The type of SPR/ML method. 
• The damage index/indices.  

It is important to notice how ML could be used for one or both feature extraction/selection and 
SPR, but also at other stages of the SHM process, like data pre-processing or performance 
optimization. Moreover, the identification of the adopted damage index or indices is not 
highlighted in existing reviews, while it could show how the same index could apply to different 
extracted features.  

Additionally, other information on the input data should be part of the classification if available. 
The methodology may have been tested on data from various sources, numerical, experimental or 
real data. The number and type of sensors may play a role in the quality and significance of the 
data obtained with respect to the structure analysed. Feature extraction and selection techniques 
should be added to the classification as well. Together with the number and types of features, the 
classification should specify whether they are considered as stochastic variables allowing for 
uncertainty estimation, and which technique was used, for example Gaussian Processes or 
Bayesian statistical inference. Also, if a dimensionality reduction technique was employed it 
should be noted, even if it is not a ML one. These techniques are used to reduce the size of input 
parameters without losing the information content of the data, for example Principal Component 
Analysis (PCA), and they can be instrumental in the overall performance of the application. 

The algorithm for SPR is also to be specified further, in terms of architecture family, 
distinguishing for example between instance-based and clustering algorithms. The same stage of 
the damage hierarchy could be addressed with a different learning problem depending on the 
structure and the available data, for example the type of damage can be classified or clustered into 
several known damage scenarios or mechanisms. Strictly connected to the learning problem 
chosen, the nature of the output (Boolean, cluster, etc.) should also be identified. Finally, specific 
information on whether and how the performance of the algorithm was evaluated in the study 
should be included, as they could give insights into the validity of the methodology. Critical 
considerations on the pros and cons of the use of ML in the analysis application could be added, if 
provided by the paper authors. The classification should be complemented with all the necessary 
information to reference authors and publications. An example of two of the recent ML 
applications to data-driven vibration-based SHM of historic structures is provided in Table 1.  
ML applications on SHM for Historic Structures 
SHM operated on historic structures present a series of peculiarities which make the application 
of a data-driven approach and ML techniques even more challenging than in civil structures. 
Architectural heritage often encompasses complex structures in terms of geometry and mechanical 
behaviour. Materials are often heterogeneous and behave nonlinearly, with strict dependence on 
environmental conditions. Operating manual mapping of damages on these structures is even more 
expensive and time-consuming than it is on civil structures, given the ancient designs and 
construction techniques, and the fact that damage is often hidden to visual inspection.  

In historic structures, damage can present itself at a global and a local level, potentially with 
equal relevance. One challenge is to detect relevant sudden changes in the state of the structure in 
real-time, to trigger consequent inspections and controls. Another is the question of identifying 
trends of accumulation of damage over extended periods of time, filtering out the effect of 
environmental and operational parameters, learning how they factor in, in the different damage 
mechanisms. 

Many uncertainties arise when model-based approaches are pursued to monitor historic 
structures. SHM approaches based on dynamic identification are among the most widespread used 
techniques, given their strong theoretical base and the direct interpretability of the output. 
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Nonetheless, their support for engineering decisions is still limited, given the global nature of the 
output and the often local nature of the damage [5]. To date, a replicable and generalized approach 
to SHM of historic structures is yet to be reached. 

ML methods are slowly starting to gain traction also for SHM of historic structures, on different 
scales, tackling a variety of problems [17], but a lot of work still needs to be done in this direction. 

 
Table 1 – Classification of two ML applications to data-driven vibration-based SHM according 

to the proposed scheme. 

 

Conclusions 
The proposed classification is intended as a base for a future review work, aimed at critically 
examining the existing methods, applying them to benchmark case studies and providing 
meaningful comparisons in terms of computational cost and accuracy. Future work is aimed at 
identifying key factors in the successful applicability of ML techniques to SHM of historic 
structures. 
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Abstract. In this paper the effectiveness of the application of a hemp biocomposite reinforcement 
at the extrados of a masonry barrel vault was investigated. To this aim, two specimens of 
unreinforced (UV) and reinforced (RV) masonry vaults were built having the same geometry with 
brickwork material and subjected to shaking table seismic tests. The comparison of the dynamic 
behavior between the two specimens was carried out by increasing the intensity of the seismic 
input, which was simultaneously applied on both the structures. The evaluation of the progressive 
damage induced by the seismic input was observed by visual inspections and natural frequencies 
decay estimated by experimental dynamic identification through the application of Operational 
Modal Analysis (OMA) techniques. 
Introduction 
Masonry vaults are common structural elements of the Italian architectural heritage, that in some 
cases are significantly vulnerable to seismic loads. For this reason, strengthening measures are 
often required to prevent damages or even collapses [1]. In the last decade, the use of traditional 
reinforcement techniques has been progressively replaced by Fiber Reinforced Polymers (FRP) 
bonded at the vault extrados/intrados. However, this approach has shown drawbacks mainly 
associated to the polymeric nature of matrix and physical compatibility between the matrix and 
the masonry support. Consequently, FRP strengthening evolved to innovative composite materials 
obtained by cement based matrix, i.e. Fiber Reinforced Cementitious Matrix [2,3]. Moreover, 
within the growing environmental sustainability issues, the scientific research is focusing on the 
development of more sustainable composite materials, based on vegetal fibers and natural matrix 
[4,5]. 

This paper presents the results of an experimental campaign aimed at verify the effectiveness 
of a biocomposite reinforcement applied on the extrados of a barrel vault in the increase of its 
strength. To this aim, two full-scale masonry barrel vaults were constructed with the same 
geometry and mechanical properties: one was unreinforced and the latter was reinforced at the 
extrados by continuous bidirectional hemp ropes bonded in a layer of cocciopesto matrix (i.e. a 
mix of ground clay bricks and organic binder). The two models were built and tested in the 3D 
shaking table of the Laboratory of Earthquake Engineering and Dynamic Analysis (LEDA) at Enna 
Kore University. Each vault was subjected to seismic and dynamic identification tests: the seismic 
load was given with increasing amplitude at the base of the two models while the dynamic 
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identification tests were carried out after each seismic sequence in order to evaluate the variation 
of the dynamic properties, testifying structural damage. 

The strengthening effectiveness was assessed by comparing the damages detected on the 
unreinforced and reinforced masonry vaults. Results showed that the proposed bio composite 
strengthening material is effective for improving the seismic performance of masonry vaults. 
Description of the masonry vault specimens 
The masonry vaults specimens were built in full scale, following the dimensions indicated in 
previous experiments made by [3]. One of them consists only by brickwork masonry (UV), while 
the other is strengthened with an hemp biocomposite reinforcement at the extrados (RV). More in 
detail, referring to the nominal dimensions, the span of the vaults is 291.6 cm and the rise 
114.1 cm. Considering the thickness of the abutments, the total length of the structures at the base 
is 384.5 cm and the width in the out-of-plane direction is 207 cm. Both the specimens were built 
using standard bricks having dimensions of 5.5×12×25 cm, so that the thickness of the vaults is of 
12 cm. An M15 class of mortar was used in the construction of masonry material with joints of 
about 1.5 cm in thickness. 

The reinforcement system of the strengthened masonry vault is characterized  by a biocomposite 
matrix made by a mixture of cocciopesto and resin in which a rectangular mesh net of hemp ropes 
is included. The composite material is then characterized by a significant tensile strength given by 
the hemp ropes and a particular elasto-plastic behavior given by the matrix in compression and 
bending loads [4]. The reinforcement was applied on the vault with a constant thickness of about 
3 cm. In Figure 1 the two specimens fixed on the shaking tables of LEDA Laboratory of Enna 
Kore University are shown. 

 

 
 

Figure 1. Photographic image of the unreinforced (UV) and reinforced (RV) masonry vaults 
fixed on the shaking table system of LEDA Laboratory of Enna Kore University. 

Experimental setup 
In order to investigate the effectiveness of the proposed reinforcement technique during 
earthquakes, an extensive experimental campaign was carried out on the 3D shaking table system 
at the Laboratory of Earthquake engineering and Dynamic Analysis (L.E.D.A.) Research Institute 
of “Kore” University [6]. This system consists of two identical 6 degrees of freedom (DOFs) 4×4 
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m shaking tables that can operate separately and simultaneously, and with asynchronous or 
synchronous motion. 
The two specimens were equipped with two measurement systems. The first consists of MEMS 
accelerometers of 1 V/g in sensitivity deployed on the structures with two different configurations. 
In Configuration 1 the two vaults were instrumented with the same setup as illustrated in 
Figure 2(a) using 22 sensors, while Configuration 2, characterized by 28 sensors deployed as 
illustrated in Figure 2(b), was used only for the RV for high values of dynamic loads. The second 
measurement system is an optical-based equipment, through which the displacement time histories 
of specific markers installed on the vaults have been recorded by means of an innovative three-
dimensional motion tracking. It consists of a set of eight high-speed, high-resolution cameras 
operating in the infrared field and reflective markers placed appropriately on the two vaults. 

The dynamic input load was the acceleration records acquired by the seismic station of Norcia 
(Central Italy) during the earthquake of October 30th in 2016: both horizontal and vertical 
measured acceleration time histories (Figure 3) were used as input for the shaking table system. 
The choice of this seismic input was due to its peculiarity in the strong vertical acceleration time 
history, which causes significant damages in the city of Norcia and other neighboring towns [7,8]. 

 

 
Figure 2. MEMS accelerometers layout installed on the specimens according the Configuration 

1 (UV and RV) and the Configuration 2 (RV). 
 

 
Figure 3. Acceleration time histories recorded by NOR seismic station on October 30th of 2016 

used as seismic input during the tests. 
 

Mode 1 Mode 2 Mode 3 
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f1

UV=18.36 Hz f2
UV=25.00 Hz f3

UV=37.40 Hz 
f1

RV=19.14 Hz f2
RV=27.54 Hz f3

RV=37.80 Hz 
 

Figure 4. First natural frequencies and related mode shapes identified for UV and RV speciment 
in undamaged condition. 

 
The input load was applied simultaneously to both the specimens thanks to the laboratory 

facilities, which allow to use coupled shaking tables. The seismic tests were performed scaling the 
amplitude of Norcia acceleration time histories by different Scale Factors (SF) ranging from 0.2 
to 0.4 for the UV and from 0.2 to 2.30 for the RV, with progressive steps of 0.1 SF. Between each 
step of the increasing seismic load, Ambient Vibration Tests were carried out through operational 
modal analysis techniques to identify and localize the progressive damage developed in the 
structures. It should be noted that, taking into account both the added mass and the stiffness of the 
composite, the reinforcement system did not increase significantly the first natural frequencies of 
the vault in undamaged condition (Figure 4), so that the energy amount transmitted to the structure 
can be considered almost the same for both UV and RV. 
Analysis of the results 
As described in the previous Section, the seismic tests were performed by using two configurations 
of the sensors layout. In Configuration 1 the deployment of the sensors was equal for both the UV 
and RV. With this configuration, only two values of the seismic input SF were used, i.e. 0.2 and 
0.4. After the first dynamic test no damages occurred on both the specimens, while the second 
dynamic test induced the activation of a kinematic 4-hinges mechanism on the UV specimen. 
However, after the rocking motion, the UV did not reach the collapse. In Figure 5 the position of 
the four hinges is indicated in the front and behind sides of the vault (Figures 5(a) and 5(b)), while 
Figure 5(c) and 5(d) show the development of the hinges through the width of the vaults, which 
clearly appear as cylindrical hinges. At the same step, the RV specimen did not show any 
significant damage. 

After the achievement of the critical equilibrium condition for the UV, the test continued only 
for the RV specimen, with a sensor deployment described by the Configuration 2. By increasing 
the intensity of the seismic input, the first damages occurred on the structures at a value of  SF 
equal to 2.20, with mortar detachments at the intrados. During the dynamic motion of the further 
step (i.e. SF equal to 2.30) significant damages occurred: a series of cylindrical hinges activated 
along the development of the vault and a sliding failure at the right impost (Figure 6(a)); sliding 
and debonding failure at the crown of the vaults and cylindrical hinge at the left impost (Figure 
6(b)); opening of other hinges and increasing of the developed damages (Figures 6(c) and 6(d)). 

The results of the AVTs carried out after each step of dynamic tests highlighted a decrease of 
the natural frequency due to the damage of about 45%, 30% and 10% for the first three modes of 
UV specimen and of about 65%, 55% and 35% for the first three modes of RV specimen, but, at 
the same time, with an increase of strength of about 5 times. 
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Figure 5. Damage configuration developed on the UV specimen after the application of a 
seismic input with SF equal to 0.4. 

 

 
 

Figure 6. Damage configuration developed on the RV specimen after the application of a seismic 
input with SF equal to 2.3. 

  



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 599-604  https://doi.org/10.21741/9781644902431-97 

 

 
604 

Conclusions 
In this work the effectiveness of an hemp biocomposite reinforcement applied on a masonry barrel 
vault was investigated by means of shaking table tests carried out on two full scale specimens: 
unreinforced (UV) and reinforced (RV) masonry vaults. The reinforcement consists of hemp ropes 
included into a composite matrix made by cocciopesto and resin material. The seismic input was 
applied simultaneously on both the structures with a progressive increase of the intensity. The 
results highlighted a significant increase in strength of the RV specimen, on which significant 
damages occurred with the application of a scale factor of 2.30 to the seismic input, if compared 
to the UV specimen, in which a kinematic mechanism occurred with the application of a scale 
factor of 0.40 to the seismic input. Moreover, by means of visual inspections and frequency decay 
estimation as indicator of damage parameter, it was observed that UV specimen was characterized 
by very localized damages with small intensity, which essentially correspond to the activation of 
hinges, while RV specimen shown a more spread damage pattern, in some case with great intensity 
and in large displacements, but without reaching the collapse. 
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Abstract. In this work, a novel multiscale model for softening periodic microstructures is 
proposed, relying on a nonlinear homogenization method combined with a cohesive/volumetric 
finite element model. This strategy is able to overcome the mesh sensitivity issues usually 
experienced by purely volumetric homogenization techniques in presence of strain localization. 
As the main ingredient of the proposed approach, a microscopically informed traction-separation 
law for the embedded interfaces is extracted, starting from the homogenized bulk behavior 
obtained for a suitably chosen Repeating Unit Cell (RUC) subjected to different macro-strain 
paths. The present approach has been fully validated by performing several numerical simulations 
of the main damage phenomena experienced by fiber-reinforced composite structures, with special 
reference to transverse micro-cracking. Finally, to investigate the reliability and the accuracy of 
the proposed model, a comparison with direct simulations performed on fully meshed specimens 
has been presented, in terms of both load-displacement curves and associated crack patterns. 
Introduction 
Composite materials are nowadays being frequently used in a wide variety of engineering fields 
due to their superior mechanical properties compared to conventional single-phase materials. Their 
exceptional capability to face extreme loads is essentially due to their peculiar microstructural 
arrangements. Nevertheless, such engineered materials are prone to distinctive failure modes, such 
as delamination, matrix cracking, fiber/matrix debonding, fiber breakage and buckling [1]. 

Fully microscopic models are usually required for accurately simulating all these failure 
mechanisms, although being unpractical for large-scale problems due to the huge computational 
cost [2]. As a consequence, more effective strategies have been widely used in the technical 
literature. Most of these strategies are based on micromechanical and/or multiscale models [3-7]. 

However, traditional micromechanical approaches are not appropriate when strain localization 
is likely to occur. This is essentially due to the ill-posedness of the resulting macroscopic boundary 
value problem. To overcome such a drawback, more advanced approaches have been proposed, 
including higher-order [8], coupled-volume [9], micropolar [10,11], and continuous-discontinuous 
[12-16] homogenization. Most of these approaches have been used in the spirit of the FE2 methods 
[17], which are often too costly, especially if applied to real-life structural applications. 

In this work, a novel continuous/discontinuous multiscale model for periodic microstructures 
is proposed, based on a hybrid cohesive/volumetric hierarchical homogenization, in which the 
micro- and macro-scales are only one-way coupled. In particular, two independent homogenized 
constitutive responses are extracted: (i) a homogenized anisotropic damage evolution law, valid 
up to the occurrence of strain localization; and (ii) a homogenized mixed-mode traction-separation 
law. The main advantage of the present multiscale approach relies in the possibility to derive the 
overall mechanical response in a very efficient manner, by performing off-line computations. 
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The present approach is validated by performing failure analyses of fiber-reinforced composite 
beams experiencing transverse micro-cracking, and by comparing the related numerical results 
with those arising from direct simulations performed on fully meshed specimens. 
Theoretical formulation of the cohesive/volumetric homogenization approach 
A discretized 2D macroscopic solid ΩM is considered here (the subscript M denoting the macro-
scale), subjected to external tractions Mt  and imposed displacements Mu  on its Neumann and 
Dirichlet boundaries, respectively (see Fig. 1a). This solid is damageable, so that fracture is 
represented via a Diffuse Interface Modeling (DIM) approach, according to which cohesive 
interfaces, denoted by coh

MΓ , are placed along all the internal mesh boundaries (for additional 
details see, for instance, [18-23]). Given the periodic nature of the considered microstructure, a 
suitable Repeating Unit Cell (RUC) is defined to microscopically derive the bulk and interface 
constitutive relations, which are valid before and after strain localization, respectively (see Figs. 
1b and 1c). 

 

Fig. 1. Schematic of the cohesive/volumetric homogenization approach: (a) homogenized 
macroscopic problem; (b) bulk microscopic problem; (c) cohesive microscopic problem. 

Under the assumptions of scale separation and local periodicity, the macro-stress and strain 
fields, indicated by σM and εM respectively, are defined in a standard manner as functions of 
boundary tractions tm and displacements um: 

1 1,      
m m

M m m M m s m
m m

dS dS
Γ Γ

= ⊗ = ⊗
Ω Ω∫ ∫σ εt x u n . (1) 

In Eq. (1), Ωm and Γm represent the RUC and its external boundary, respectively, whereas xm is 
a generic material point inside the RUC, and nm is the outer unit normal at the RUC boundary. The 
micro-to-macro transition based on the use of Eq. (1) is no longer objective if applied after strain 
localization has appeared. The resulting localization band, whose width goes to zero in a cohesive 
model, is described as a zero-thickness interface, equipped with a homogenized traction-separation 
law, which can be extracted from the homogenized bulk response by using the following relations: 

t𝑀𝑀coh = σ𝑀𝑀n𝑀𝑀,     1
ℎ
⟦u𝑀𝑀⟧⊗𝑠𝑠 n𝑀𝑀 = ε𝑀𝑀. (2) 

nM being the normal to the macro-crack (supposed to be a priori known coherently with the Diffuse 
Interface Model adopted at the macro-scale), and h is the RUC size measured parallel to nM. The 
homogenized traction-separation law, as computed via Eq. (2), is subsequently depurated from the 
hardening contribute, associated with the early crack propagation prior to strain localization. 
Numerical implementation of the proposed multiscale model 
The proposed hybrid cohesive/volumetric nonlinear homogenization has been numerically 
implemented by considering three operational steps: 
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1. Computation of the undamaged elasticity tensor by means of the solution of linear boundary 
value problems for the RUC subjected to different pure macro-strain paths. 

2. Computation of the homogenized damage evolution law, extracted from the stress-strain 
relations obtained via a nonlinear bulk homogenization along different loading paths. 

3. Computation of the homogenized traction-separation law, obtained by projecting the 
previous nonlinear stress-strain relations along nM (which varies depending on the actual 
orientation of the embedded cohesive interfaces for the macro-scale problem). 

Numerical experiments: three-point bending test on a fiber-reinforced beam 
The case study considered here for validation purposes is the three-point bending test performed 
on a fiber-reinforced composite beam, analyzed by Canal et al. [24]. Here, plane strain is assumed. 
The composite beam, whose geometry is depicted in Fig. 2a (with thickness of 2 mm), possesses 
a periodic microstructure, made with an epoxy matrix and glass fibers, having diameter of 15 μm 
and volume fraction of 54%, placed in a hexagonal arrangement. The elastic parameters (Young’s 
modulus and Poisson’s ratio) of the two constituents are listed in Table 1. Matrix cracking is 
described by an isotropic damage model with linear softening, having a tensile strength of 75 MPa 
and a fracture energy of 200 N/m, whereas fiber/matrix debonding is described by a mixed-mode 
cohesive zone model with linear softening, whose parameters are reported in Table 2. 

 

Fig. 2. Three-point bending test configuration: (a) geometry and boundary conditions of the 
macroscopic specimen (dimensions in mm); (b) detail of the mesh configurations within the 

damageable zone. 
Table 1. Elastic parameters of the constituents. 

Component  E [GPa] ν [-] 
Matrix  3.5 0.35  
Fiber  74.0 0.20 

Table 2. Elastic and inelastic parameters of the fiber/matrix interfaces. 
Kn = Ks [N/mm3] σnc [MPa] σsc [MPa] GIc [N/m] GIIc [N/m] 
1.00×108 50.0 75.0 150 150 

 
The proposed multiscale model has been used to derive the nonlinear structural behavior of this 

composite beam. According to the steps reported in the previous section, the undamaged elasticity 
tensor, as well as the homogenized damage evolution and traction-separation laws for the given 
microstructure have been computed. Then, a macro-scale analysis of the beam, here referred to as 
Multiscale Numerical Simulation, is performed by using the previous databases as material inputs. 
The macro-scale response is reported in terms of the applied force, F, as a function of the Crack 
Mouth Opening Displacement, CMOD. With the aim of investigating the influence of the mesh 
topology, two discretizations have been considered, i.e., a cross-triangle mapped and a Delaunay 
(random) mesh, shown in Fig. 2b. For validation purposes, the results of these multiscale analyses, 
or Multiscale Numerical Simulations (MNSs), have been compared with those obtained via a 
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Direct Numerical Simulation (DNS), in which the microstructural details are explicitly modeled. 
As shown in Fig. 3a, the MNS results obtained with the mapped mesh are almost coincident with 
the (reference) DNS results. Conversely, a little overestimation (of about 3%) of the peak load is 
found for the unstructured mesh (see Fig. 3b) This is not due to the homogenization scheme, but 
rather to the artificial crack path tortuosity induced by the DIM approach used at the macro-scale. 

 

Fig. 3. Comparison between direct and multiscale simulations by using mapped (a) and random 
(b) meshes. 

Conclusions 
In this work, a novel hybrid cohesive/volumetric multiscale model is presented, to be adopted for 
the accurate failure simulation in composite structures. Such a model is based on a diffuse interface 
approach used in synergy with a continuous/discontinuous nonlinear homogenization scheme. Its 
main advantage is its greater efficiency with respect to most of the existing multiscale approaches, 
being related to derivation of homogenized bulk and interface responses via off-line computations. 

As a validation step, the present model has been applied for analyzing the failure of a fiber-
reinforced beam experiencing transverse cracking under Mode-I fracture conditions. Furthermore, 
the comparison with a fully detailed model has demonstrated that the proposed numerical strategy 
preserves a high accuracy, in terms of both load-carrying capacity and average cracking pattern. 

A possible improvement of the present model could be the incorporation of plasticity [25] as 
well as the adoption of more efficient crack models based on moving mesh approaches [26-28]. 
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Abstract. This paper presents an innovative procedure for the analysis of nonlocal plates with 
arbitrary shape and various boundary conditions. In this regard, the Eringen’s nonlocal model is 
used to capture small length scale effects. The proposed procedure, referred to as Line Element-
Less Method (LEM), is a completely meshfree approach requiring the evaluations of simple line 
integrals along the plate boundary parametric equation. Further, the deflection function is 
represented by a series expansion is terms of harmonic polynomials whose coefficients are found 
by performing variations of appropriately introduced functionals, leading to a linear system of 
algebraic. Notably, the proposed procedure yields approximate analytical solutions for general 
shapes and boundary conditions, and even exact solutions for some plate geometries. 
Introduction 
The mechanical behavior of most structures at the nanoscale is typically size dependent, and 
classical approaches of continuum mechanics cannot capture this peculiar characteristic. 
Therefore, more sophisticated continuum theories have been introduced, and several different 
models have been developed [1-4]. 

One of the most widely adopted is the nonlocal elasticity theory, firstly introduced by Eringen 
[5-6], in which the stress at some reference point is assumed to be a function of the strain field at 
every point in the body, and the size-effect feature is captured in the model through an additional 
material parameter generally referred to as “the nonlocal parameter”. This has paved the way for 
the application of Eringen’s nonlocal elasticity theory in a plethora of studies involving the 
mechanical behavior of structural systems at the nanoscale, mostly related to nanobeams [7-9]. 

Recently, Eringen’s nonlocal elasticity theory has been also used for the analysis on nanoplates. 
Initial contributions in [9-11] treated both isotropic linear elastic Kirchhoff plates as well as 
nonlinear plates considering higher-order shear deformation theory. Notably, most of these studies 
have focused on plates with simple rectangular shape. In this regard, the classical Navier’s or 
Levy’s approaches have been used in [10, 12]. Few other studies have focused on the analysis of 
nonlocal plates of different shapes [13], with most contributions mainly related to circular shapes 
[14, 15]. 

On this base, this study deals with the bending response of micro and nanoscale Kirchhoff plate, 
using Eringen’s nonlocal theory, and considering arbitrary geometries and general boundary 
conditions. Specifically, the so-called Line Element-less Method (LEM) [16-25], is here extended 
to determine the deflection and bending moments of nonlocal plates subjected to transversal loads. 
Notably, the proposed procedure only requires the solution of simple line integrals of harmonic 
polynomials with unknown coefficients, along the boundary parametric equation and, eventually, 
the solution of a set of linear algebraic equations for these unknown terms. The LEM is completely 
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element-free, since it does not require any discretization, be it in the domain or in the boundary, 
and it also differs from other so-called meshfree procedure since the expansion coefficients are not 
determined by collocation. Notably, this procedure yields approximate analytical solutions for 
generally shaped nonlocal plates, and even exact closed-form solution for some geometries and 
boundary conditions. These aspects clearly represent attractive features of the proposed procedure, 
especially with respect to other meshfree methods that are of numerical nature only. In this regard, 
several applications will be discussed, assessing the simplicity and accuracy of the considered 
approach. 
Preliminary Concepts on Nonlocal Plate in Bending 
Consider a homogeneous, isotropic, linear elastic Kirchhoff plate of arbitrary shape with contour 
Γ , domain Ω , and uniform thickness h, subjected to a transverse distributed load ( ),q x y , and 
satisfying the Eringen’s nonlocal model [5]. The plate is characterized by the modulus of elasticity 
E, Poisson’s ratio ν , and nonlocal parameter ( )2

0 0l eλ = ≥ , where l  is an internal characteristic 
length, whereas 0e  is the small length scale coefficient. Note that when 0λ =  the classical local 
Kirchhoff plate is obtained. The corresponding biharmonic governing differential equation for 
bending of the Eringen’s nonlocal plate in terms of deflection function can be written as  

2 2 2 2 2 2

2 2 2 2 2 2
w w q qD q

x y x y x y
λ

     ∂ ∂ ∂ ∂ ∂ ∂
+ + = − +     ∂ ∂ ∂ ∂ ∂ ∂     

 (1) 

where ( )3 212 1D Eh ν= −  is the plate flexural rigidity. Notably, as it can be seen in Eq. (1), the 
only difference with respect to classical plate differential equation (local model) stands in the 
additional term ( )2 ,q x yλ∇  at the right-hand-side of Eq. (1), which is therefore an inherent effect 
due to the employed Eringen’s nonlocal model. 

Further, introduce the Marcus’ moment sum ( ),M x y , defined as [26, 27] 

( ) ( ) ( ), 1x yM x y M M ν= + + , where ( ),xM x y  and ( ),yM x y  are the bending moments, Eq. (1) 
can be decomposed into two Poisson’s equations as 

( ) ( )
( ) ( ) ( )

2

2 2

, ,

, 1 ,

M x y q x y

D w x y M x yλ

∇ = −

∇ = − − ∇
 (2.a, b) 

Note that, in this manner, the solution of the plate problem Eq. (1) reduces to the integration, in 
sequence, of the two Poisson differential equations Eqs. (2), respectively, which is sometimes 
preferred depending upon the method of solution employed. As far as the boundary conditions 
(BCs) are concerned, denote as n the outward unit normal vector at a point of a generic curvilinear 
edge of the contour Γ . Thus, the BCs for the simply support curvilinear edge can be assumed as 
those of the classical local plate, that is ( ), 0w x y =  and ( ), 0nM x y = , where 

( ) 2 2, 2n x x y y x y xyM x y n M n M n n M= + +  denotes the normal bending moment applied at the edge, and 

xn  and yn  are the components of the unitary vector n  along the x and y axes, respectively. Note 
that analogous expression can be found for different BCs in [25]. 
Line Element-Less Method for nonlocal plate analysis 
In this section LEM approach is introduced for the analysis of nonlocal Kirchhoff plates of general 
shape, subjected to a transversal load ( ),q x y . Specifically, based on the previous studies on the 
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use of the LEM [16-25] and considering Eqs. (2), ( ),M x y  and ( ),w x y  can be expressed in terms 
of the so-called harmonic polynomials kP  and kQ , generally defined recursively as.  

( )
( )

1 1

1 1

,

,
k k k

k k k

P x y P x Q y

Q x y Q x P y
− −

− −

= −

= −
 (3.a, b) 

which are valid for 0k > , and with 0 1P =  and 0 0Q = . 
Based on the above relations, a solution of Eq. (2.a) can be obtained expressing the moment 

sum function in terms of harmonic polynomials, plus a particular solution of the Poisson equation 
Eq. (2.a), namely ( ),cM x y . That is 

( ) ( ) ( ) ( )
0 1

, , , ,
p p

k k k k c
k k

M x y a P x y b Q x y M x y
= =

≅ + +∑ ∑  (4) 

where ka  and kb  are ( )2 1p +  unknown coefficients to be determined, and p  is the truncation 
limit of the series expansion. Note that, for the typical case of a uniformly distributed load 
( ) 0,q x y q= , the following expressions of ( ) ( )2 2

0, 4cM x y q x y= − + . As far as the unknown 

coefficients in Eq. (4) are concerned, the ( )2 1p +  values of ka  and kb  can be determined 
appropriately imposing the specified BCs of the plate. In this context, it is convenient to address 
the case of polygonal plates with simply-supported edges, while the generalization to arbitrary 
shaped plates is reported in [25]. Specifically, in this case, the moment sum function must be zero 
along the entire contour of the polygonal plate; thus, ( ) ( ), , 0nM x y M x y= =  in Γ . 

Therefore, the unknown coefficients ( ),k ka b  in Eq. (4) can be evaluated applying a 
minimization procedure on the closed contour path integral of the squared moment sum function; 
that is 𝛹𝛹(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘) = ∮ [𝑀𝑀(𝑥𝑥,𝑦𝑦)]𝛤𝛤

2 𝑑𝑑𝑑𝑑. Thus, performing variations of the aforementioned 
functional with respect to ( ),k ka b , yields a linear algebraic system of ( )2 1p +  equations in the 
unknowns ( ),k ka b . In this manner, once the coefficients are determined, the moment sum function 
can be found through Eq. (4). 

Next, the deflection function ( ),w x y  can be obtained solving Eq. (2.b). In this regard, 
following a similar approach, a solution of this equation can be sought assuming ( ),w x y  as the 
sum of harmonic polynomials, and a particular solution of the Poisson equation Eq. (2.b), namely 

( ),cw x y ; that is 

( ) ( ) ( ) ( )
0 1

, , , ,
m m

k k k k c
k k

w x y c P x y d Q x y w x y
= =

≅ + +∑ ∑  (5) 

where kc  and kd  are ( )2 1m +  unknown coefficients to be determined, and m  is the truncation 
limit of the series expansion. Again, note that the particular solution ( ),cw x y  can be evaluated 
applying the procedure in [25], considering the term at the right-hand side of Eq. (2.b). 

As far as the unknown coefficients in Eq. (5) are concerned, the ( )2 1m +  values of kc  and kd  
are determined appropriately imposing the BCs. In this regard, considering the case of a simply-
supported plate, the coefficients ( ),k kc d  can be found minimizing the closed contour path integral 
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of the squared deflection function; that is Θ(𝑐𝑐𝑘𝑘,𝑑𝑑𝑘𝑘) = ∮ [𝑤𝑤(𝑥𝑥,𝑦𝑦)]Γ
2 𝑑𝑑𝑑𝑑. Next, introducing Eq. (5) 

into the previous functional, and performing variation with respect to the unknown coefficients 
leads to an algebraic linear system in terms of the unknowns ( ),k kc d . Solution of the this set of 

( )2 1m +  equation yields the sought deflection function of the plate ( ),w x y  through Eq. (5). 

Numerical Applications 
In this section, the proposed LEM is applied to some nonlocal plate configurations, considering 
various shapes and boundary conditions. Specifically, the proposed method is employed for the 
analysis of different well-known examples, showing the ability of the approach to yield even exact 
solutions. In this regard, a triangular simply-supported plate and a simply-supported circular plate 
are considered. 

Specifically, firstly consider the case of an equilateral triangular shaped plate with length side 
2 3l  under a uniformly distributed load 0q  and with simply-supported edges. Applying the 
previously described procedure, the obtained closed-form expression of the deflection function is 

( ) ( ) ( ) ( )2 2 2 2 20, 2 3 4 16
192

qw x y l y l y x l x y
l D

λ = − − − − − +   (6) 

Notably, Eq. (6) reverts to the classical solution of the Krichoff local plate for 0λ = . In this regard, 
deflection profile for 0x =  is shown in Fig. 1(a) for different values of nonlocal parameters. 

Next, consider next the case of a circular plate of radius r  under a uniformly distributed load 
0q . Note that, in this case, the equilibrium equations of axisymmetric bending of circular 

nanoplates can be more simply written in polar coordinates as in [15]. Then, applying the 
previously described procedure, the closed-form expression of the deflection function is given as 

( )
( ) ( )( ) ( ) ( )2 2 2 2 2 2

0 1 5 8 3

64 ( )
,

1
w x

q r x y x y r

D
y

ν ν λ ν

ν

 − − − + + + + + +
=  

+
 (7) 

Notably, again Eq. (7) reverts to the classical solution of the Krichoff local plate for 0λ = . In this 
regard, the deflection profile for 0x =  is given in Fig. 1(b) for different values of nonlocal 
parameter. 

 
(a) 

 
(b) 

Fig. 1: Profile of (0, )w y  for different value of λ . (a) Simply-supported Triangular Plate; (b) 
Simply-supported Circular Plate. 

Summary 
In this paper, the so-called Line Element-Less Method (LEM) has been proposed for the analysis 
of nonlocal plates with arbitrary shape. Specifically, the classical Kirchhoff plate model has been 
assumed, employing the well-known Eringen’s nonlocal elasticity theory to capture small length 
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scale effects. The method is based on an expansion of the deflection function in terms of harmonic 
polynomials, whose expansion coefficients can be easily found solving a linear system of algebraic 
equations. Notably, the entire procedure proves to be entirely mesh-free, since it only requires the 
definition of simple line integrals which appear in appropriately introduced functionals. These 
functionals are employed to take into account the pertinent plate boundary conditions (BCs). It is 
worth mentioning that, the proposed approach yields approximate analytical solutions for general 
plate shapes and BCs, while exact closed form expressions of the deflection functions of nonlocal 
plates can be found for particular shapes. 
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Abstract. Here we extend the perturbation approach, previously presented in the literature for 
Eringen’s two-phase local/nonlocal mixture model, to free vibration of purely flexible beams. In 
particular, we expand the eigenvalues and the eigenvectors into power series of the fraction 
coefficient of the non-local material response up to 2nd order. We show that the family of 0th order 
bending couples satisfy the natural and essential boundary conditions of the 1st order; hence, the 
1st order solution can conveniently be constructed using the eigenspace of the 0th order with no 
necessity of additional conditions. We obtain the condition of solvability that provides the 
incremental eigenvalue in closed form. We further demonstrate that the 1st order increment of the 
eigenvalue is always negative, providing the well-known softening effect of long-range 
interactions among the material points of a continuum modelled with Eringen’s theory. We 
examine a simply supported beam as a benchmark problem and present the incremental 
eigenvalues in closed form. 
Introduction 
Structures with comparable internal and external length scales can be modelled by suitable quasi-
continuum models, for which the distances shorter than their scale parameters have no physical 
meaning. Among many well-established models, we focus on Eringen’s strain driven model, due 
to the efforts of Eringen and co-workers [1,2]. The application of this model to finite domains, 
however, needs additional mathematical conditions (the meaning of which is dubious) for a 
solution to exist in a certain form [3]. This led to criticisms on the validity of the material model 
itself, despite its strong mathematical and philosophical foundations [4].  

Here we use the perturbation approach proposed in [5] to investigate free vibration of purely 
flexible beams composed of a local/nonlocal mixture. We get a hierarchy of equations that at the 
0th order match with the well-known ones of local elastic beams. We show that the family of 0th 
order bending couples satisfy the natural and essential boundary conditions of 1st order; hence, the 
1st order solution can conveniently be built using the 0th order eigenspace with no need of 
additional conditions. Exploiting the eigenfunctions orthogonality, we obtain a condition of 
solvability that provides the incremental eigenvalues in closed form and proves that the 1st order 
increment of the eigenvalue is always negative, yielding the well-known softening effect of long-
range actions among the material points of a continuum according to Eringen’s theory. 
Direct 1-D Beam Model 
We fix an origin and a Cartesian coordinate frame 𝑥𝑥𝑥𝑥𝑥𝑥, equipped with ortho-normal base vectors 
{𝒊𝒊, 𝒋𝒋,𝒌𝒌}, in the 3D Euclidean ambient space. The reference configuration of a beam is defined as a 
collection of equal plane cross-sections attached through their centroid to a portion of the z-axis of 
length l, called beam axis. Another configuration is described by the translation of the cross-
sections centroids, represented by the vector field u(z); and by the cross-sections rotation, 

mailto:bgiuseppe.ruta@uniroma1.it
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represented by the orthogonal tensor field R(z). A suitable difference between these two 
configurations provides the following strain measures 

𝐄𝐄 =
𝑑𝑑𝐑𝐑
𝑑𝑑𝑥𝑥

𝐑𝐑T, 𝐞𝐞 =
𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥𝐤𝐤 + 𝐮𝐮) − 𝐑𝐑𝐤𝐤, (1) 
where E is a skew-symmetric tensor field of the curvature of the beam in the actual configuration 
and e provides shearing and elongation of the beam axis. 

We are interested in planar motion; that is, the forces and couples acting on the beam are in the 
𝑥𝑥𝑥𝑥 plane, and the deformed beam axis is also in the 𝑥𝑥𝑥𝑥 plane. Therefore, the components 𝑤𝑤, 𝑣𝑣 of 
u(z) along 𝑥𝑥 and 𝑥𝑥 respectively are nonzero, and the only nonzero rotation angle 𝛺𝛺 of the cross-
sections is about the 𝑥𝑥-axis. Usual assumptions of small-amplitude displacements and rotations 
lead to following linearized strain measures 

𝜀𝜀 =
𝑑𝑑𝑤𝑤
𝑑𝑑𝑥𝑥

, 𝛾𝛾 =
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

+ 𝛺𝛺, 𝜒𝜒 =
𝑑𝑑𝛺𝛺
𝑑𝑑𝑥𝑥

, (2) 
where ε, γ, and χ stand for axial elongation, shearing strain, and bending curvature, respectively, 
while the displacement components and rotation now describe their first-order increments. 

The balance in the actual shape, in the absence of the so-called nonlocal residuals, read 
𝑑𝑑𝐧𝐧
𝑑𝑑𝑥𝑥

+ 𝐪𝐪 = 𝟎𝟎,
𝑑𝑑𝐦𝐦
𝑑𝑑𝑥𝑥

+
𝑑𝑑(𝑥𝑥𝐤𝐤 + 𝐮𝐮)

𝑑𝑑𝑥𝑥
× 𝐧𝐧 + 𝐭𝐭 = 𝟎𝟎, (3) 

where n,m are inner force and couple, while q,t stand for the external force and couple densities, 
respectively. When the couples and forces lie in the 𝑥𝑥𝑥𝑥 plane, Eq. (3) lead to the following scalar 
incremental balance equations 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

+ 𝑞𝑞𝑧𝑧 = 0,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

+ 𝑞𝑞𝑦𝑦 = 0,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

− 𝑑𝑑 + 𝑡𝑡𝑥𝑥 = 0, (4) 

where: N, T, M are the increments of the inner normal force, shear force, and bending couple, 
respectively; qz, qy, tx are the increments of the external actions reduced to the beam axis in the 
direction indicated by the subscripts. 

The linear elastic problem is closed by the constitutive equation, which relates strain measures 
and dual work-conjugate internal actions. Here we assume that the beam is purely flexible, and the 
material obeys Eringen’s model of a two-phase local/nonlocal mixture: 

𝑑𝑑 = 𝐵𝐵[(1 − 𝜉𝜉)𝜒𝜒 + 𝜉𝜉𝜉𝜉 ∗ 𝜒𝜒], (5) 
where B is the bending stiffness of the cross-section and 𝜉𝜉 is the nonlocal portion of the material 
response; the latter is modelled by the kernel function 𝜉𝜉, accounting for long-range interactions 
among material points. We consider an exponential kernel in the following form 

𝜉𝜉 ∗ 𝑓𝑓 = � 𝜉𝜉(𝜁𝜁, 𝑥𝑥)𝑓𝑓(𝜁𝜁)𝑑𝑑𝑥𝑥
𝐿𝐿

0
, 𝜉𝜉(𝜁𝜁, 𝑥𝑥) =

1
2𝜅𝜅

𝑒𝑒
|𝑧𝑧−𝜁𝜁|
𝜅𝜅 , � 𝜉𝜉(𝜁𝜁, 𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
= 1 (6) 

where κ is called nonlocal parameter and is a rough measure of a ‘radius of activity’ or ‘radius of 
extinction’ of long-range interactions. 
Transverse Vibration 
Let the only non-zero component of external action be transverse inertia, that is,   

𝑞𝑞𝑧𝑧 = 𝑡𝑡𝑥𝑥 = 0, 𝑞𝑞𝑦𝑦 = −𝑚𝑚�̈�𝑣, (7) 
m being the mass of the beam per unit length of its axis and over-dots denote time derivatives. If 
the fields of interest are harmonic in time with angular frequency 𝜔𝜔, we choose to use the same 
notation to indicate their spatial part only, and define the following nondimensional quantities: 

𝑥𝑥̅ =
𝑥𝑥
𝐿𝐿

, �̅�𝑣 =
𝑣𝑣
𝐿𝐿

, �̅�𝜅 =
𝜅𝜅
𝐿𝐿

, 𝑑𝑑� =
𝑑𝑑𝐿𝐿2

𝐵𝐵
, 𝑑𝑑� =

𝑑𝑑𝐿𝐿
𝐵𝐵

, �̅�𝜆 =
𝑚𝑚𝜔𝜔2𝐿𝐿2

𝐵𝐵
 . (8) 

For the ease of notation, the overbars will be omitted, except when confusion may arise.  
With the assumptions on the initial and current shape of the beam, the transverse and axial 

motions are uncoupled. We are interested only in the transverse motion that is quantified by: the 
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transverse displacement component 𝑣𝑣; the cross-section rotation angle 𝛺𝛺; its dual work conjugate, 
the bending couple 𝑑𝑑; and, for balance, the shear force 𝑑𝑑. The corresponding four 1st order 
integral-differential equations may be reduced into a single one of 4th order after trivial operations 

(1 − 𝜉𝜉)𝑓𝑓𝐼𝐼𝐼𝐼 + 𝜉𝜉�𝜉𝜉 ∗ 𝑓𝑓(𝑖𝑖)�
(4−𝑖𝑖)

− 𝜆𝜆𝑓𝑓 = 0,   𝑓𝑓 = 𝑣𝑣 ⇒ 𝑖𝑖 = 1, 𝑓𝑓 = 𝑑𝑑 ⇒ 𝑖𝑖 = 3,
𝑓𝑓 = 𝛺𝛺 ⇒ 𝑖𝑖 = 2, 𝑓𝑓 = 𝑑𝑑 ⇒ 𝑖𝑖 = 4; (9) 

where the superscript in the parentheses indicates the order of the spatial derivative.  
The usual boundary conditions are listed in Table 1. 

Table 1. Natural and essential boundary conditions for particular selection of f. 
 pin clamp free 

v 
𝑓𝑓 = 0,  

(1 − 𝜉𝜉)𝑓𝑓′′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′′ = 0 
𝑓𝑓 = 0,  
𝑓𝑓′ = 0 

(1 − 𝜉𝜉)𝑓𝑓′′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′′ = 0 
(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉(𝜉𝜉 ∗ 𝑓𝑓′′)′ = 0 

Ω 
(1 − 𝜉𝜉)𝑓𝑓′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′ = 0 

(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉(𝜉𝜉 ∗ 𝑓𝑓′)′′ = 0 
(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉(𝜉𝜉 ∗ 𝑓𝑓′)′′ = 0 

𝑓𝑓 = 0 
(1 − 𝜉𝜉)𝑓𝑓′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′ = 0 

(1 − 𝜉𝜉)𝑓𝑓′′ + 𝜉𝜉(𝜉𝜉 ∗ 𝑓𝑓′)′ = 0 

T 𝑓𝑓′ = 0 
(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′′′ = 0 

𝑓𝑓′ = 0 
𝑓𝑓′′ = 0 

𝑓𝑓 = 0 
(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′′′ = 0 

M 𝑓𝑓 = 0 
𝑓𝑓′′ = 0 

𝑓𝑓′′ = 0 
𝑓𝑓′′′ = 0 

𝑓𝑓 = 0 
𝑓𝑓′ = 0 

It is notable that when the bending couple is used as the unknown field in Eq. 9, none of the 
classical boundary conditions include the convolution.  
 
Perturbation with respect to the Nonlocal Fraction 
If, as physically reasonable, all the quantities of interest depend on the nonlocal fraction 𝜉𝜉 of the 
material response, we can approximate them by their 𝜉𝜉-power series expansions about a given 
value 𝜉𝜉0 

𝑓𝑓 ≅�
(𝜉𝜉 − 𝜉𝜉0)𝑗𝑗

𝑗𝑗!
𝑓𝑓𝑗𝑗

𝑛𝑛

𝑗𝑗=0
, 𝜆𝜆 ≅�

(𝜉𝜉 − 𝜉𝜉0)𝑗𝑗

𝑗𝑗!
𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=0
, 𝑓𝑓𝑗𝑗 =

𝜕𝜕𝑓𝑓
𝜕𝜕𝜉𝜉�𝜉𝜉=𝜉𝜉0

. (10) 

A crucial choice for our aim is 𝜉𝜉0 = 0, corresponding to a purely local elastic response. Thus, 
all quantities of interest are evaluated as if the beam were local. The expansions in Eq. 10 are fully 
reliable for ‘small’ values of 𝜉𝜉, i.e., 𝜉𝜉 ≅ 0.1, but are expected to give satisfactory results also for 
‘moderate’ values of 𝜉𝜉, i.e., 𝜉𝜉 ≅ 0.3 − 0.5; in our applications we will give a numerical example. 

Inserting Eq. 10 into Eq. 9 provides a hierarchy of equations for different orders of 𝜉𝜉: 
0th order: 𝑓𝑓0𝐼𝐼𝐼𝐼 − 𝜆𝜆0𝑓𝑓0 = 0, (11) 
1st order: 𝑓𝑓1𝐼𝐼𝐼𝐼 − 𝜆𝜆0𝑓𝑓1 = 𝑓𝑓0𝐼𝐼𝐼𝐼 − �𝜉𝜉 ∗ 𝑓𝑓0

(𝑖𝑖)�
(4−𝑖𝑖)

+ 𝜆𝜆1𝑓𝑓0, (12) 

2nd order: 𝑓𝑓2𝐼𝐼𝐼𝐼 − 𝜆𝜆0𝑓𝑓2 = 2𝑓𝑓1𝐼𝐼𝐼𝐼 − 2 �𝜉𝜉 ∗ 𝑓𝑓1
(𝑖𝑖)�

(4−𝑖𝑖)
+ 2𝜆𝜆1𝑓𝑓1 + 𝜆𝜆2𝑓𝑓0, (13) 

or, in general, 
𝐷𝐷𝑓𝑓0 = 0, 𝐷𝐷𝑓𝑓𝑘𝑘 = 𝑏𝑏𝑘𝑘, 𝑘𝑘 = 1,2,3, … (14) 

for which the usual pattern of perturbation expansions is apparent: that is, the differential operator 
𝐷𝐷(∙) = 𝑑𝑑4(∙) 𝑑𝑑𝑥𝑥4⁄ − 𝜆𝜆0(∙) is the same at all orders and the ‘forcing’ terms on the right side depend 
on the solutions of previous orders. It is crucial to remark is that we turned the integral-differential 
system into a set of differential equations by perturbing the unknown field and the eigenvalues 
about the local problem, a solution of which we know to exist and be unique. 

The boundary conditions for different 𝜉𝜉-orders are provided in Tables 2-3. 
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Table 2. 0th order boundary conditions for particular selections of f. 
 pin clamp free 

v 
𝑓𝑓0 = 0,  
𝑓𝑓0

′′ = 0 
𝑓𝑓0 = 0,  
𝑓𝑓0′ = 0 

𝑓𝑓0
′′ = 0 

𝑓𝑓0
′′′ = 0 

Ω 
𝑓𝑓0

′ = 0 
𝑓𝑓′′′ = 0 

𝑓𝑓0
′′′ = 0 

𝑓𝑓0 = 0 
𝑓𝑓0

′ = 0 
𝑓𝑓0

′′ = 0 

T 
𝑓𝑓0

′ = 0 
𝑓𝑓0

′′′ = 0 
𝑓𝑓0

′ = 0 
𝑓𝑓0

′′ = 0 
𝑓𝑓0 = 0 
𝑓𝑓0

′′′ = 0 

M 
𝑓𝑓0 = 0 
𝑓𝑓0′′ = 0 

𝑓𝑓0′′ = 0 
𝑓𝑓0′′′ = 0 

𝑓𝑓0 = 0 
𝑓𝑓0′ = 0 

Table 3. 1st order boundary conditions for particular selections of f. 
 pin clamp free 

v 
𝑓𝑓1 = 0,  

𝑓𝑓1
′′ = 𝑓𝑓0

′′ − 𝜉𝜉 ∗ 𝑓𝑓0′′ 
𝑓𝑓1 = 0,  
𝑓𝑓1′ = 0 

𝑓𝑓1
′′ = 𝑓𝑓0

′′ − 𝜉𝜉 ∗ 𝑓𝑓0′′ 
𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − �𝜉𝜉 ∗ 𝑓𝑓0
′′�′ 

Ω 
𝑓𝑓1
′ = 𝑓𝑓0

′ − 𝜉𝜉 ∗ 𝑓𝑓0
′ 

𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − �𝜉𝜉 ∗ 𝑓𝑓0
′�′′ 

𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − �𝜉𝜉 ∗ 𝑓𝑓0
′�′′ 

𝑓𝑓1 = 0 
𝑓𝑓1
′ = 𝑓𝑓0

′ − 𝜉𝜉 ∗ 𝑓𝑓0
′ 

𝑓𝑓1
′′ = 𝑓𝑓0

′′ − �𝜉𝜉 ∗ 𝑓𝑓0
′�′ 

T 
𝑓𝑓1
′ = 0 

𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − 𝜉𝜉 ∗ 𝑓𝑓0
′′′ 

𝑓𝑓1
′ = 0 

𝑓𝑓1
′′ = 0 

𝑓𝑓1 = 0 
𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − 𝜉𝜉 ∗ 𝑓𝑓0
′′′ 

M 
𝑓𝑓1 = 0 
𝑓𝑓1′′ = 0 

𝑓𝑓1′′ = 0 
𝑓𝑓1′′′ = 0 

𝑓𝑓1 = 0 
𝑓𝑓1′ = 0 

We see that the 1st order equations admit nonhomogeneous boundary conditions even though the 
corresponding 0th order equations have homogeneous boundary conditions. 
 
Constructing a Solution 
We define the scalar product for continuously differentiable functions ℎ,𝑔𝑔 that satisfy the 0th order 
boundary conditions and have support (0,1) as  

The differential operator 𝐷𝐷 is self-adjoint with respect to the scalar product defined in Eq. 15, 

We can also show that the family 𝑓𝑓0𝑖𝑖 of solutions to Eq. 11, associated with the eigenvalue 𝜆𝜆0𝑖𝑖, 
are orthogonal to each other; that is, 

Recalling that the boundary conditions for higher-order equations are homogeneous only if 𝑓𝑓 =
𝑑𝑑, we choose the bending couple as unknown field for convenience in mathematical operations. 
Indeed, it is possible to write the bending couple by the following eigenfunction expansion 

for which the boundary conditions are satisfied; 𝛼𝛼𝑖𝑖𝑗𝑗 are the constants providing the contribution of 
the jth mode onto the ith mode of the 0th order solution.  
Incremental Eigenvalues 
Inserting Eq. 18 into Eq. 12 provides 

〈ℎ,𝑔𝑔〉 = � ℎ(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑥𝑥
1

0
 (15) 

〈𝐷𝐷ℎ,𝑔𝑔〉 = 〈ℎ,𝐷𝐷𝑔𝑔〉. (16) 

〈𝑓𝑓0𝑖𝑖,𝑓𝑓0𝑗𝑗〉 = 0, 𝑖𝑖 ≠ 𝑗𝑗. (17) 

𝑑𝑑𝑘𝑘𝑖𝑖 = 𝑑𝑑0𝑖𝑖 + � 𝛼𝛼𝑖𝑖𝑗𝑗𝑑𝑑0𝑗𝑗
𝑖𝑖≠𝑗𝑗

, 𝑘𝑘 = 1,2,3, … (18) 
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multiplying both sides by M0i and integrating over the domain leads to 

that is, the 0th order solution for the ith mode shall be orthogonal to the forcing term of the 1st order 
equation for the corresponding mode. This is the Fredholm compatibility (solvability) condition, 
which we can solve for the incremental eigenvalue 

For a bounded and integrable function 𝑔𝑔 with a compact support 𝑆𝑆 the 𝐿𝐿𝑝𝑝 norm is 

Young’s Convolution Identity reads 

Then, we can write 

Since the kernel function 𝜉𝜉 is a positive symmetric radial function, and considering Eq. 6-3, it is  

which, along with Eq. 24, leads to 

Referring to Hölder’s Inequality 

we write 

which, along with Eq. 26, gives 

This is a notable result indicating that the incremental eigenvalue is always negative, which is a 
feature ascribable to the well-known softening behavior of Eringen’s model. 
An Example: Simply supported beam 
For a simply supported beam, the well-known local (0th order) solution reads 

where 𝐶𝐶 is found by a suitable normalization.  
Inserting Eq. 30 into Eq. 21 provides the slope of the 𝜆𝜆 − 𝜉𝜉 curve at 𝜉𝜉 = 0, that is, a linear 

approximation of the dependance of the eigenvalues on the non-local fraction coefficient. Further, 
what is most interesting is that such approximation is given in a closed form as follows  

� 𝛼𝛼𝑖𝑖𝑗𝑗𝜆𝜆0𝑗𝑗𝑑𝑑0𝑗𝑗
𝑖𝑖≠𝑗𝑗

− 𝜆𝜆0𝑖𝑖� 𝛼𝛼𝑖𝑖𝑗𝑗𝑑𝑑0𝑗𝑗
𝑖𝑖≠𝑗𝑗

= 𝜆𝜆0𝑖𝑖𝑑𝑑0𝑖𝑖 − 𝜆𝜆0𝑖𝑖𝜉𝜉 ∗ 𝑑𝑑0𝑖𝑖 + 𝜆𝜆1𝑖𝑖𝑑𝑑0𝑖𝑖 (19) 

� (𝜆𝜆0𝑖𝑖𝑑𝑑0𝑖𝑖𝑑𝑑0𝑖𝑖 − 𝜆𝜆0𝑖𝑖(𝜉𝜉 ∗ 𝑑𝑑0𝑖𝑖)𝑑𝑑0𝑖𝑖 + 𝜆𝜆1𝑖𝑖𝑑𝑑0𝑖𝑖𝑑𝑑0𝑖𝑖)𝑑𝑑𝑥𝑥
1

0
= 〈𝑑𝑑0𝑖𝑖,𝑏𝑏1〉 = 0, (20) 

𝜆𝜆1𝑖𝑖 = �
〈𝜉𝜉 ∗ 𝑑𝑑0𝑖𝑖,𝑑𝑑0𝑖𝑖〉
〈𝑑𝑑0𝑖𝑖,𝑑𝑑0𝑖𝑖〉

− 1�𝜆𝜆0𝑖𝑖 (21) 

‖𝑔𝑔‖𝑝𝑝 = �� |𝑔𝑔|𝑝𝑝𝑑𝑑𝑆𝑆
 

𝑆𝑆
�
1/𝑝𝑝

. (22) 

‖𝑓𝑓 ∗ 𝑔𝑔‖𝑟𝑟 ≤ ‖𝑓𝑓‖𝑝𝑝‖𝑔𝑔‖𝑞𝑞 , 1/𝑝𝑝 + 1/𝑞𝑞 = 1/𝑟𝑟 + 1. (23) 

‖𝜉𝜉 ∗ 𝑑𝑑0𝑖𝑖‖2 ≤ ‖𝜉𝜉‖1‖𝑑𝑑0𝑖𝑖‖2,. (24) 

�𝜉𝜉(𝜁𝜁, 𝑥𝑥)𝑑𝑑𝑥𝑥
 

𝑆𝑆
= � |𝜉𝜉(𝜁𝜁, 𝑥𝑥)|𝑑𝑑𝑥𝑥

 

𝑆𝑆
;              � 𝜉𝜉(𝜁𝜁, 𝑥𝑥)𝑑𝑑𝑥𝑥

∞

−∞
= 1 ⇒ � 𝜉𝜉(𝜁𝜁, 𝑥𝑥)𝑑𝑑𝑥𝑥

1

0
= ‖𝜉𝜉‖1 ≤ 1,  (25) 

‖𝜉𝜉 ∗ 𝑑𝑑0𝑖𝑖‖2 ≤ ‖𝑑𝑑0𝑖𝑖‖2,. (26) 

|〈𝑓𝑓 ∗ 𝑔𝑔〉| ≤ ‖𝑓𝑓‖2‖𝑔𝑔‖2, (27) 

� 𝑑𝑑0𝑖𝑖(𝜉𝜉 ∗𝑑𝑑0𝑖𝑖)𝑑𝑑𝑥𝑥
1

0
≤ �� 𝑑𝑑0𝑖𝑖(𝜉𝜉 ∗ 𝑑𝑑0𝑖𝑖)𝑑𝑑𝑥𝑥

1

0
� ≤ �� 𝑑𝑑0𝑖𝑖

2 𝑑𝑑𝑥𝑥
1

0
�
1/2

�� |𝜉𝜉 ∗𝑑𝑑0𝑖𝑖|2𝑑𝑑𝑥𝑥
1

0
�
1/2

, (28) 

� 𝑑𝑑0𝑖𝑖(𝜉𝜉 ∗𝑑𝑑0𝑖𝑖)𝑑𝑑𝑥𝑥
1

0
≤ � 𝑑𝑑0𝑖𝑖𝑑𝑑0𝑖𝑖𝑑𝑑𝑥𝑥

1

0
⇒
∫ 𝑑𝑑0𝑖𝑖(𝜉𝜉 ∗ 𝑑𝑑0𝑖𝑖)𝑑𝑑𝑥𝑥
1
0

∫ 𝑑𝑑0𝑖𝑖𝑑𝑑0𝑖𝑖𝑑𝑑𝑥𝑥
1
0

=
〈𝜉𝜉 ∗ 𝑑𝑑0𝑖𝑖,𝑑𝑑0𝑖𝑖〉
〈𝑑𝑑0𝑖𝑖,𝑑𝑑0𝑖𝑖〉

≤ 1. (29) 

𝑑𝑑0𝑖𝑖 = 𝐶𝐶 sin 𝑖𝑖𝑖𝑖𝑥𝑥 , 𝜆𝜆0𝑖𝑖 = 𝑖𝑖4𝑖𝑖4 (31) 
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Table 4. Comparison of eigenvalues for different parameters. 

 𝜅𝜅 = 0.05 𝜅𝜅 = 0.1 
 𝜉𝜉 = 0.25 𝜉𝜉 = 0.5 𝜉𝜉 =  0.25 𝜉𝜉 = 0.5 

[5] 9.84255 9.81485 9.77714 9.67978 
[6] 9.84255 9.81485 9.77714 9.67978 

Present 9.84276 9.81584 9.77854 9.68661 

It is apparent in Table 4 that our perturbation approach can reply almost exactly the results 
found in the literature. It must be remarked that our linear perturbation approach is reliable even 
for moderate non-local fractions, which is not to be taken for granted in advance. That is, even 
though perturbations are usually reliable only for ‘small’ values of the perturbation parameter, in 
this case, as advanced previously, our perturbation yields reliable results also for ‘non-small’ 
values of 𝜉𝜉, i.e., 𝜉𝜉 = 0.5. 
Conclusions 
By a perturbation approach we turned the integral-differential field system for beams composed 
of a two-phase local/nonlocal mixture into a hierarchy of bulk equations completed by the usual 
boundary conditions of local elasticity. Non-triviality of solutions and solvability conditions at 
successive steps of the hierarchy led to closed-form solutions for incremental natural angular 
frequencies of transverse natural vibration. Using well-known basic identities and inequalities of 
functional analysis we showed that the incremental eigenvalue is always negative, providing the 
well-known softening effect of Eringen’s theory. The closed-form expressions can be of interest 
in the modelling and identification of nanomaterials. 
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𝜆𝜆1𝑖𝑖 = −
𝑖𝑖6𝜅𝜅2𝑖𝑖6�1 + 𝜅𝜅�𝑖𝑖2𝑖𝑖2𝜅𝜅 + (−1)𝑖𝑖2𝑒𝑒−1/𝜅𝜅 − 2��

(1 + 𝑖𝑖2𝑖𝑖2𝜅𝜅2)2  (32) 
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Abstract. In this communication the problem of transforming the equilibrium equations from the 
Eulerian to the Lagrangian form is discussed with reference to materials governed by second-
gradient energy densities. In particular, novel theoretical achievements are outlined, which 
represent intermediate steps to attain the purpose: the transformation of edge vectors and of 
complementary orthogonal projectors over the boundary surface; a novel formula based on the 
divergence theorem for curved surfaces with boundary, relating material and spatial expressions; 
a remarkable relationship between Lagrangian and Eulerian (hyper-)stress tensors of different 
orders. 
Introduction 
Higher gradient materials constitute a wide class of materials for which the stored energy density 
depends not only on the deformation gradient but also on its higher order derivatives. In the last 
decade, such kind of mathematical models have attracted an increasing number of researchers in 
continuum and computational mechanics. This circumstance is mainly due to the fact that higher 
gradient modelling is capable of describing complex phenomena which cannot be predicted by the 
conventional Cauchy approach. Among others, we can mention size effects taking into account 
characteristic length scales, boundary layers, corner and surface effects, which are crucial in all 
those scenarios in which the separation of scales is not sharp. Moreover, higher gradient materials 
admit “exotic” loading which cannot be sustained by a Cauchy medium, such as double forces, 
expending work under the normal derivative of the virtual placement, edge or wedge loading (see 
e.g. [1-2]): these generalized forces represent versatile tools when investigating surface tension in 
fluids or other interface issues, wave propagation in crystals, fiber nets interacting with the matrix 
in composites and more in general the mechanical behaviour of the so called metamaterials.  

In this study a strategy is proposed, to transport the governing equations for second-gradient 
materials from the Eulerian to the Lagrangian form. Such a study revealed important differential 
geometric features of the equilibrium problem, and is expected to play an important role for the 
formulation and the implementation of advanced mechanical theories.  
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Variational approach 
In the present approach, the deformation process of a continuum body is described as a bijection 
between two configurations, namely a reference configuration 3Ω ⊆å R , referred to as material or 
Lagrangian, and another one, usually referred to as spatial or Eulerian 3Ω⊆ R . Such a map is 
continuous and differentiable, being its inverse also continuous and differentiable, and is denoted 
by the symbol : ∈Ω → ∈Ωχ X xå . It represents a diffeomorphism between submanifolds with 
boundary, for which we have det( ) 0J = >F , where symbol /= ∂ ∂F χ X  denotes the deformation 
gradient. We assume moreover that the (differential and topological) boundary of the above 
domains is constituted of the union of regular faces, having in common two by two parts of their 
border, referred to as edges, which represent discontinuity loci for the face normals. In this study 
we consider an energy density depending on the first and second gradient of the placement map, 
namely W( , , )∇X F F , see [1]. The objectivity of such an energy is guaranteed by prescribing the 
dependence on the right Cauchy-Green tensor T=C F F . The equilibrium configuration 
corresponds to the placement minimizing the total potential energy functional [3], namely 

( ){ }TOT EXTˆ arg min ( ) W , ( , )K d
Ω

= = ∇ Ω − ∇∫χ χ F F χ χ
å

åE E  (1) 

Symbol K  denotes herein an admissible set of functions sufficiently regular (also as for their 
trace) which incorporate the essential boundary conditions on the placement map and its normal 
derivative. According to a variational approach, the stationarity condition follows by imposing the 
first variation of the above functional to vanish. As for the inner virtual work, one obtains 

( ) ( )

DEF DEF

W WW , :

W W

;
I II

i i
A ABi i

A AB

i AB i
A i AB

A
i

d d

F d F d
F F

F FP dPd
δ δ

δ δ δ

δ δ

δ δ

Ω Ω

Ω Ω

= =

Ω Ω

∂ ∂
∇ Ω = + ∇ Ω =

∂ ∂∇
∂ ∂

= Ω + Ω =
∂ ∂

= Ω + Ω

∫ ∫

∫ ∫

∫ ∫

F F F F
F F



 

å å

å å

å å

å å

å å

E E

å å

 (2) 

In the above equation the parts of the energy variation relevant to the first and second gradient 
were marked by subscript I and II. As a key ingredient of the present formulation for second-
gradient materials, the inner work depends not only on the second-rank Piola stress tensor, denoted 
above by 1

A
iP , but also on a third-rank tensor 2

AB
iP , referred to as hyper-stress tensor (or double-

stress), see [2]. The present variational approach (and the more general principle of the virtual 
work which does not require any constitutive assumptions, see [4]) leads naturally to nonstandard 
boundary conditions and allows one to specify the admissible classes of external actions not known 
a priori. By the reiterated application of the integration by parts and of the divergence theorem 
extended to curved surfaces with boundary, we obtain a representation of the inner virtual work as 
the sum of diverse terms, including a novel surface action expending work versus the normal 
derivative of the virtual placement, an edge term, and contact pressures over the surface in which 
the linear dependence on the normal (according to the Cauchy’s postulate) is superseded by the 
sum of nonlinear expressions involving the product of normals and of their derivatives: in 
particular, the dependence on the local mean curvature is made explicit, see [5].  
Work-conjugate variables 
The above formulation, based on the definition of a suitable energy density, is truly Lagrangian. 
However, the equilibrium problem can be formulated in an abstract setting by a proper choice of 
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work-conjugate variables: then the governing equations assume the same form in the Lagrangian 
and in the Eulerian configuration. In fact, after computing the Eulerian counterparts of the virtual 
placement gradients, namely 

( ) ( ) ( )

1

2

1 1 1

( )

( ) ( )

;

;( )
i A

i i i A
j A jj A j

i i i
k j j k k j

A A Bi i
A ABk j j k

XD F
x X x

D
x x x x

F F
x

δχδ δχ δ

δ δχ δχ

δ δ

−

− − −

∂ ∂ ∂
= = =
∂ ∂ ∂
∂ ∂ ∂ = = = ∂ ∂ ∂ 

∂
= +
∂

x F

x x

F F F

 (3) 

equating the expressions of the Lagrangian and of the Eulerian inner virtual work, one obtains 
remarkable relationships between the Eulerian and Lagrangian hyper-stress tensors [6], namely 

1 1
1 1 2

1
2 2

j A j AB j
i i A i AB
jk AB j k
i i A B

T J P F J P F
T J P F F

− −

−

= +
=

 (4) 

These relationships highlight a top-down structure typical of higher gradient modelling: in fact, 
the Lagrangian hyperstress affects both lower order Eulerian tensors, whilst the Piola stress tensor 
affects only the Cauchy stress 1

j
iT . 

Edge vectors 
In the classical treatises of continuum mechanics a few formulae were already available to 
transform vectors defined over the boundary faces from the Lagrangian to the Eulerian 
configuration, such as those concerning the contravariant tangent vector and the covariant normal. 
However, the authors proposed novel relationships for the covariant and contravariant form of the 
border normal, namely the normal to the border edge which is orthogonal to the tangent and 
belongs to the face tangent plane. By assuming as ansatz an affine function of the Lagrangian 
variable, and exploiting the above mentioned orthogonality conditions the following relationship 
was derived for the contravariant form of the edge normal 

( )
( )

;
r R s S

rs R Sr r R r R
R R Tr R s S

rs R S

g F B F T
b F B F T

Jg F T F T −

  = − 
  

FT
F N
‖ ‖
‖ ‖

 (5) 

An analogous formula can also be provided for the covariant form of the edge normal, see [6]. It 
is worth emphasizing that such transformations are not unique and alternative expressions may 
exist: not necessarily they are available in closed form for both the contravariant and covariant 
representation of the same vector. The above formula can be regarded as an application of Gram-
Schmidt orthonormalization procedure, where a key role is played by the pull-back metric tensor. 
Transport of surface projectors 
As well known, at each point of a surface a pair of complementary orthogonal projectors can be 
defined, referred to as normal and tangential, and denoted by symbols [ ] S

V
S

V
M N N⊥ =  and  

[𝑀𝑀∥]𝑉𝑉𝑆𝑆 = 𝛿𝛿𝑉𝑉𝑆𝑆 − 𝑁𝑁𝑆𝑆𝑁𝑁𝑉𝑉 respectively, apt to project any vector of the space environment onto the 
normal or the tangent space at that point. We provided effective transformation formulae for such 
projectors from the Lagrangian to the Eulerian configuration. For the normal projector, exploiting 
the transformation rule for the covariant normal we get 
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( ) ( )
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 (6) 

whilst a more complex relationship is met for the tangential projector. It is worth underlying 
that the Eulerian tangential projector depends on both the Lagrangian projectors: hence, an 
Eulerian vector normal to an Eulerian surface when transported to the Lagrangian configuration is 
expected to possess non-vanishing components in both the normal and the tangent space at the 
corresponding point. 
Divergence theorem revisited 
In the present approach recourse is made to the divergence theorem formulated for submanifolds 
with boundary, which represents an important result of differential geometry, e.g. see [6]. Such a 
theorem was revisited, providing a novel relationship between spatial and material expressions 
extremely useful for the analytical developments, namely 

[𝑚𝑚∥]𝑎𝑎𝑐𝑐
∂
∂𝑥𝑥𝑐𝑐

([𝑚𝑚∥]𝑏𝑏𝑎𝑎𝑤𝑤𝑏𝑏)‖𝐽𝐽𝐅𝐅−𝑇𝑇𝐍𝐍‖ =

= [𝑀𝑀∥]𝑆𝑆𝐴𝐴
∂

∂𝑋𝑋𝐴𝐴
(‖𝐽𝐽𝐅𝐅−𝑇𝑇𝐍𝐍‖(𝐅𝐅−1)𝑎𝑎𝑅𝑅([𝑚𝑚∥]𝑏𝑏𝑎𝑎𝑤𝑤𝑏𝑏)[𝑀𝑀∥]𝑅𝑅𝑆𝑆);

 (7) 

In a sense, this formula generalizes Piola's bulk transformation, see [4]. 
Closing remarks and future prospects 
In this study the transport from the Eulerian to the Lagrangian configuration of the equilibrium 
equations was addressed for the first time with reference to second-gradient modelling. To attain 
the purpose, novel theoretical results were achieved, which represent intermediate steps and 
however exhibit a general interest. The methodology proposed above can be easily extended to 
higher-order gradient materials (see e.g. [7]), possibly enriched by damage and plasticity. 
Moreover the novel results are expected to play a role for advanced mechanical theories and their 
implementation (see e.g. [8]), possibly concerning fracture propagation and contact mechanics. 
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Abstract. This paper presents an approximate method to predict the natural frequencies of thin-
walled cylinders. By taking inspiration from a previous work of one of the authors, the starting 
point of the proposed approach is a proper construction of reasonable eigenfunctions. However, a 
new simple tool based on the principle of virtual work has been developed to estimate the natural 
frequencies and the amplitude of vibration without complex numerical resolution. Moreover, the 
applicability of the model is extended to all the most common constraint conditions. The 
identification of the natural frequencies of a continuous cylinder is reduced to an eigenvalue 
problem based on a matrix whose elements depend only on the geometric characteristics of the 
cylinder, the mechanical properties of the material and known numerical parameters. The latter are 
precalculated for given boundary conditions, covering clamped or pinned end constraints. 
Although the proposed formulation can address any constraints combination, only a pinned-pinned 
cylinder is analyzed here for brevity. The reliability of the model was tested against FEM analysis 
results. These comparisons showed that the maximum error versus the exact solutions for the 
lowest natural frequency is around 2% for all the mode shapes of the pinned-pinned case, offering 
an excellent trade-off between accuracy and ease of use. 
Introduction 
The characterization of the vibratory behaviour of thin-walled cylinders attracts researchers’ 
interest due to the wide use of shells as structural elements in several engineering fields. In 
particular, predicting their natural frequency is crucial to prevent severe faults during the 
manufacturing process and the regular use, when time-varying forces often stress these elements. 

Due to the continuous nature of thin-walled cylinders, studying their free vibrations is far more 
complex than a discrete multi-degree-of-freedom system. The integration of the partial differential 
equations rarely leads to an exact closed-form solution, which, however, is rather convoluted [1]. 
More frequently, the resolution is achieved by finite element analysis, numerical approaches [1–
7] or simplified analytical models [8–12]. Nonetheless, the finite element method (FEM) may 
require a convergence analysis and lacks intelligibility. On the other hand, advanced numerical 
techniques enable the resolution of highly accurate models but might be challenging to program, 
while the introduction of simplifying assumptions allows an analytical solution to the problem at 
the expense of accuracy. 

In contrast, the novel model presented here combines good accuracy with ease of use. It takes 
inspiration from [9], which provided the natural frequencies by a simple sequence of explicit 
algebraic equations without the need for complex or iterative numerical resolution. Starting from 
Love’s theory for thin-walled cylinders modified by Reissner and simplified by Donnell’s 
assumptions, the dynamic equilibrium equations are derived as functions of displacements. Then, 
Hamilton’s principle is applied. The assumption of reasonable eigenfunctions, similarly to 
Rayleigh’s method, enables a fast-solving procedure based on the resolution of a cascade of simple 
algebraic equations. Nonetheless, this method applies only to clamped-clamped cylinders and 
involves two different sets of eigenfunctions depending on the mode shape order. 
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In this paper, a reformulation of [9] is proposed. In particular, the equilibrium, compatibility 
and constitutive equations are the same. Nevertheless, different eigenfunctions are hypothesized 
at the beginning and the principle of virtual work is used. Moreover, the cascaded algebraic 
resolutive approach is converted to an eigenvalue problem. The new procedure leads to a faster 
resolution that can be easily adapted to any constraint condition, not just the clamped-clamped 
one. By way of example, this paper present only the results for a pinned-pinned cylinder. The 
reliability of the proposed method is tested by a comparison against FEM analysis results. A 
maximum error of 2% has been obtained, proving that the model is effective and efficient. 
Method 
Given a thin-walled circular cylinder having a finite length l, constant thickness h and mean radius 
a consisting of a material having a density ρ, Young’s modulus E and Poisson’s ratio ν, Fig. 1 
shows the orthogonal local reference system consisting of longitudinal direction x, circumferential 
direction s and radial direction r. 

On the basis of Love’s theory [13] modified by Reissner [14] and Donnell’s assumptions [15], 
the dynamic equilibrium equations and the compatibility equations are derived. Then, the 
constitutive equations are used to express the internal forces and moments as functions of the 
deformations. After substituting the compatibility equations into these latter equations, forces and 
moments are obtained as functions of displacements. Then, these forces and moments are 
introduced into the dynamic equilibrium, and the following equations of motion are obtained: 
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where 𝐾𝐾 = 𝐸𝐸ℎ

1−ν2
. The mathematical procedure performed to obtain Eq. 1 is omitted for brevity but 

can be found in [9]. Nevertheless, if in [9] the equations of motion were used to apply Hamilton’s 
principle, here are introduced in the principle of virtual work (Eq. 2), according to which the virtual 
work 𝛿𝛿𝛿𝛿 of all forces applied to the system, including the inertial actions, is zero for any virtual 
displacements 𝛿𝛿𝑢𝑢𝑥𝑥, 𝛿𝛿𝑢𝑢𝑠𝑠, and 𝛿𝛿𝑢𝑢𝑟𝑟 that meet the constraints. 
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Figure 1. Geometry and local reference system of a thin-walled cylinder. 
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Given the arbitrariness of the virtual displacements 𝛿𝛿𝑢𝑢𝑥𝑥, 𝛿𝛿𝑢𝑢𝑠𝑠 and 𝛿𝛿𝑢𝑢𝑟𝑟 Eq. 2 can be respected only 
if each of the three addends is null. 

Similarly to [9], the assumption of reasonable displacements 𝑢𝑢𝑥𝑥, 𝑢𝑢𝑠𝑠 and 𝑢𝑢𝑟𝑟 as eigenfunctions of 
the problem of free vibrations of cylindrical shells enables a simpler approximated mathematical 
treatment. Free vibrations of a thin-walled circular cylinder consists of n circumferential waves 
and m longitudinal half-waves. Therefore, each mode shape is characterized by a pair of values of 
n and m. Circumferential waves are independent from the boundary conditions, unlike longitudinal 
half-waves which, instead, depend on them, similarly to the transverse vibrations of beams 
subjected to the same constraints. Thus, the same solutions hypothesized in [9], properly chosen 
to respect orthogonality, are also considered here: 
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             (3) 

 
where 𝑓𝑓𝑟𝑟(𝑥𝑥) is the eigenfunction of the beam subjected to the same constraints of the cylinder 
under analysis. For example, for a pinned-pinned beam, 𝑓𝑓𝑟𝑟(𝑥𝑥) = sin𝛽𝛽𝑖𝑖𝑙𝑙

𝑥𝑥
𝑙𝑙
 , where 𝛽𝛽𝑖𝑖𝑙𝑙 are the roots 

of the related frequency equation sin𝛽𝛽𝑖𝑖𝑙𝑙 = 0. However, the formulation proposed in the following 
is highly general and thus can be extended to any boundary conditions. 

By normalizing Eq. 2 by the cylinder length l and considering Eq. 3, a three-equation system 
is obtained: 

 

⎩
⎪
⎨

⎪
⎧ ∫ ��𝜕𝜕

2𝑢𝑢𝑥𝑥
𝜕𝜕𝑋𝑋2

+ 1−ν
2𝛼𝛼2

𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕θ2

+ 1+ν
2𝛼𝛼

𝜕𝜕2𝑢𝑢𝑠𝑠
𝜕𝜕𝑋𝑋𝜕𝜕𝜃𝜃

+ ν
𝛼𝛼
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝑋𝑋

+ ∆ 𝑢𝑢𝑥𝑥� 𝛿𝛿𝑢𝑢𝑥𝑥� 𝑑𝑑𝑑𝑑
1
0 = 0

∫ �� 1
𝛼𝛼2

𝜕𝜕2𝑢𝑢𝑠𝑠
𝜕𝜕𝜃𝜃2

+ 1−ν
2

𝜕𝜕2𝑢𝑢𝑠𝑠
𝜕𝜕𝑋𝑋2

+ 1+ν
2𝛼𝛼

𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑋𝑋𝜕𝜕𝜃𝜃

+ 1
𝛼𝛼2

𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜃𝜃

+ ∆ 𝑢𝑢𝑠𝑠� 𝛿𝛿𝑢𝑢𝑠𝑠� 𝑑𝑑𝑑𝑑
1
0 = 0

∫ ��ν
𝛼𝛼
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑋𝑋

+ 1
𝛼𝛼2

𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜃𝜃

+ 𝑢𝑢𝑟𝑟
𝛼𝛼2

+ ƞ2

12
(𝜕𝜕

4𝑢𝑢𝑟𝑟
𝜕𝜕𝑋𝑋4

+ 1
𝛼𝛼4

𝜕𝜕4𝑢𝑢𝑟𝑟
𝜕𝜕𝜃𝜃4

+ 2
𝛼𝛼2

𝜕𝜕4𝑢𝑢𝑟𝑟
𝜕𝜕𝑋𝑋2𝜕𝜕𝜃𝜃2

) − ∆ 𝑢𝑢𝑟𝑟� 𝛿𝛿𝑢𝑢𝑟𝑟� 𝑑𝑑𝑑𝑑
1
0 = 0

          (4)         

 
where 𝑑𝑑 = 𝑥𝑥
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. By substituting Eq. 3 in Eq. 4, the following matrix 

formulation is derived: 
 
�𝐷𝐷 � − ∆ 𝐼𝐼 ̿�{𝐴𝐴} = {0}             (5) 

 
where {𝐴𝐴} = {𝐴𝐴𝑥𝑥; 𝐴𝐴𝑠𝑠; 𝐴𝐴𝑟𝑟} is the unknown vector containing the displacements amplitudes in the 
three directions, 𝐼𝐼 ̿is the identity matrix and 𝐷𝐷 � is the following matrix: 
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where 𝐼𝐼13 = ∫ 𝑓𝑓𝑟𝑟1(𝑑𝑑)1
0 𝑓𝑓𝑟𝑟3(𝑑𝑑)𝑑𝑑𝑑𝑑, 𝐼𝐼11 = ∫ 𝑓𝑓𝑟𝑟1(𝑑𝑑)1

0 𝑓𝑓𝑟𝑟1(𝑑𝑑)𝑑𝑑𝑑𝑑, 𝐼𝐼00 = ∫ 𝑓𝑓𝑟𝑟(𝑑𝑑)1
0 𝑓𝑓𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑, 𝐼𝐼02 =

∫ 𝑓𝑓𝑟𝑟(𝑑𝑑)𝑓𝑓𝑟𝑟2(𝑑𝑑)1
0 𝑑𝑑𝑑𝑑 and 𝐼𝐼04 = ∫ 𝑓𝑓𝑟𝑟(𝑑𝑑)𝑓𝑓𝑟𝑟4(𝑑𝑑)1

0 𝑑𝑑𝑑𝑑; 𝑓𝑓𝑟𝑟𝑘𝑘(𝑑𝑑) is the k-order derivative of 𝑓𝑓𝑟𝑟(𝑑𝑑). Thanks 
to the normalization by the cylinder length, these integrals may be evaluated a priori without 
knowing the actual cylinder dimension. Thus, they need to be calculated only once for any 
constraint condition and then can be exploited for the free vibrations analysis of any cylinder 
subjected to the same constraints. Lastly, as it is apparent from Eq. 5, the natural frequency of any 
thin-walled cylinder can be easily calculated by solving the eigenvalue problem of the matrix 𝐷𝐷�. 
From the three eigenvalues ∆1, ∆2 and ∆3, the natural frequency is obtained as follows: 
 

𝑓𝑓𝑖𝑖 = 1
2𝜋𝜋 �

𝐸𝐸∆
(1−ν2)𝜌𝜌𝑙𝑙2

                 for 𝑠𝑠 = 1, 2, 3             (7) 

 
To sum up, the proposed analysis of free vibrations of cylindrical shells involves the initial 

identification of the eigenfunction describing the transverse free vibrations of a beam subjected to 
the same constraints of the cylinder. Then, a pair of values for m and n is selected, and the matrix 
𝐷𝐷� is populated. The natural frequencies are evaluated from the eigenvalues of the matrix 𝐷𝐷�, while 
its eigenvectors contain the displacements amplitude ratios of each modal shape. 
Results 
Table 1 shows the frequency 𝑓𝑓1, 𝑓𝑓2 and 𝑓𝑓3 for a pinned-pinned cylinder characterized by a = 76mm, 
l = 305mm, h = 0.254 mm, ρ = 7833 kg/m3, E = 207 kN/mm2, ν = 0.3. For brevity, only results for 
m ≤ 3 and n ≤ 8 are reported. Nonetheless, they are sufficient to notice that 𝑓𝑓1 is lower by un order 
of magnitude than 𝑓𝑓2 and 𝑓𝑓3; thus, it is the frequency related to the highest risk of the arising of 
redundancy condition. Moreover, 𝑓𝑓1 shows a minimum for fixed m, which occurs for a higher 
value of n if m increases, while 𝑓𝑓2 and 𝑓𝑓3 are monotonically increasing by both n and m. 

 
Table 1. Natural frequencies for m ≤ 3 and n ≤ 8. 

  
n 

m = 1 m = 2 m = 3 
f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] 

1 2,886 10,009 17,209 6,445 14,059 21,944 8,556 17,890 29,228 
2 1,265 14,889 26,403 3,677 18,061 29,947 5,821 21,647 35,508 
3 656 20,923 36,632 2,178 23,194 39,414 3,896 26,222 43,820 
4 423 27,319 47,298 1,396 29,012 49,558 2,681 31,491 53,176 
5 372 33,847 58,183 985 35,177 60,072 1,931 37,225 63,123 
6 431 40,433 69,190 792 41,523 70,807 1,477 43,249 73,434 
7 551 47,048 80,272 751 47,971 81,681 1,227 49,455 83,983 
8 705 53,681 91,403 819 54,481 92,649 1,132 55,780 94,694 
 
Table 2 shows the amplitude ratios only for m ≤ 3 and n = 4, but similar trends are obtained for 

other combinations of m and n. The predominant amplitude at the lowest natural frequency f1 is 
𝐴𝐴𝑟𝑟, so the associated motion is mostly radial (transverse mode of vibration). Conversely, at 
frequencies f2 and f3, 𝐴𝐴𝑥𝑥 and 𝐴𝐴𝑠𝑠 prevail, respectively; thus, the associated modes are called 
longitudinal and circumferential. 
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Table 2. Amplitude ratios for m ≤ 3 and n = 4. 

 m = 1 m = 2 m = 3 
𝐴𝐴𝑥𝑥/𝐴𝐴𝑟𝑟 𝐴𝐴𝑠𝑠/𝐴𝐴𝑟𝑟 𝐴𝐴𝑥𝑥/𝐴𝐴𝑟𝑟 𝐴𝐴𝑠𝑠/𝐴𝐴𝑟𝑟 𝐴𝐴𝑥𝑥/𝐴𝐴𝑟𝑟 𝐴𝐴𝑠𝑠/𝐴𝐴𝑟𝑟 

f1 0.014 0.252 0.011 0.255 0.008 0.249 
f2 3.697 1.897 1.020 2.155 0.521 2.561 
f3 0.240 4.097 0.259 4.380 0.288 4.822 

 
The accuracy of the results was tested by comparing them against those derived from a FEM 

analysis carried out in Ansys 2022, where a thin-walled circular cylinder was analyzed using 
36,433 SHELL181 linear elements. Fig. 3 and Table 3 reveal a high correspondence between the 
FEM results and those provided by the proposed model, with a maximum error of 2.07% for m = 
1 and n = 6. The comparison considers only the frequency f1 for brevity since it is the lowest. 

 
Table 3. Percentage error on the f1 frequency for m ≤ 8 and n ≤ 8. 

 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 
n = 1 -0.0004 -0.0103 -0.0181 -0.0212 -0.0225 -0.0228 -0.0229 -0.0229 
n = 2 0.0106 -0.0254 -0.0427 -0.0550 -0.0628 -0.0675 -0.0704 -0.0723 
n = 3 0.1934 -0.0336 -0.0715 -0.0957 -0.1137 -0.1269 -0.1365 -0.1435 
n = 4 0.9627 0.0093 -0.0921 -0.1365 -0.1681 -0.1927 -0.2120 -0.2222 
n = 5 2.0088 0.1821 -0.0822 -0.1683 -0.2199 -0.2591 -0.7405 -0.3167 
n = 6 2.0702 0.5078 -0.0131 -0.1776 -0.2621 -0.3210 -0.3678 -0.9082 
n = 7 1.5567 0.7645 0.1176 -0.1527 -0.2864 -0.3729 -0.4387 -0.4930 
n = 8 1.0193 0.7233 0.2303 -0.1016 -0.2895 -0.4100 -0.4991 -0.5714 

Conclusions 
Starting from the standard equations for modeling equilibrium, deformations and displacements of 
thin-walled cylinders, this paper used the principle of virtual work to reduce the calculation of the 
natural frequencies to an eigenvalue problem, thanks to the simplifying assumption of 
eigenfunctions deduced from the beam theory. The results for a pinned-pinned cylindrical shell 
were compared to those obtained by a FEM analysis, reporting a maximum error of 2%. Thus, the 
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Figure 2. Comparison between the natural frequency f1 obtained by the model and FEM 
analysis (m ≤ 3 and n ≤ 8). 
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novel model combines good accuracy with ease of use, being ideal for preliminary investigation 
of the resonance condition of shell structures. Moreover, it can be potentially extended to any 
boundary conditions: clamped, pinned, and free end cylinders can be addressed by a unique 
formulation. Future works will test the model accuracy with other constraints combinations. 
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Abstract. Centrifugal pendulum absorbers are passive dampers mainly employed nowadays to 
attenuate torsional vibrations in modern drivetrains to reduce fuel consumption and CO2 
emissions. The absorber is linked to the drivetrain by means of a higher kinematic joint composed 
of slots and rollers, termed caged-roller joint. This work aims to investigate the contact between 
the rollers and the slots through multibody dynamics simulations. As a result, the sliding between 
the profiles, usually neglected in the design model of the caged-roller joint, is assessed and an 
estimate of the power loss is provided. 
Introduction 
Current trends for internal combustion engines (ICEs) suggest operation just above the idle-speed 
range to reduce fuel consumption. This generates low-frequency and high-amplitude oscillations. 
On the other hand, to avoid a drop in performance, high driving torque levels should be ensured. 
modern drivetrains require more effective torsional vibration isolation. The class of centrifugal 
dampers constitutes a widespread industrial solution adopted by many car manufacturers [1]. 
Centrifugal pendulum vibration absorbers (CPVAs) are order-tuned passive devices [2,3]. The 
absorbers counteract the torsional disturbance through their oscillations along a prescribed path 
within a centrifugal force field. The distinctive feature of CPVAs is that the absorber frequency of 
oscillation matches, for any rotor speed, the one of the torque to be damped. This is realized by 
selecting the absorber center of mass (COM) path curvature according to a design equation termed 
tuning condition. The classical approaches for the study of CPVAs nonlinear dynamics (e.g. [4-
10]) are based on perturbation methods. To offer holistic modeling of these devices, the dynamic 
behavior of this device is herein explored through multibody techniques (e.g. [11]). The damper 
architecture herein portrayed is the parallel bifilar pendulum, where the absorbers are constrained 
to translate w.r.t. the rotor by two higher kinematic pairs, each constituted by a roller mating with 
two slots, denoted as caged-roller joint [12-14]. The ideal design of the slot profiles, needed as a 
constraint to enforce the tuning condition, requires the assumption of pure-rolling between the 
mating elements. However, this condition heavily depends on normal contact force amplitude 
throughout the absorbers oscillations. Hence, this paper focuses on analyzing the sliding and the 
power losses estimation due to the contact between the roller and the slot by means of multibody 
dynamics simulations.  
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Figure 1: Parallel bifilar CPVA 
Damper device modeling 
The model kinematic structure is represented in Figure 1 in the reference configuration. Four 
absorbers of total mass m  are linked to the rotor, characterized by a moment of inertia I  through 
eight caged-roller joints. Each one of these joints is composed of a roller and two slots carved on 
the rotor and on the absorbers, respectively. A 2D circle-to-curve contact is established between 
the conjugate profiles1. The rotor is free to rotate w.r.t. the ground with an initial speedΩ  and is 
subjected to the cubic ramp harmonic torque disturbance:  

2 3

0( ) 3 2 sin ( )
f f

t tT t T n t
t t

    
 = − Θ           

, (1) 

where Θ  is the rotor rotation angle, n  is the harmonic order to be damped and ft is the end-time 
of the simulation. The CPVA conceptual design is hinged on the following requirements: 
• the tuning condition governs the absorber COM path curvature for small oscillations [2-4]: 

( )
0

0 2 1 1
r

n
ρ

σ
=

+ +
, (2) 

where 0ρ is the absorber COM radius of curvature, 0r denotes the rotor-absorber COM center 
distance, the subscript (0) indicates that the variable is evaluated at the reference position, and 
σ is the detuning, namely the difference between the disturbance and the absorber tuned orders. 

• the damper dynamic behavior for large oscillations is controlled by the full absorber COM 
path. This trajectory, in intrinsic coordinates ( ), sρ , is usually selected from the epicycloid 
family of curves [4-7]: 

2
0 2( )s sρ ρ λ= + , (3) 

where s is the absorber curvilinear abscissa and 2λ is the second curvature ratio of the path
( ),sρ which is constant for epicycloids2. Since the absorbers undergo a relative translation w.r.t. 

the rotor, the roller center relative paths ( ),R Rsρ , are obtained by halving Eq.(3): 

 
1 Contact force models for multibody systems have been analyzed e.g. by Flores [15] and Pereira et al. [16]. 
2 For further details on higher path curvature analysis and CPVA design procedures, refer to [4-9,14,17]  
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, ,
2 2R R
ss ρρ= =  (4) 

Then, the rotor and absorber slots paths are identical and can be computed as parallel curves of the 
roller paths ( ),S Ssρ [14,17]: 

1 , ,r
S R S R r

R

rs s rρ ρ
ρ

 
= + = + 

 
 (5) 

where rr  is the roller radius. 
The roller-slot contact detection is based on an algorithm with a pre-search to identify contact 
zones and a detailed-search to find the penetration depth [19]. The contact normal behavior is 
governed by the Johnson model [16] for the elastic contribution: 

2

2

2 (1 ) 4log 1 ,
2 (1 )

P E R
E P
ν πδ

π ν
  − ∆

= −  −  
 (6) 

where δ  is the penetration, P  is the load per unit length, ( ) 0
0 2S r s

R r ρρ
=

∆ = − = , and ( ),E ν  are 

the elastic properties of the steel. This model is fitted with MATLAB fit routine to compute the 
normal force as follows: 

1
31 ,
2

m
nF kδ αδ = + 

 
  (7) 

where the damping term 1
3
2

mkα δ δ 
 
 

  is expressed according to Hunt and Crossley [19] model. 

On the other hand, the tangential behavior follows a stick-slip dry friction portrayed in the 
investigations of Cha et al. [20] and Pennestrì et al. [21]:  

( )
( )

1 ,            (static friction)

sgn ,                         (dynamic friction)
t v n s

t n s

F F v v

F F v v

β µ µ

µ
∆= − + <  

= − ≥
 (8) 

This model, and in particular the terms ,  ,  ,  vβ µ µ µ∆ , depend on five parameters, namely: 

,  s dµ µ (static and friction coefficients), ,  s dv v  (static and dynamic threshold velocity) and max∆  
(max stiction deformation). For the further details, refer to the cited works. The data of the system’s 
geometry and inertia, as well as the contact parameters, are reported in Table 1. 

 
Table 1: systems data and parameters 

n  σ  2λ  Ω [rpm] m [kg] 0r [m] 0T [Nm] I [kg m^2] 
2 0.01 -0.84 1000 0.3 0.06 21 0.04 
k [N/m^m1] 1m  α  sv [m/s] dv [m/s] sµ  dµ  max∆  
6.874e9 1.072 0.08 0.15 0.1 0.05 0.04 0.1 

Results analysis  
The first result needed to assess the CPVA dynamics behavior is the relationship between the 
torque amplitude and the absorber COM oscillation amplitude, depicted in the plot of Figure 2. 
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Figure 2: absorber oscillation amplitude .vs. torque amplitude. 

For low torque levels, the device response is quasi-linear, whereas for large oscillations the 
resulting behavior is hardening. This feature depends on the selected value of the curvature ratio

2λ . Then, in Figure 3 are represented the friction coefficient and sliding velocity curves with 
respect to the torque amplitude. In particular, the gray line is for the interaction between the 
absorber slot and the roller, whereas the black line is for the rotor slot-roller contact. Moreover, 
the dashed lines indicate the threshold values sv , dv , sµ , dµ , respectively. 

 
Figure 3: sliding velocity (left) and friction coefficient (right) .vs. torque amplitude . 

From these plots, the following considerations arise: 
• For low torque values, the sliding velocity is close to zero, which means that the pure-

rolling condition is satisfied completely, due to stiction.  
• For medium torque levels, there is a finite sliding velocity, but its value is less than the 

threshold velocity. Hence, the rolling condition is still valid. 
• For high torque amplitudes, the sliding velocity is greater than the threshold and the friction 

coefficient reaches the dynamic value. In these cases, there is slipping between the roller 
and the slot. 

However, observing Figure 5, which is the zoom versions of Figure 3, the slipping is only localized 
at the end of the time period of oscillation.  

 
Figure 5: sliding velocity and friction coefficient .vs. torque amplitude (zoom version)   
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To assess the power losses due to the roller-slot slipping, the ratio between friction power loss of 
all the caged-roller joints and disturbance power FP/DP: 

8

1
d

sin d

π

π
π

π

=−

−

Θ
=

Ω Θ Θ

∑∫

∫

t r
i

F v
FP
DP

T n
 (9) 

averaged over a period is computed. This ratio is plotted with respect to the torque amplitude in 
Figure 6. As expected, since the slipping is very limited, the power loss is negligible even for large 
oscillations. 

 
Figure 6: ratio FP/DP .vs. torque amplitude 

Conclusions 
In this investigation, the internal dynamics of the caged-roller joints of a centrifugal pendulum is 
analyzed by means of the multibody environment. In the caged-roller joints, the pure-rolling 
between the mating elements is required. However, as observed in the multibody dynamics 
simulations, there could be slipping for large absorber oscillations. This occurs mostly for low 
rotor speed, when the centrifugal force field amplitude is not enough to guarantee a sufficient 
normal force between the roller and the slot throughout the entire oscillation. To assess the power 
losses associated with this phenomenon, the ratio between the friction and the disturbance powers 
is computed. From this comparison, the friction power losses are negligible for any oscillations. 
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Abstract. MEMS-Technology based microgrippers have been recently used in different fields of 
applications. These microsystems can be actuated by means of electrostatic actuators, such as 
linear or rotary comb drives, but the robustness and feasibility of such components in static and as 
well as dynamic conditions still raises some concerns. In order to contribute to fill this gap, the 
dynamic properties of a MEMS-Techology Based silicon microgripper, based on four-bar linkage, 
with co-operative comb-drives, are here numerically analysed. The analysis of the vibrations is 
essential in many MEMS applications since vibrations may lead to significant positioning errors 
or undesirable contacts between the anchored and floating fingers of the comb-drives. The present 
investigation aims to assess the critical modes of a MEMS microgripper in order to ascertain the 
possibility of impact between the fixed and moving fingers of the comb-drives. The relative 
displacements between the anchored and the floating fingers are tolerable only if the center of the 
relative rotation is coincident with the center of the conjugate profiles. Hence, the nature of the 
relative motion for the first vibration modes has been assessed by means of Finite Element 
Analysis (FEA) in order to avoid operational issues.  
Introduction 
The variety of flexure hinges [1] and the actual technological capabilities in MEMS fabrication 
(micro electro mechanical system) enabled the development of new microsystems for the 
manipulation at the microscale. The recent progress in micro and nano machining gave rise to the 
deployment of some multi-hinge and multi-DoF (Degrees of Freedom) MEMS-Technology based 
microsystem. The crucial issue regards the design and fabrication of lumped flexure hinges that 
are also the smallest structural elements in the device. New microsystems equipped with Conjugate 
Surface Flexure Hinges (CSFHs) were conceived and fabricated [2] to improve their positioning 
accuracy. A CSFH is a peculiar flexure that consists of a curved beam, which provides compliance, 
together with a portion of conjugate-profiles. It can be shown that parasitic deformations are 
minimized when the curved beam elastic weights center is overlapping with the center of the 
conjugate profiles. The CSFH was adopted in several microdevices, such as in micromanipulators 
[3], micro mechanisms, grippers [4], microtribometers, etc. These microsystems can be actuated 
by means of electrostatic actuators, such as linear or rotary comb drives, but the robustness and 
feasibility of such components in static and as well as dynamic conditions still raises some 
concerns. A MEMS-technology based device may involve dimensions ranging from a few microns 
to millimeters. In this work, a monolithic microgripper operated by means of  electrostatic rotary 
comb-drives has been considered. Fig. 1c shows the overall geometry of the microgripper that 
consists of two tip points, 8 CSFHs, 4 comb-drives with electric pads. The grasping task can be 
obtained by moving the jaws that are attached to the coupler links of the two 4-bar linkage 
structures that correspond to the pseudo-rigid body equivalent mechanism (PRBM) [5] used to 
synthetize the compliant mechanism. Since the jaw is attached to the coupler link, the jaw 
instantaneous rotation axis can be conveniently predefined by the designer. The input link is driven 
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by a pair of co-operating rotary comb-drives supplied with the same voltage. The design 
requirements suggested the use of monocrystalline silicon as a structural material since it offers 
mechanical and electrical properties with very good performance. A Silicon On Insulator (SOI) 
wafer with the following size has been considered: 40 μm thick device layer, 3-4 μm silicon oxide 
layer, handle layer with a thickness of 400 μm to ensure high structural mechanical reliability. 
 

 
(a)  

(b) 

 
(c) 

Figure 1 A detailed view of: the comb drives (a), the CSFH (b) and the overall geometry of the 
proposed four-bar linkage microgripper with co-operative electrostatic actuation. 

It is worth noting that the structural reinforcement is provided in the elements that do not show 
any motion during the actuation, i.e. the pads and the central frame structure for the CSFHs (Fig. 
Ec). The device structure consists of elements with heterogeneous dimensions and, among these, 
some parts may provide functional constraints. For instance, the comb-drive fingers and the gap 
between  non-moving and moving fingers should be limited to a few microns (see Figure 1a,b). 

More details regarding the considered CSFH flexures and comb-drives are listed in Table 1.  
Table 1 

Component Label Value 

Finger 

Width 4 μm 
Out-of-plane thickness 40 μm 

Distance 10 μm 
Finger clearance 3 μm 

SOI wafer Handle layer 400 μm 
Device layer thickness 40 

Overlapping Initial angle 2° 
Rotor-stator finger gap 3 μm 

CSFH 

Curved beam width 5 μm 
Curved beam length 252 μm 

Curved beam thickness 40 μm 
Conjugate surfaces clearance 2,5 μm 

Curvature radius 62,5 μm 
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Numerical microgripper modal analysis 
The versatility of the CSFH is appealing for several MEMS applications such as microsurgery, 
biological tissue manipulation, etc. The modal analysis turns out to be insightful on how the device 
dynamic operation may be affected. As a matter of fact, vibrations may substantially affect  
positioning accuracy or unwanted stator-to-rotor fingers impact that result in hazardous short 
circuit or mechanical damage [6]. On the other hand, vibration may enhance the releasing of micro 
objects or the assessment of the biological soft tissues mechanical properties [7]. In this work, the 
eigenmodes have been conveniently analyzed, via Finite Element Analysis, by implementing a 
COMSOL Multiphisycs code. Symmetry boundary conditions have been conveniently exploited 
to reduce the computational costs, so only one-half of the microgripper has been considered (Fig. 
2). The considered mechanical boundary conditions are reported below: 

− the non-moving fingers are anchored (A); 
− the moving fingers and the remaining gripper links (B) are free to move; 
− the frame link is fixed (C); 
− the symmetric boundary condition is applied to the surface (D). 

 

Figure 2 Boundary conditions adopted in FEA simulations: anchored non-moving fingers (A), 
the moving fingers and the remaining gripper links are free to move(B), the frame link is fixed 

(C), the surface (D) represents the symmetric boundary condition. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 3 First six eigenmodes of the proposed microdevice: I mode (a), II mode (b), III mode 
(c), IV mode (d), V mode (e) and VI mode (f). 

The first six eigenmodes and natural frequencies are respectively reported in Figure 3 and in Table 
2. 

Table 2 
Mode Frequency (kHz) Critical Plane Rotation axes 

I 1,45 no in 3 
II 2,00 no out 1 
III 2,70 no out 1 
IV 3,67 no out 2 
V 6,09 yes in 3 
VI 6,98 no out 2 

 
The relative displacements between the anchored and the comb-drives moving fingers are 

acceptable whenever they correspond to a relative rotation and its center overlapping with the 
conjugate profiles center. Thereby, it is crucial to evaluate the relative motion nature of all the 
vibration modes that may be excited during the operational stages. In particular, the first and fifth 
modes present radial displacements for the fingers and therefore finger contact appears to be 
theoretically possible. 

 
(a) 

 
(b) 

 
(c)  

(d) 
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(e) 

 
(f) 

Figure 4 Axes of rotation for to the first six eigenmodes: (a) axes of rotation for the I mode 
(the axes are normal to the xy plane, red cross marks), (b) out-plane rotation axis for the II 
mode (red line), (c) out-plane rotation axis for the III mode (red line), (d) out-plane rotation 
axis for the IV mode (red lines), (e) in-plane rotation axes for the V mode (red cross marks), 
(f) out-plane rotation axes for the VI mode (red lines); black dotted lines represent geometric 

properties of the PRBM, while red lines represent the nodal lines. 
FEA results have been used to identify the minimum displacement areas for each vibration 

mode. Such zones can be easily identified and the structural behaviour can be physically 
interpreted by tracing the nodal rotation axes. When the first mode is excited (Figs. 3a, 4a) three 
elements of the structure act as pseudo-rigid bodies, i.e. the coupler and the two rockers links. 
Motion is provided by the four flexure hinges and all the mechanism elements are characterized 
by an in-plane motion. The nodal rotation axes are normal to the xy plane (red crosses), thereby 
their intersections with the mechanism plane are identified by the points A, B and C depicted in 
Fig. 4a. It is worth noting that the third axis of rotation (c) passes through the instantaneous center 
of velocity of the coupler with respect to the frame link (P31). Hence, the first mode motion is 
compatible with the microsystem design, so the involved deformations are compatible with the 
comb-drives geometry since the relative rotation axes are practically coincident with the CSFH 
rotation axes and no stator-to-rotor fingers contact is implied. The second mode analysis (Figs. 3b, 
4b) shows that the whole mechanism behaves as a plate that rotates around the axis (a) (red line) 
passing through the center of the CSFH that links the frame to the second rocker (which has no 
comb-drive mounted on). This axis lies in the xy plane so out-of-plane vibrations are entailed. 
However, the moving fingers are all located on one side of the axis, thereby their motion acts along 
the perpendicular to the gap between the fingers. As a consequence, the fingers contact is still 
unlikely. The third mode (Figs. 3c, 4c) is similar to the second but its nodal axis passes through 
the center of the hinge that joins the frame to the rocker equipped with the comb-drives (red line) 
. The nodal axis lies in the mechanism plane and the moving fingers are still located on one side 
of this axis, hence fingers contact seems to be unlikely. The modal analysis for the fourth mode 
(Fig. 3d) reveals that the microgripper inflects around two parallel axes a and b depicted in Fig. 4d 
(red lines). Such axes lies in the xy plane, then the displacements will occur out-of-plane. The 
system behaviour is similar to a flexible plate which oscillates around a and b nodal axes, resulting 
in three different zones. For instance, if the central area inflects downwards, the lateral zones will 
inflect upwards and vice versa. From the perspective of preventing contact between moving and 
non-moving fingers, the fifth mode (Figs. 3e, 4e) represents the most critical one. In fact, the 
system behaves, approximately, as a pseudo-rigid plate that rotates around an axis (c). Such axis 
passes through the point C and is located within the internal zone of the mechanism, as depicted 
in Fig. 4e (red crosses). Unfortunately, such motion can be rather detrimental for the comb drives 
since the moving fingers do not rotate about the CSFH centers. As a consequence, the fingers will 
no more travel along the natural span of the fixed fingers gap, therefore the moving fingers may 
collide with the fixed ones. In such a situation, the moving fingers undergoes a radial displacement 
component since the rotation does not occur around the original center of rotation. The sixth mode 
has a rather complicated shape and three nodal axes can be identified (red lines in Figs. 3f,4f). The 
axes lies all in the mechanism plane. The microgripper acts as a flexible plate that inflects around 
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the nodal lines and out-of-plane displacements are entailed, but no critical configuration is 
expected for the comb-drives. Since fingers contact can be expected only when the fifth mode is 
excited, its occurrence has a limited impact on the microgripper dynamic operations. 
Conclusions 
The present investigation has shown that the proposed microgripper may experience contact issues 
between moving and non-moving fingers of comb-drives when, during its dynamic operation, the 
fifth mode is excited. FEA has been exploited to identify the main modes of vibration, whose 
examination is required to prevent critical configurations that happen when there is a contact 
among moving and non-moving fingers of comb-drives. The modal analysis confirmed that the 
proposed microgripper unlikely undergoes to critical configurations, providing significant 
reliability during dynamic operations and it is promising for biomedical and soft tissue 
manipulation applications. 
References 
[1] Lobontiu, N.; Garcia, E.; Canfield, S. Torsional stiffness of several variable rectangular cross-

section flexure hinges for macro-scale and MEMS applications. Smart Mater. Struct. 2004, 13, 
12–19. https://doi.org/10.1088/0964-1726/13/1/002 

[2] Belfiore, N.P.; Broggiato, G.B.; Verotti, M.; Balucani, M.; Crescenzi, R.; Bagolini, A.; 
Bellutti, P.; Boscardin, M. Simulation and construction of a mems CSFH based microgripper. 
Int. J. Mech. Control 2015, 16, 21–30. 

[3] Balucani, M.; Belfiore, N.;Crescenzi, R.; Verotti, M. The development of a MEMS/NEMS-
based 3 D.O.F. compliant micro robot. Int. J. Mech. Control 2011, 12, 3–10. 
https://doi.org/10.1109/RAAD.2010.5524590 

[4] Botta F, Rossi A, Belfiore NP. A Feasibility Study of a Novel Piezo MEMS Tweezer for Soft 
Materials Characterization. Applied Sciences. 2019; 9(11):2277. 
https://doi.org/10.3390/app9112277 

[5] Howell, L.L.; Midha, A. A method for the design of compliant mechanisms with small-length 
flexural pivots. J. Mech. Des. Trans. ASME 1994, 116, 280–290. 
https://doi.org/10.1115/1.2919359 

[6] Demaghsi, H.; Mirzajani, H.; Ghavifekr, H.B. A novel electrostatic based microgripper 
(cellgripper) integrated with contact sensor and equipped with vibrating system to release 
particles actively. Microsyst. Technol. 2014, 20, 2191–2202. https://doi.org/10.1007/s00542-
013-1989-3 

[7] Valtorta, D.; Mazza, E. Dynamic measurement of soft tissue viscoelastic properties with a 
torsional resonator device. Med. Image Anal. 2005, 9, 481–490. 
https://doi.org/10.1016/j.media.2005.05.002 

 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 653-658  https://doi.org/10.21741/9781644902431-105 

 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

653 

Interface reduction in flexible multibody systems  
CAMMARATA Alessandro1,a*, MADDÌO Pietro Davide1,b and SINATRA Rosario1,c  
1Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Catania, Via S. Sofia 

64, 95125, Catania, Italia  
aalessandro.cammarata@unict.it, bpietro.maddio@unict.it, crosario.sinatra@unict.it 

Keywords: Floating Frame of Reference, Multipoint Constraints, Reference Conditions 

Abstract. The problem of imposing the reference conditions in a floating frame of reference 
formulation is coupled with the necessity to reduce the interfaces to virtual nodes required to define 
the multibody joints. Two methods are implemented for rigid and interpolation multipoint 
constraints, and the reference condition matrix is derived employing all the interface dofs. The 
case study of a slider-crank mechanism is discussed to show how different sets of reference 
conditions can modify the system’s dynamics. 
Introduction 
Interface reduction is a recurring problem in substructuring and model reduction theory [1]. In 
flexible multibody dynamics, the interfaces are primitive geometric features employed to form a 
joint. In practice, what is done is to individually reduce each interface to a single virtual node, 
usually a not collocated node outside the volume of the body. This reduction occurs through two 
types of multipoint constraints (MPCs): the rigid multipoint constraint, usually referred to as the 
RBE2 element, and the interpolation multipoint constraint, usually referred to as the RBE3 element 
[2]. Subsequently, the virtual nodes of the two interfaces are linked through kinematic constraints 
necessary to define a joint. In [3], the authors raised the problem of the scarce use of RBE3 in 
multibody simulations and identified the disappearance of the dependent coordinates, operated by 
FE software after eliminating the multipoint constraints, as one of the possible causes. The method 
proposed in [3] has practical implications to be used in commercial FE software. Still, it neglects 
essential aspects related to the presence of MPCs and generic reference conditions (RCs) within 
the Floating Frame of Reference Formulation (FFRF) [4]. 

Here, a different approach is presented that is perfectly integrated inside the FFRF working with 
every RCs. Both types of MPC are treated, and the interpolation MPC exploits all interface DOFs 
without the need to select dependent nodes or to introduce selection criteria. MPCs are directly 
connected to the reference conditions necessary to define the floating frame correctly. This issue 
has only been marginally addressed in the literature without providing a general treatment for any 
RC. 

The paper is organized as follows. First, the mathematical background of the FFRF and the role 
of the RCs are introduced. Then, the method to apply the reference conditions to the virtual nodes 
of rigid and interpolation MPCs is provided. The reference condition matrix is obtained in explicit 
form for both cases. The case study of a flexible crank is analyzed, and three different sets of RCs 
have been applied to the interface virtual nodes of the component. Finally, the crank is assembled 
with a flexible connecting rod and a rigid piston to simulate a single cylinder of an internal 
combustion engine. 
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Figure 1: Floating frame of reference nomenclature and reference conditions 

Background 
The Floating Frame of Reference formulation describes the motion of a flexible body composing 
the gross motion of a particular frame, i.e., the floating frame and the local deformation with 
respect to the floating frame. In the finite element theory, the shape function necessary to describe 
the elastic behavior of a deformable body must be able to represent the rigid-body motion. 
Otherwise, the body cannot satisfy the objectivity property. The rigid-body motion provided by 
the shape function can be a duplicate or interfere with the gross motion of the floating frame. A 
set of linear constraints must be applied at some points Cij to remove the rigid-body motion. These 
constraints are referred to as the reference conditions (RCs) and define the nature of the floating 
frame. 

Denoting with Ri and Ai the position and the rotation matrix of the floating frame (xiyizi) with 
respect to the inertial frame (XYZ), and with uij the position of a generic point Pij with respect to 
the floating frame, we write 

𝒓𝒓𝑖𝑖𝑖𝑖 = 𝑹𝑹𝑖𝑖 + 𝑨𝑨𝑖𝑖𝒖𝒖�𝑖𝑖𝑖𝑖 = 𝑹𝑹𝑖𝑖 + 𝑨𝑨𝑖𝑖𝑺𝑺𝑖𝑖𝑖𝑖(𝒒𝒒0 + 𝑩𝑩2𝒒𝒒𝑓𝑓) (1) 

where 𝑺𝑺𝑖𝑖𝑖𝑖 is the shape matrix, 𝒒𝒒0 and 𝒒𝒒𝑓𝑓 respectively are the vectors of elastic coordinates in 
the undeformed and deformed configuration and 𝑩𝑩2 is the reference condition matrix that removes 
the rigid-body motion from the elastic displacements. It is noteworthy that the gross motion 
defined by Ri and Ai is not, in general, a rigid-body motion. Only when the RCs impose a fixed 
constraint at point Oi the gross motion becomes a rigid-body motion. The RCs can be applied at 
any point of the body, respecting that the final structure is isostatic or hyperstatic. Although this is 
the only prescription imposed on the RCs, however, further advice based on the experience is 
advisable: 

 
1. the RCs should be a subset of the multibody joints, meaning that the body should deform 

following shapes allowed by the actual joints. 
2. different RCs yield different results and should be experimentally validated. 

 
The first advice comes from a recent paper [5] in which it is demonstrated that the free-free or 

mean-axis RCs, in particular system layouts, do not satisfy the mechanical joints. If the RCs must 
respect the mechanical joints, they must be applied on the same nodes used to define those joints. 
These nodes can be points of the structure, as in the case of beam or plate elements, or they can be 
virtual points, as in most cases where three-dimensional elements are used. 

The second piece of advice comes from the evidence that different RCs create different 
component modes of the reduced system and eventually modify the elastic response of the system. 
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This probably stems from the finiteness of the component mode set employed to obtain the 
reduced-order model. In [6-10], the authors investigated this problem by providing different planar 
and spatial examples based on beams. 

In summary, it would be convenient to use different sets of RCs. Advisable FFR-based methods 
must be able to apply the RCs to any physical or virtual point of the structure to create the 
component modes necessary for the dynamic analysis [11]. In FEA, this issue is solved using the 
rigid and the interpolation multipoint constraints (MPC), often referred to as RBE2 and RBE3 
elements, respectively. In flexible multibody systems, as for structures, the RBE elements are also 
employed to create multibody joints. In RBE2, a group of dependent nodes follows the rigid body 
displacements of a single independent node. In RBE3, the displacement of a given dependent node 
is calculated using the displacements of a group of independent nodes. 
Methodology 
Given a component discretized into FE, let B, I, and V be the sets of boundary, internal, and virtual 
nodes, respectively. All interface nodes belong to B, while V contains the virtual nodes necessary 
to create an MPC; the remaining nodes belong to I. The virtual nodes are essential creating an 
MPC and can be collocated, that is, physical nodes of the mesh or non-collocated nodes, i.e., nodes 
not belonging to the body’s volume. Then, the RBE2 element can be described in terms of the 
mentioned sets: 

𝑭𝑭:𝐵𝐵
        
��𝑉𝑉, 𝒒𝒒𝐵𝐵 = 𝑭𝑭𝒒𝒒𝑉𝑉 (RBE2) (1) 

Fort he and RBE3 element, it follows 

𝑮𝑮:𝑉𝑉
        
��  𝐵𝐵, 𝒒𝒒𝑉𝑉 = 𝑮𝑮𝒒𝒒𝐵𝐵 (RBE3) (2) 

where F and G are linear functions of the independent nodes whose expressions are reported in 
[2, 3]. The vectors qB and qV contain the displacements of nodes belonging to B and V, respectively. 
Usually, dim(V) < dim(B), and this explains the limited use of RBE3 in multibody applications. 
While imposing the RCs on the virtual nodes of the RBE2 elements is often immediate, doing the 
same with the RBE3 element needs some tricks. Applying the RCs on the virtual nodes of V, the 
RCs can be expressed through the following linear constraint equations 

𝑫𝑫𝒒𝒒𝑉𝑉 = 𝟎𝟎 (3) 
where D is a matrix containing the coefficients of these equations. 
 

RBE2 element 
By introducing Eq.(1) into Eq.(3), we derive 

𝑫𝑫𝑭𝑭†𝑭𝑭𝒒𝒒𝑉𝑉 = 𝟎𝟎 →  𝑫𝑫𝑭𝑭†𝒒𝒒𝐵𝐵 = 𝟎𝟎 → 𝑩𝑩2 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑫𝑫𝑭𝑭†) (4) 

where 𝑭𝑭† is the generalized inverse of 𝑭𝑭 and 𝑩𝑩2 is the matrix of the RCs such that 𝒒𝒒𝐵𝐵 = 𝑩𝑩2𝜸𝜸 
being 𝜸𝜸 a reduced set of independent elastic parameters.  

Usually, this procedure is not needed as 𝑩𝑩2 can be directly found by removing the constrained 
dof from 𝒒𝒒𝑉𝑉, i.e. 

𝒒𝒒𝑉𝑉 = 𝑩𝑩2𝒒𝒒𝑽𝑽∗    (5) 

where 𝒒𝒒𝑽𝑽∗  is the reduced set of independent elastic coordinates. Exploiting Eq.(5), it is derived 
that 

𝒒𝒒B = 𝑭𝑭𝑩𝑩2𝒒𝒒V∗ →  𝑻𝑻 = 𝑭𝑭𝑩𝑩2 (6) 

in which 𝑻𝑻 is the transformation matrix that contains both the RBE2 and RCs. 
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RBE3 element 
By introducing Eq.(2) into Eq.(3), we have 

𝑫𝑫𝑮𝑮𝒒𝒒𝐵𝐵 = 𝟎𝟎 →  𝒒𝒒𝐵𝐵 = 𝑩𝑩2𝝆𝝆, 𝑩𝑩2 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑫𝑫𝑮𝑮) (7) 

By substituting into Eq.(2), we obtain 𝒒𝒒𝑉𝑉 = 𝑮𝑮𝑩𝑩2𝝆𝝆. In this case, the direct substitution carried 
out in the RBE2 element is not possible, and the final transformation matrix 𝑻𝑻 = 𝑮𝑮𝑩𝑩2 maps a 
reduced set of independent elastic parameters into the virtual node displacement vector 𝒒𝒒𝑉𝑉. 
Numerical simulation 
The method presented in the previous sections is applied to a slider-crank mechanism. In Figure 
2, the crank is modeled considering tetrahedrons. The interface nodes of set B are highlighted using 
red dots. The three interfaces refer to the revolute joints employed to connect the crankshaft to the 
frame (B1 and B3) and the revolute joint between the crank and the connecting rod (B2). Only RBE3 
elements are employed, and a virtual node is defined at the geometric center of each interface. 
Then, the three virtual nodes are used to determine the revolute joints. To define 𝑩𝑩2 as in Eq.(7), 
a set of RCs must be imposed by means of the matrix D of Eq.(3). Here, we consider three sets of 
RCs as reported in Tab. 1. All sets lead to an isostatic structure.  

  
Figure 2: Crank layout and interface nodes highlighted using red dots. 

Table 1: Three sets of reference conditions. T and R stand for forbidden translations and 
rotations. 

RCs Interface B1 Interface B2 Interface B3 
Set 1 Spherical (TxTyTz) - Universal (TxTyTzRy) 
Set 2 Spherical (TxTyTz) Translation (Tz) Translations (TxTz) 
Set 3 - Fixed (TxTyTzRxRyRz) - 

 
The three sets of RCs are used to define the normal modes, i.e., eigenmodes of the component 

constrained using the RCs [4]. Retained sets of normal modes serve as a basis for reducing the 
elastic coordinates. The final set of coordinates includes only gross motion coordinates and the 
modal amplitudes corresponding to the retained normal modes. As can be shown in Fig. 3, the 
modes and their corresponding frequencies change, passing from one set to another. As already 
remarked, this modifies the dynamics of the system.  

To observe how the elastic field modifies the dynamics of a system, we assembled a slider-
crank mechanism simulating an internal combustion engine with a single-cylinder. The connecting 
rod has been modeled using tetrahedrons and simply supported RCs, while the cylinder has been 
modeled as a rigid body. An external force arising from the in-cylinder pressure shown in Fig. 4 

B3 
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X 
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has been applied to the piston, as detailed in [12]. Two torques simulating the starter electric motor 
and the external load applied to the crankshaft have also been included in the model. All 
components and the dynamics simulation have been performed using the commercial software 
Matlab®. The implicit generalized-alpha method has been employed to integrate the equations of 
motion. 

Set 1 Set 2 Set 3 

 

 

 

 

 

 

Figure 3: The first two normal modes for each set of reference conditions. 
As can be observed in Fig. 4, after a transitory phase in which the system accelerates, the angular 

speed of the crankshaft stabilizes. The oscillations around the regime speed are typical of a single-
cylinder system due to unbalanced forces during the rotation. Comparing the three sets of RCs, the 
angular velocity of the crankshaft starts to differ for high speeds. This effect comes from the 
different frequency ranges of the three normal mode sets employed in the reduction process.  

   
Figure 4: Simulation snapshot of the slider-crank system, in-cylinder pressure, and angular 

speed of the crankshaft considering the three sets of RCs of Table 1. 
Conclusions 
This paper presents a method to combine interface reduction and reference conditions to create 
component modes to be used for the dynamics of flexible multibody systems. The procedure is 
applied to both rigid and interpolation multipoint constraints. For the latter, all interface dofs are 
employed without resorting to any selection criteria of the independent dofs. The case study of a 
slider-crank mechanism simulating an internal combustion engine with a single cylinder is 
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provided to demonstrate how different sets of reference conditions can influence the dynamics of 
a complex multibody system. 
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Abstract. This paper aims the study of lightweight gears through a novel approach based on a 
multibody model contact-based with pseudo-rigid teeth. This method considers the teeth as 
pseudo-rigid bodies attached to the main body through revolute joints and torsion springs with 
precomputed stiffness. Thanks to this approach, the lightening is considered by varying the value 
of the stiffness parameter. To validate the method, the first step compares the Transmission Error 
computed with this novel approach with the Finite Element method in quasi-static operating 
conditions. The second step highlights the behaviour of the Transmission Error, increasing the 
rotation speed. 
Introduction 
Lightweight gears (LGs) represent one of the most common design solutions to increase the 
efficiency of the transmission system. This approach is based on the reduction of inertia properties 
that generates a decrease in the potential energy dissipated in the transient phase. Lightening is 
produced by reducing the gear rim thickness or by introducing holes on the gear rim. Recently 
many researchers have found solutions to consider the effects on the transmission error (TE) 
introduced by lightening. In reference [1], the dynamic behaviour of LG is investigated through a 
one degree-of-freedom (DOF) considering a time depending on mesh stiffness (MS) computed 
through the Finite Element (FE) method. This approach is well documented in the literature and 
remains widely adopted at the design level. In reference [2], the TE and the strain analysis of LGs 
are obtained by using a hybrid FE-analytical gear contact model. The weakness of the analytical 
approach is that the MS needs be previously computed through FE models. For this reason, a 
multibody model contact-based with pseudo-rigid tooth (MUBOCO-PR) has been introduced [3, 
4]. This method considers the teeth as pseudo-rigid bodies attached to the main body through 
revolute joints and torsion springs having a precomputed stiffness. In this way, the flexibility of 
the tooth and the gear body can be condensed into the torsion spring. This approach has been 
already adopted for gears having tip relief modifications [5]. The main purpose of this investigation 
is to show how this method can be extended to the study of the LGs. To simplify the interpretation 
of the numerical results, and consistently with the findings reported in [6], it is introduced the 
definition of the transmission error (TE) as “the deviation in position of the driven gear and the 
position it would occupy if the gear drive were perfectly conjugate”. Using the subscript s 1 and 2 
to denote  the driving and the driven gear, respectively, the TE along the line of action in an 
ordinary gear train is expressed as 

1 1 2 2( ) ( ) ( )b bTE t r t r tθ θ= +  (1.1) 
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for the i-th gear (i=1,2), ( )i tθ  is the angular position, measured from the nominal position, and 
bir   the base radii, respectively. 

If the TE is measured in static conditions, it can be defined as Static transmission error (STE). 
Conversely, if it is evaluated under operating conditions, it is termed dynamic transmission error 
(DTE). While the STE depends on compliance contributions of the system and geometrical 
properties of the profile, the dynamic response involves phenomena such as impacts, nonlinear 
effects, and vibrations. The paper is organized as follows: in the first part, a general methodology 
to generate a MUBOCO-PR model is presented. Then, STE numerical results have been compared 
with FE model in quasi-static conditions.  
Method 
MUBOCOF-PR, considers each tooth as an individual body elastically connected to the gear hub 
through a specific elastic joint, considering the elastic contributions that represent the source of 
excitation of the system. In particular, the rim body and the teeth compliances are condensed into 
specific spring joints, while the contact compliance is assigned to the contact stiffness. In this way, 
a suitable separation of all the described contributions can be achieved. 

The parameters to be specified are load conditions, stiffness, and damping for the spring at each 
tooth joint and the parameters for the multibody contact formulation. The generalized spring force 
is computed by means of  the following equation: 

0 0( ) k cn n
junctionT k c Tϕ ϕ

ϕ ϕϕ ϕ ϕ= − − − +  (1.2) 

where kϕ and cϕ are the spring stiffness and damping coefficients, respectively; kn ϕ , cn ϕ  the 
exponents of the relative rotation and angular velocity, respectively; 0T the free length spring 
torque; ϕ the angle of the current rotation; 0ϕ the free angle. Assuming 0T =0 and 0ϕ =0, only four 
parameters, namely kϕ , cϕ , kn ϕ , cn ϕ , need to be identified.  

The contact formulation adopted in this work is based on a double detection phase: pre-search 
to identify contact zones and a detailed search to find the penetration depth of the contact regions 
[7]. A 2D contact model without friction has been used to estimate the penetration depth with a 
feasible accuracy. The contact force generated at the contact point is based on a penalty contact 
force [8, 9]. Contact force can be calculated using the following relationship: 

2 31 ( )m mm
n con conF k c δδ δ δ

δ
= +





 (1.3) 

whereδ is the penetration,δ is the penetration speed, conk and conc  are the stiffness and the 
damping coefficients, respectively, 1m , 2m and 3m are the stiffness, the damping, and the indentation 
exponents, respectively. With this formulation, there are five parameters to be identified, namely 

conk , conc , 1m , 2m , 3m . In conclusion, nine parameters have to be defined, i.e. four regarding the 
rotational spring and five regarding the contact formulation, respectively. These parameters are 
divided into two groups: the first one contains the parameters linked to the stiffness characteristics 
( kϕ , kn ϕ , conk , 1m ); the second one includes the parameters relating to the damping properties ( cϕ ,

cn ϕ , conc , 2m , 3m ). The first set influences the solution both in quasi-static conditions and dynamic, 
and the second set is relevant mainly in dynamic simulations.   

Modifications for lightweight can be done essentially in two different ways: creating holes in 
the rim of the gear or reducing the gear thickness of the rim. Figure 1 reports the main geometrical 
parameters associated with a lightening solution. In particular, in the case of gear lightening by 
holes, the following geometric parameters can be identified: the number of holes N, the radius of 
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the holes Rh and the radius of the circumference of the hole Rch (Figure 1a). The rim thickness 
reduction, for generic spur gear, can be synthesized with four additional dimensions: t2 is gear 
width, t1 is section thickness, l1 the crown height, l2 the central height and l3 the rim height (Figure 
1b). 
 

 
Figure 1 Lightening parameters 

Numerical Example 
A numerical example was carried out adopting two gears having identical macro geometry 
properties but different lightening conditions. In particular, the driving gear is considered without 
lightening conditions, while the driven gear is characterized both by reduction of the body 
thickness and by the presence of holes. Table 1 shows the geometric characteristics of both gears. 

Table 1 Gear geometrical properties: A) general parameters B) lightning parameters 

 A) Gear A Nomenclature UoM  B) Lightening modifications  
m  1.5 Module mm  N  6 Number of holes  

Z  67 Number of Teeth    hR  6 Hole radius mm 

pd  100.5 Pitch Circle Diameter mm  chR  32.36 Position of holes mm 

φp  20 Pressure angle  deg  1l  6.075 External length  mm 

a  1 Addendum Coefficient mm  2l  23.25 Length of reduction mm 

b  1.25 Dedendum Coefficient mm  3l  7.425 Internal length  mm 

c  0.07 Backlash mm  1t  10 Thickness reduction mm 

2t  17 Tooth Width  mm      

fillR  0.45 Fillet tooth radius mm      

 
In the example, the gears have been connected to the ground using revolute joints at the centres 

of the gears. A ramp motion is prescribed to the driving gear, while a similar ramp is adopted for 
the resistant torque applied to the driven gear to avoid impacts. Figure 2 shows the setup of the 
model. Contact stiffness parameters ( conk and 1m ) are identified through a fit of the results from 
Weber’s analytical solution [10]. Contact stiffness is not influenced by the lightening because it 
depends only on the geometrical profile and material of the gear. In this simulation conk =  5.64∙106 
N/mm; 1m = 1.24. 
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Figure 2 Numerical example setup 

Spring coefficients of the unmodified gear are computed by adopting the methodology 
developed in [3]. In this simulation kφ =  1.06∙106 Nmm/rad; 1n = 1.1. The spring coefficients of the 
lightened gear are computed with the same method, but the displacement of the tooth is obtained 
for each tooth through a set of FE models in which the gear has been considered fixed in the inner 
hole and loaded at the primitive circle. The results of the stiffness computation are reported in 
Figure 3. In particular, Figure 3a  shows the adopted tooth enumeration, while Figure 3b reports 
the stiffness computed for each tooth. An interesting behaviour can be observed from this first FE 
result: the stiffness is higher in teeth positioned over the holed. It is apparently an unintuitive result 
but can be explained in the stress contour. The most stressed zone is not the portion under the tooth 
but the zone near the fillet radius.   

 
Figure 3 a) Tooth enumeration b) stiffness computed for each single tooth 

Quasi-static results 
For the quasi-static simulation, the ramp of motion starts from 0 rad/s at the time 0 s, and reaches 
1.0 rad/s at time 0.001 s. The same ramp is adopted for the resisting torque applied to the driven 
gear: 0 Nm at 0 s, end 50 Nm at 0.001 s. The simulation end time is set to admit a 120 deg of gear 
rotation to highlight the effect of the holes on the STE. The same simulation conditions have been 
adopted in the reference model based on FE model, composed from 2D 4-side elements, under the 
assumption of planar strain. The contact formulation adopted for FE models, is a 2D contact 
between involute profiles based on the concept of hard contact. As the result, a comparison among 
FE models and MUBOCOF models is reported in Figure 4. In particular, Figure 4a reports the 
STE computed from 0 to 120 deg to highlight the effects of the holes, while Figure 4b highlights 
a magnification of the STE from 20 to 40 deg to better underline the comparison. The effects of 
the holes can be replicated in a satisfactory approximation. The only difference between FE and 
MUBOCOF is the amplitude of the STE. It can be attributed to an overestimation of the stiffness 
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when two couple of the teeth are in contact. In fact, MUBOCOF does not consider the coupling 
effect in deformation due to the foundation. 

 
Figure 4 a) STE computed for 120 deg; b) STE magnification 

 
Figure 5 a) DTE signal; b) Magnification of DTE; c) Fast Fourier Transform of DTE 

Dynamic analysis 
In the dynamic simulation, all the parameters have been maintained except the ramp for the motion 
and the applied torque. The ramp of motion begins from 0 rad/s at the time 0 s, and reaches 100 
rad/s at time 0.01 s. The ramp for the resisting torque applied to the driven gear is 0 Nm at 0 s, end 
50 Nm at 0.01 s. Figure 5 summarizes the DTE results. The total simulation time is set to 0.2 s. 
Figure 5a reports the DTE signal in which the transient phase is avoided. It can be observed the 
vibration component generated from the holes is maintained. Moreover, the additional vibration 
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component due to the oscillation of the teeth is introduced (Figure 5a). A very interesting plot is 
reported in Figure 5c in which the Fast Fourier Transform (FFT) of the DTE signal is reported. It 
can be seen how the first peak represents the vibration component induced by the holes. 
Conclusions 
In this paper, a preliminary study of the LGs through a MUBOCO-PR is performed. TE results in 
quasi-static conditions demonstrate a good agreement with the FE method. STE results highlight 
a slight difference in STE value when multiple teeth are in contact.  The effects due to the variation 
of the stiffness with respect to the angular position are correctly identified. Dynamic analysis 
shows how the vibration induced from the flexibility of the tooth generates an additional oscillating 
component and a dynamic amplification of the TE.  
 
This research is funded by MUR through the PRIN “Innovative contact-based multibody model 
for noise and vibration prediction in high-performance gears”. Code project: 202022Y4N5. 
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Abstract. Large Deployable Reflector (LDR) systems are commonly used as mesh reflectors for 
large aperture space antennas in aerospace applications since they provide affordability while 
guaranteeing at the same time a high gain and a high directivity. To improve the surface accuracy 
several methods have been studied, most of which measure the distance between the cable-net 
system that forms the reflector surface and the desired paraboloid. In this paper we want to improve 
the reflector’s ability to convey a greater concentration of reflected rays in the direction of the 
feed. To deal with this issue, a numerical optimization algorithm has been proposed.  
Introduction 
Applications that make use of satellite communications are now widely spread, both in civil and 
military fields. Bear in mind, for example, about the analysis of images for the study of terrestrial 
morphology, or in the meteorological field for weather forecasts, or even about studies on climate 
change. In the civil field, then, almost all mobile devices, thus far, are equipped with a GPS module 
for tracking the position. Large Deployable Reflectors (LDR) are the main types of reflectors used 
for most of the above mentioned fields. LDR systems are commonly used as mesh reflectors for 
large aperture space antennas in aerospace applications since they provide affordability while 
guaranteeing at the same time a high gain and a high directivity.  

The key features that characterize the geometry of LDR systems are closely connected with 
volume constraints of launch vehicles, mainly because of budget problems [1]. Deployable mesh 
reflectors are composed of rigid bodies, deformable components, mechanical joints, and control 
actuators [2-4] which allows for achieving a complete transition between the initial stowed 
configuration to the final deployed configuration. 

The fundamental problems for the correct functioning of an LDR system are, therefore, the 
proper deployment of the folding mechanism and the form-finding of the cable-net which serves 
as support for the metal mesh. To maintain excellent reflective qualities and meet the prescribed 
bandwidth requirements, the reflector surface must be as close as possible to the shape of a 
paraboloid. Most of the methods used in the literature define the best surface of the reflector as the 
one passing through the nodes of the cable system of the front net or through the centroid of each 
triangular facet [5-10]. In this case, the RMS error depends on the distance between the nodes of 
the front net with respect to the desired working surface. Agrawal et al. [11] examined the RMS 
error between the best-fit paraboloid with flat facets and a sphere. Deng et al. [12] defined the 
RMS error as the distance between the desired working surface and the nodes of the front net. A 
similar interpretation is given by Morterolle et al. [13], where the z-direction distance between the 
desired working surface and a facet of each triangular facet is used to calculate the surface 
accuracy. In this work, however, we want to focus on the amount of energy that hits the feed, thus 
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investigating the best topology of the net that guarantees a greater concentration of the incident 
rays directed towards the focus of the paraboloid. This paper is organized as follows. At first, the 
receiver deviation error is introduced, both in the two-dimensional and in the three-dimensional 
model. Hence the optimization model is presented, along with the results. Finally, the conclusions 
are reported. 
Receiver deviation error 
Figure 1 shows a polygonal chain in blue, whose vertices pass through the parabola drawn in red 
and having the following equation: 

 
𝑦𝑦 =  𝑥𝑥

2

4𝐹𝐹
                    (1) 

 
where F is the focus of the parabola. 
According to what is described in the literature, the polygonal chain would represent the ideal 

condition for the reflector surface as its vertices are located exactly on the parabola. In fact, if we 
consider the RMS error as 
 

𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛

(𝑑𝑑12 + 𝑑𝑑22 +  … + 𝑑𝑑𝑛𝑛2)                 (2) 

 
where 𝑑𝑑𝑛𝑛 represents the distance between each vertex of the polygonal and the parabola, we 

obtain a value equal to zero. Despite this result, the most representative value that guarantees the 
reflector a good frequency band is given by the contribution of each reflected ray that intercepts 
the feed located at the point F. As shown in Fig. 2 (left), taking into consideration a prime-focus 
antenna, where the focus is positioned in the center of the reflector, the incident rays parallel to 
the y-axis are reflected on the surface of the reflector and then directed towards the feed. 

 

 

 

Fig. 1: Polygonal chain and parabola (left); Incident and reflected rays (right). 

The point 𝑃𝑃𝑐𝑐𝑐𝑐 represents the centre of the i-th line segment of the polygonal. Figure 2 shows an 
enlargement around the feed, which highlights how the incident rays coming from the points  are 
not directed exactly on the focus F, but are distant from it by a quantity 𝑑𝑑𝑐𝑐. To determine this 
quantity, we need to calculate the minimum distance between the focus and each reflected ray 
coming from all line segments of the polygonal chain. 
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    By keeping the aperture width of the parabola fixed, it is easy to understand how by increasing 
the number of line segments of the polygonal, the RMS error decreases exponentially, as the 
approximation of the parabola improves. Theoretically, the ideal configuration occurs when the 
number of line segments tends to infinity, but this information collides with the manufacturing 
limits, as it is not possible to make a cable-net with an infinitesimally small cable length. 
    What described for the two-dimensional model can be even extended in the three-dimensional 
model. Unlike the 2D model, the polygonal chain is replaced by the surface reflector consisting of 
the cable-net system, whose nodes are located on the paraboloid surface. Here, for the RMS error 
evaluation, the vertices of the triangular facets and their centroid are considered. 
    Using the equation to determine the minimum distance of the reflected rays from the focus of 
the paraboloid and considering a prime-focus antenna, we obtain what is depicted in Fig. 3. This 
figure shows in blue the points of minimum distance calculated by the reflected rays coming from 
the vertices of each triangle, while in red those coming from the centroids. As for the 2D model, 
also in this case it is necessary to associate a weight according to the different contributions of the 
rays. At the centroid a weight of 1/2 is assigned, while at the three vertices of the triangle a weight 
of 1/6 is assigned, since their contribution needs to be split equally between them. In the 3D model, 
by adding the weights, , the Eq. (2) changes as follows: 
 

𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅 = �(𝑤𝑤1𝑑𝑑1)2+(𝑤𝑤2𝑑𝑑2)2+⋯+(𝑤𝑤𝑛𝑛𝑑𝑑𝑛𝑛)2

3𝑛𝑛
                        (3) 

 
Correction algorithm 
To improve the performance of the reflector, the best geometric figure formed by contiguous and 
flat triangular facets needs to be found.  

 
Fig. 2: Reflected rays around the receiver. 
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Fig. 3: Top view of the triangular facets of the cable-net and the points of minimum distance of 

each reflected ray for a prime-focus reflector. 
The geometry of the above said paraboloid can be achieved thanks to the formulation of an 

optimization algorithm which, by varying the position of the nodes of the cable-net, minimizes the 
distance of each reflected ray with respect to the focus of the paraboloid.  
The optimization problem can be defined as follows: 
 
 Find x, y, z 
 min 𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅                   (4) 
 

where x,y,z represent the coordinate of the internal nodes of the cable-net, since the nodes 
located on the perimeter remain fixed in their initial position, while 𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅 is the RMS error defined 
by Eq. (3). By applying this algorithm to an offset reflector with a parent paraboloid diameter of 6 
meters, it is possible to appreciate how the cable-net topology changes according to the minimum 
distance between each reflected ray and the receiver. 

Figure 4, on the left, shows the initial topology of the cable-net of the offset reflector. On the 
left side the location of the points of minimum distance of the reflected rays with respect to the 
focus is shown. In particular, the blue points are closer to the focus as they represent those coming 
from the centroids of each triangle of the cable-net, while those in red from the three vertices. By 
applying the optimization problem described above, the result shown in the right side of Fig. 4 is 
obtained. The greater concentration of points around the focus demonstrates the effectiveness of 
the algorithm, and this confirms how the optimized net topology concentrates the rays reflected by 
the reflector in a smaller area of the illuminator. 

In Fig. 5 it is possible to better evaluate a comparison between the two obtained results. 
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Fig. 4: The initial (left side) and final (right side) topology of the cable-net of an offset reflector 
and the points of minimum distance with respect to the focus. 

 

 
Fig. 5: An enlargement of the points of minimum distance with respect to the focus before and 

after optimization. 
Conclusions 
The surface accuracy of mesh reflectors is the main objective to be achieved in order to guarantee 
the prescribed band-width requirements. In this work, a numerical optimization algorithm able to 
ensure a greater concentration of reflected rays around the focus has been developed. The novelty 
introduced in this paper concerns the ability to optimize the reflecting surface according to the 
quantity of reflected rays directed towards the illuminator, unlike the most used method which 
measures the distance of the nodes of the net with respect to the ideal paraboloid. This approach 
provides a direct measure of the error of all incoming electromagnetic rays missing the receiver. 
One operating condition has been addressed: the case of the offset reflector. In this case, an 
unconstrained numerical optimization problem was adopted as the nodes were fixed on the external 
circumference and the only variables were represented by the internal nodes, which are free to 
move over the entire surface of the reflector. The numerical results confirm the goodness of the 
proposed method, modifying the topology of the cable-net in order to reduce the mean square error 
around the feed of the reflector. 
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Abstract. The manuscript presents the development of a flexible multibody model to study the 
behavior of a distributed-compliance helical transmission joint. This kind of joint has not already 
been  studied in literature and its simulation challenges with complexities. The flexible multibody 
approach breaks through these and provides some interesting results. It’s exposed first upon   the 
kinematic behavior of the joint; then a stress analysis is provided; and lastly the results of 
dynamical tests  are shown. 
Introduction 
Transmission joints allow the transfer of mechanical power between generally misaligned rotating 
shafts [4,6,7,8]. Their design confronts Applied Mechanics with two main tasks, it is:  
a) the regularity of the transmission of motion, i.e. obtaining or approximating the optimal 

transmission ratio of the angular velocities, which is equal to one. 
b) the power efficiency, i.e. to reduce the passive work of friction actions. Contact forces and 

consequently friction tend to be large, due to the necessity of transmitting a high torque 
through a minimized radial extension. 

Concerning both points, rigid-link transmission joints are moreover extremely sensitive to 
construction and assembly errors [6,8]. Relevant lubrication is needed, and wearing deteriorates 
the quality of the kinematic operation. A good solution for the task (b) may be the adoption of 
compliant mechanisms as transmission joints. These kinds of mechanisms work in fact without 
contacts, save when they are specifically designed, for they are monolithic deformable structures, 
or made of integrated parts, in which the deformation of some of their portions allows for the 
desired displacement of others [1,6]. This anyway makes them intrinsically load-sensitive, and so 
their fitness to task (a) needs to be evaluated. Severe fatigue issues may arise and, further, the 
dynamics of the compliant-jointed system will exhibit critical frequencies in which resonating 
effects are produced. 

Compliant kinematic-equivalent joints.  Compliant transmission joints had insofar been 
designed generally to reproduce rigid-links kinematic pairings [2,3,5]. In [2] there are examples of 
several flexures to reproduce revolute joints. In [5] torsional prisms are used to simulate the 
functional couplings of a Hooke-Joint. 

Compliant helical joint (CHJ). Another kind of compliant joint is not based on some rigid-links 
ideal or actual counterpart but on helical machined springs [9]. The structural concept of CHJ’s is 
to join a high torsional stiffness with a low flexural. These kinds of devices may work as couplings 
for small axes misalignments, or transmission joints for large, either angular, parallel, or skewed. 
The manufacturing of machined springs enjoys all the common advantages for compliant 
mechanisms, it is no necessity of assembly thus integration with other elements, and high 
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precision. It has some advantages even with the common manufacturing of extruded wire springs, 
while the machined coil has negligible residual stress.  CHJ’s are produced and can be purchased. 
To the knowledge of the authors, there is no existing literature on the subject, despite this kind of 
compliant joint is interesting from a mechanical point of view, and possibly economical too. 
Cases of study 
Multibody simulations.  Multibody dynamics simulations represent a very useful approach to study 
transmission joints because thanks to this approach it is possible to consider the behaviour of the 
joint in several operating conditions. [10]. 

In this case, a sample CHJ is modelled in CAD and employed in full-flexible multibody 
simulations. In these, the coil is treated as a flexible component discretized as FEM, and it’s 
analyzed along with the computation of the general multibody dynamics. The purpose is to 
highlight the basic features of a generic CHJ about its kinematic, dynamic, and structural 
performances. At this earlier stage of the study the influences of variations in the coil geometry 
had not been investigated. 
 

              
 Fig. 1. CAD model of the sample CHJ.        

 

 
 
 
 

Table 1. Nomenclature and sizes. 

A Input  bearing D1 19,2 [mm] 
B Input rigid end D2 6,35 [mm] 
C Flexible coil l 8,50 [mm] 
D Output rigid end p 1,98 [mm] 
E Output bearing L 39,6 [mm] 

 
 

 
Model description. The sample CHJ is featured and sized according to  a joint of the kind at 

[11].  This is an inox-steel single coil and single coil-start monolith, actually designed for angularly 
misaligned shafts. Two rigid ends are integral to the coil and the two input and output shafts 
bearings are added in the model. 

Simulations environment and setups. In a full-flexible multibody simulation environment, the 
helical coil is modelled in shell Quad4 elements. With reference to Fig.2, the bearings are joined 
by a cylindrical pair at their middle point along the line of the aligned axes, with allowed 
perpendicular translations S and rotations R. It has to be noticed that this is a particular condition 
of kinematic constraints, although not unrealistic. That is, a more complete study on CHJ’s shall 
account for different conditions too, like for instance possibility for one or both of the rigid ends 
of the joint to slide along the respective shaft. The model is completed with a massive body M  
integral to the output rigid end, with parametric moments of inertia J in the direction of the output 
axis. 
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Fig.2 Flexible Multibody modelling and simulations setup. 

 
Tests are generally with skewed misalignments, even if the sample joint is declared to be 

specifically designed for angular ones. In fact, the purpose of the simulations is to detect general 
tendencies, apart from the definition of some optimal designs. Tests are of quasi-static kinds to 
measure the error of transmission and stress peaks and magnitudes of oscillation; and of dynamical 
kind to find the resonating frequencies and factors of amplification.  
Results 
Quasi-static tests had been carried out varying angular misalignments R from 0° to 45° with 9° 
step; and translational S by multiples of r = D1/2, ranging from 0,0 to 1,0 with 0,2 step.         

Transmission error. The main results on transmission error, calculated on smoothed data, 
demonstrate that: i) it depends only on misalignment parameters; ii) is anyway very limited, it is 
O(10-3). This from an engineering point of view confirms the producers’ claim of an effective 
constant-velocity performance of these joints.  

 
Fig.3 Transmission error at varying parameters of misalignment. 

 
Stress distributions and severities. The behavior of the coil at different kinds of misalignment 

can be appreciated in Fig. 4 a) b) c). These show the distributions of Von Mises stress at the 
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extreme points of pure rotation, of pure translation and in the major skewing, with an applied 
output torque To=500 Nmm. 

     
a) R=45°, S/r = 0;  

     
 b) R=0, S/r = 1; 

        
c) R=45°, S/r = 1; 

 
Fig.4 Von Mises stress distributions in the coil and developments at more stressed points 

in different conditions of misalignment. 
 

In all the cases the distributions remain quite constant in the control volume. In the cases of 
pure rotation stress increases axially from the ends to the middle; in the cases of pure translations 
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instead, it decreases axially from the ends to the middle; in skewed misalignments it has a hybrid 
behaviour. In all the cases stress increases radially from the external to the internal edge of the 
coil. This is consistent with the theory of beams with high curvatures, that predicts a non-
homogeneous distribution of  stiffness on the cross-sections, and more specifically increasing 
toward the centre of curvature. This implies a greater stress on the same deformations. 

Dynamic tests.  Resonating frequencies had been obtained through simulations at different 
values of misalignments, torque, and moments of inertia J. A nonlinear behavior  had been detected 
and it’s shown in Fig.5 on normalized variables. The values f0 of the frequencies at aligned axes 
seem to scale in inverse ratio with �J as in the linear theory. These values decrease with the 
translational misalignments,  and not with the rotational if there is no applied output torque. If the 
torque is applied a greater decrease it’s observed with  the translational, and then  with the 
rotational too. For this behavior it had been hypothized  a law which is trilinear in the parameters 
of misalignment and output torque. Coefficients had been established on the data obtained for 
J=400[kgmm2], and the hypothetical laws thus reads as: 

  𝑓𝑓 = 20
�J 
�18.5 − S

r
�2.7 + To

500
�1.44 + 0.24 R

45°
��� , 

where R is expressed in degrees. 

 
Fig.4 Adimensional variations of the frequencies of resonance in dependence of: 

(left) translational misalignments, and output torque;  
(right) translational misalignments, output torque, and rotational misalignments. 

The formula gives some good  predictions, the results of some of which are shown in Fig.6 in 
terms of the difference between output and input angular velocities. In the case on the right side 
the prediction of 5.29 Hz is not truly remote from the actual resonance, which had been detected 
at ab. 5.50 Hz. The error is thus less than 4%. A more refined model may be developed in further 
work. 

 
Fig.6 Validation of predictions on frequencies of resonance: 

 (left) J=100.0 [kgmm2], S/r=1.0, R=45°,  f = 30.9 [Hz];  
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(right) J=3600 [kgmm2], S/r=0.6, R=45°,  f = 5.29 [Hz]. 
Conclusions 
This paper deals with study of a distributed compliance helical transmission joint through a 
methodology of flexible multibody simulations. The compliance of the coils is considered by the 
adoption of a shell FEA model of same thickness of the reference geometry, in order to speed up 
the simulations. The results demonstrate that the transmission error is very limited and depends 
only on misalignment parameters. Moreover, the stress distribution appears to agree with the stress 
theory of deformed beams. Dynamic behavior exhibits some nonlinearity, expressed in a first 
hypothesis as a multilinear relation. 
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Abstract. The fight against the global threat of climate change requires, among other actions, to 
increase the penetration of renewable energy technologies and diversify the energy mix in order 
to support a resilient energy system that can reach net-zero greenhouse gas emissions. Offshore 
energy is expected to drive the energy transition, with wave energy having the major role to 
provide a reliable baseload and reduce the need for storage; however, its techno-economic 
feasibility requires reduction of costs and increase of energy conversion efficiency. This paper 
tackles a fundamental innovation of a device’s working principle which, jointly exploiting 
pendulum and gyroscopic effects, steps-up the overall conversion efficiency in real operational 
conditions. A recent patent proposes a technological solution that conveniently combines 
pendulum and gyroscopic effects in order to effectively exploit motion also outside the plane, 
namely in the three-dimensional space and from all degrees of freedom (DoFs). This paper tackles 
the endeavour of the analytical formulation of the electro-mechanical conversion system 
dynamics, considering at first the fully-nonlinear equation of motion, obtained through a 
Lagrangian approach. Consequently, incremental simplifications are applied to accommodate 
practical application, based on the study on the relative importance of each term in the equation of 
motion. Furthermore, preliminary results are produced and discussed, comparing the behaviour in 
response to 3-DoF to 6-DoF exploitation. 
Introduction 
The European Commission has set ambitious carbon neutrality targets, reaching net-zero 
greenhouse gas emission by 2050, as defined in the Green Deal Communication [1]; moreover, 
the key enabling role of ocean energy (tidal and wave energy) and offshore wind energy has been 
expressively declared by the European Commission [2], including quantitative targets for the 
envisioned installed capacity: 1 GW installed capacity by 2030 and 40 GW by 2050 in the 
European Union waters for ocean energy devices, and 60 GW by 2030 and 300 GW by 2050, for 
fixed and floating wind turbines. A techno-economic improvement is mandatory for both offshore 
wind and ocean technologies to become viable on a such a large and systemic scale, which requires 
further developing of floating wind substructure and the related installed turbine, via techno-
economic optimization and numerical modelling [3];  likewise, leveraging the complementarity 
between wave and wind energy (load profiles, low statistical correlation [4], and cost sharing 
synergies [5]), it is also crucial to flank the offshore wind development with more efficient wave 
energy converters (WECs) which, albeit a smaller total capacity, provide a more stable and reliable 
baseload to reduce production variability and need for storage. Increasing WECs efficiency is a 
complex and multidisciplinary task, relying on a variety of energy-maximisation techniques, e.g. 
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via model-predictive control [6], extremum-seeking [7], or time-varying control [8], time-effective 
estimation [9] and forecasting [10] algorithms, data-driven improved accuracy of numerical 
models of fluid-structure interactions [11] by means of the  identification of grey-parameters in 
low-complexity models [12], mid-fidelity partially-nonlinear models [13], or direct 
implementation of fully-nonlinear Navier-Stokes fluid-dynamics equations [14]. Nevertheless, 
such models should preserve the inherent passive characteristics of the system [15], while 
remaining able to articulate typical instabilities of floating structures, e.g. parametric resonance 
[16] or yaw instability [17]. Finally, due to the resulting potential complexity of such nonlinear 
models, it is often convenient to apply model order reduction techniques to achieve real-time 
computation, required for practical implementation [18]. 

All of the previous techniques are applicable to arbitrary WEC concepts; however, more 
fundamental routs to increase energy efficiency is to operate on the underlying conversion 
principle [19]. A novel device is indeed proposed in this paper and in a recent patent, based on the 
idea to notionally merge two already successful devices, both using inertial coupling between the 
motion of a floating hull and the inner electromechanical system: the ISWEC [9] (Inertial Sea 
Wave Energy Converter) and the PeWEC [20] (Pendulum Wave Energy Converter). Both 
technologies perform best when the incoming wave direction is along the hull main axis, and/or 
the spreading factor of the wave is infinite (i.e. all spectral components are travelling in the same 
direction) [21], so the WEC motion remains in a plane. The herein discussed technological solution 
conveniently combines gyroscopic and pendulum effects to expand the operational space of the 
WEC also outside the plane, namely to extract energy from all degrees of freedom (DoFs). The 
content of the paper is the analytical formulation of the electromechanical conversion system 
dynamics, starting from the fully-nonlinear equation of motion, obtained through a Lagrangian 
approach; consequently, a sensitivity analysis explores the system’s most influential mechanical 
parameters. Such results constitute the first stepping stone towards a holistic techno-economic 
analysis, based on the results presented in this paper. 
Mechanical device and its mathematical modelling 
This section introduces the underlying mechanical innovation of the analysed system and presents 
the related mathematical model. The technology is composed of a flywheel rotating around an axis 
𝜑𝜑, hosted within a gimbal and vertical at static equilibrium. The gimbal is supported by a structure 
able to rotate around an axis 𝜀𝜀, normal to 𝜑𝜑. The main innovation with respect to the ISWEC 
system is to displace the middle symmetry plane of the flywheel by a distance 𝜆𝜆 from the axis 𝜀𝜀; 
in this way, the arm 𝜆𝜆 introduces the pendulum behaviour while the gyroscopic action is obtained 
by the flywheel rotation �̇�𝜑. Both torques are parallel to the 𝜀𝜀 axis, so a potentially constructive 
interference may be obtained. A power take-off unit converts the mechanical energy into electrical 

 
Figure 1. Whole WEC (on the left) and inner electromechanical components (right) 

Figure 1 shows a CAD impression of such technology, and a possible installation within a 
sealed floating hull, loosely moored to the seabed to enable rotations around the horizontal axis. 
Considering the inertial frame 𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑧𝑧), the pose of both the gimbal and the flywheel are 
computed by means of a set of linear differential equations, assuming small oscillations to make 
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the use of linear mapping reasonable. The system motion is described with 𝑛𝑛 = 6 degrees of 
freedom (DoFs), so that the vector of generalized coordinates 𝑋𝑋(𝑡𝑡) ∈ 𝑅𝑅𝑛𝑛 is defined as: 

X(t) = [x(t), y(t, ), z(t), θ(t),δ(t), ε(t)]𝑇𝑇 (1) 
which refer to the surge, sway, and heave displacements, and the roll and pitch rotations of the 
floater; in addition, 𝜀𝜀(𝑡𝑡) is the pendulum rotation with respect to the precession axis. Note that no 
yaw motion is considered, since the axisymmetric floater is not affected by yaw hydrodynamic 
torques. Thanks to the linear assumptions, equation of motion is derived through the superposition 
principles, combing both the elastic effect due to the flywheel mass 𝑚𝑚𝑓𝑓 and the gyroscopic effect. 
It is further assumed that the centres of mass of the floater and the gimbal coincide, both placed 
on the precession axis. The corresponding inertia matrix are defined as 𝐼𝐼𝑔𝑔,𝒢𝒢 = diag�𝐼𝐼𝑔𝑔,𝑥𝑥, 𝐼𝐼𝑔𝑔,𝑦𝑦, 𝐼𝐼𝑔𝑔,𝑧𝑧� 
and 𝐼𝐼𝑓𝑓,𝒢𝒢 = diag�𝐼𝐼𝑓𝑓,𝑥𝑥, 𝐼𝐼𝑓𝑓,𝑦𝑦, 𝐼𝐼𝑓𝑓,𝑧𝑧�, where �𝐼𝐼𝑔𝑔, 𝐼𝐼𝑓𝑓� ⊂ 𝑅𝑅3×3 are the inertia matrices of the gimbal and 
flywheel, respectively. Then, the system of differential equations describing the mechanical 
coupling between pendulum and hull become 𝑀𝑀𝑤𝑤�̈�𝑋(𝑡𝑡) + 𝐶𝐶𝑤𝑤𝑋𝑋(𝑡𝑡) + 𝐾𝐾𝑤𝑤𝑋𝑋(𝑡𝑡) = ℱℯ𝓍𝓍𝓍𝓍(𝑡𝑡), with:  
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(2) 
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where 𝑚𝑚𝑔𝑔 is the gimbal mass. Considering that the gyropendulum motion is controlled by the 
torque τε(𝑡𝑡), the forcing vector ℱℯ𝓍𝓍𝓍𝓍(𝑡𝑡) ∈ 𝑅𝑅𝑛𝑛 is defined as ℱℯ𝓍𝓍𝓍𝓍(𝑡𝑡) = [𝟎𝟎1×𝑛𝑛, τε(𝑡𝑡)]𝑇𝑇. The 
changing in time of position and orientation of the body-fixed reference frame and the potential 
energy variation result in inertial, elastic and gyroscopic forces that induce the gyropendulum 
oscillation. Therefore, energy from the wave forces induces the movement of the floater, hence the 
oscillation of the PTO axis via the gyroscopic effect and/or the restoring force due do the eccentric 
mass. Fluid-structure interactions are modelled using linear potential flow theory, based on the 
assumptions of inviscid fluid and incompressible and irrotational flow. The floater-only response 
with respect to its generalized coordinates in Fourier transform form 𝑋𝑋𝑓𝑓(ω) =
�𝑥𝑥�(ω),𝑦𝑦�(ω), �̂�𝑧(ω),ϑ�(ω),δ�(ω)�

𝑇𝑇
 is defined by the following frequency-domain equation: 

 
−ω2𝑀𝑀𝑓𝑓𝑋𝑋𝑓𝑓(ω) = 𝐹𝐹𝑟𝑟(ω) + 𝐹𝐹𝑒𝑒𝑥𝑥𝑒𝑒(ω) + 𝐹𝐹ℎ(ω) + 𝐹𝐹𝑝𝑝(ω) (3) 

where 𝑀𝑀𝑓𝑓 ∈ 𝑅𝑅𝟝𝟝×𝟝𝟝 is the floater inertia matrix, 𝐹𝐹𝑟𝑟(𝜔𝜔) ∈ 𝑅𝑅𝟝𝟝×𝟙𝟙 is the radiation force, 𝐹𝐹ℎ =
𝐾𝐾ℎ𝑋𝑋𝑓𝑓(𝜔𝜔) ∈ 𝑅𝑅𝟝𝟝×𝟙𝟙 is the hydrostatic restoring force, proportional to the hydrostatic stiffness matrix 
𝐾𝐾ℎ𝑋𝑋 ∈ 𝑅𝑅𝟝𝟝×𝟝𝟝, 𝐹𝐹𝑒𝑒𝑥𝑥𝑒𝑒(𝜔𝜔) ∈ 𝑅𝑅𝟝𝟝×𝟙𝟙 is the wave exiting force and 𝐹𝐹𝑒𝑒(𝜔𝜔) ∈ 𝑅𝑅𝟝𝟝×𝟙𝟙 is the reaction force 
generated by the dynamic coupling of the mechanical system. Finally, it is now possible to 
combine the two sub-systems (inner mechanics and wave-structure system) into the WEC entire 
device dynamics: 
−𝜔𝜔2 �𝑀𝑀𝑤𝑤 + 𝑀𝑀𝑓𝑓� + �̃�𝐴(𝜔𝜔)�𝑋𝑋(𝜔𝜔) + 𝑗𝑗𝜔𝜔𝐵𝐵�(𝜔𝜔)𝑋𝑋(𝜔𝜔) + �𝐾𝐾𝑤𝑤 + 𝐾𝐾ℎ��𝑋𝑋(𝜔𝜔) = 𝐹𝐹𝑒𝑒(𝜔𝜔) (4) 
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𝑀𝑀𝑓𝑓� = �
𝑀𝑀𝑓𝑓 𝟎𝟎5×1
𝟎𝟎1×5 𝟎𝟎1×1

� , 𝐾𝐾ℎ� = � 𝐾𝐾ℎ 𝟎𝟎5×1
𝟎𝟎1×5 𝟎𝟎1×1

� (5) 

where, 𝑋𝑋(𝜔𝜔) is the vector containing the Fourier transforms of the generalized displacements 𝑋𝑋(𝑡𝑡), 
𝑀𝑀𝑓𝑓�  and 𝐾𝐾ℎ�  are the mass and stiffness matrices defined as block matrices, and �̃�𝐴(𝜔𝜔) and 𝐵𝐵�(𝜔𝜔) are 
the added mass and the radiation damping matrices with respect to the generalized coordinates, 
and 𝐹𝐹𝑒𝑒(𝜔𝜔) is the excitation forces vector. The excitation forces vector 𝐹𝐹𝑒𝑒(𝜔𝜔) can be defined as 
𝐹𝐹𝑒𝑒(𝜔𝜔) = [𝐹𝐹𝑒𝑒𝑥𝑥𝑒𝑒(𝜔𝜔), 𝜏𝜏𝜀𝜀(𝜔𝜔)]𝑇𝑇, where 𝜏𝜏𝜀𝜀(𝜔𝜔) is the actual control action on the gyropendulum axis 𝜀𝜀. 
The control is actuated by the PTO system that exerts a damping torque 𝜏𝜏𝜀𝜀(𝑡𝑡) proportional to the 
pendulum swinging velocity 𝜀𝜀̇(𝑡𝑡). In this work, the simulations are performed considering a 
frequency domain model, whose steady-state response under stochastic loads can be generally 
determined on the basis of the transfer function of the system. The related complex form of transfer 
function is: 
𝐻𝐻(ω) = �−ω2�𝑀𝑀𝑤𝑤 + 𝑀𝑀𝑓𝑓� + �̃�𝐴(ω)� + 𝑗𝑗ω𝐵𝐵�(ω) + 𝐾𝐾𝑤𝑤 + 𝐾𝐾ℎ��

−1
 (6) 

The frequency domain representation of eq. (6) is used as a basis for a spectral-domain description 
of the entire energy conversion process, which considers a probabilistic representation of the 
waves and of the model response as input and output respectively. The free surface elevation is 
defined as a discretised signal with 𝑁𝑁 fixed time steps (Δ𝑡𝑡). According to [22], a sea wave can be 
modelled using a Random Amplitude Scheme: considering the finite realization length 𝑇𝑇 = 𝑁𝑁Δ𝑡𝑡, 
the discrete sequence of simulated free surface elevation 𝜂𝜂(𝑡𝑡𝑖𝑖) with 𝑡𝑡𝑖𝑖 = 𝑖𝑖Δ𝑡𝑡 can be represented 
as: 𝜂𝜂(𝑡𝑡𝑖𝑖) = ∑ 𝑎𝑎𝑘𝑘 cos(𝜔𝜔𝑘𝑘𝑡𝑡𝑖𝑖 + 𝜙𝜙𝑘𝑘)𝑁𝑁

𝑘𝑘=1 , with randomly chosen phases (𝜙𝜙𝑘𝑘) from a uniform 
distribution 𝒰𝒰(0,2𝜋𝜋), while the amplitudes (𝑎𝑎𝑘𝑘) follow a Rayleigh distribution ℛ(𝜎𝜎) with variance 
𝜎𝜎 = 2𝑆𝑆𝜂𝜂(𝜔𝜔𝑘𝑘)Δ𝜔𝜔. According to the Gaussian closure assumption, the WEC can be simulated as a 
linear Gaussian process, as the Gaussian process that drives the system: being the system linear, 
its steady-state response to a sum of orthogonal frequency components is the sum of the responses 
to each of the frequency components, with phase shift Δ𝜙𝜙𝑘𝑘. The calculation of the mean absorbed 
power (𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑔𝑔), which is the main variable of interest, is non-deterministic and is a function of 
the sea-state conditions and of the control action 𝑐𝑐𝑃𝑃𝑇𝑇𝑃𝑃 applied on the WEC. Under the hypothesis 
of a large number of realizations, the expected value of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑔𝑔, denoted by 𝐸𝐸�𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑔𝑔�, is defined 
as  𝐸𝐸�𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑔𝑔� = −𝑐𝑐𝑃𝑃𝑇𝑇𝑃𝑃∑ 𝑆𝑆𝜀𝜀�̇̇�𝜀(𝜔𝜔𝑘𝑘)Δ𝜔𝜔𝑁𝑁

𝑘𝑘=1
 [22], where 𝑆𝑆𝜀𝜀�̇̇�𝜀 refers to the power spectral density 

function of the DoF related to power extraction. It is worth noticing that, having considered the 
power output a Gaussian process, 𝐸𝐸�𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑔𝑔� is also the mean value 𝜇𝜇𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎  of the distribution. 

Results and conclusions 
Based upon the linear model presented in the previous section, the dynamic of the system can be 
studied directly at the PTO DoF applying the impedance matching theory introduced in [20]. Let 
us recall the principle of maximum power transfer that is obtained applying a control action equal 
to the inverse of the impedance of the equivalent circuit related to the model stated in Eq (2).  

Based upon the device characteristic, a sensitivity analysis of the precession axis equivalent 
force is performed, varying both the flywheel speed and the wave direction. The analysis is 
computed considering an irregular input wave, with a unitary amplitude and varying the energetic 
period of the input wave, selected between 3s and 10s. Figure 2 presents an appraisal of the 
equivalent force at the PTO axis 𝐹𝐹�𝑤𝑤,𝑎𝑎𝑤𝑤𝑖𝑖𝑛𝑛𝑔𝑔𝑠𝑠varying the flywheel angular velocity. The extremum 
scenario are considered, where the wave impacts the floater at 0𝑠𝑠 and 90𝑠𝑠, with a third intermediate 
operating condition of 45𝑠𝑠. We can notice that the gyropendulum mechanism, mounted in the 
SWINGO device, allows the increment of the total force acting on the power take off DoF with 
respect to the gyroscope mechanism. Such an improvement ranges from the 70% to the 10% 
considering the overall set of operating condition. Moreover, we notice that the greatest 
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improvement happens when the flywheel velocity �̇�𝜑 = 0, then the percentage gradually decreases, 
increasing the flywheel velocity. We state that even if the gyropendulum system can improve the 
equivalent force acting on the PTO DoF, for a wide set of operating condition, the highest 
advantages set up in term of input force is achieved for zero velocity of the flywheel. 

 
Figure 2 Equivalent force at the PTO: comparison between the gyropendulum and simple 

gyroscope. 
In conclusion, in this work we have introduced a new concept of wave energy converter based 

on both pendulum and gyroscopic device. The resulting mechanism is the gyropendulum system, 
that because of its characteristic can be activated with respect to the 𝜀𝜀-axis independently from the 
incoming wave direction. Such a device has the peculiarity of an eccentric flywheel mounted at a 
distance 𝑙𝑙𝑓𝑓 from the precession axis. Applying the impedance matching principle, the dynamic can 
be mapped to the PTO axis and then the equivalent system depends on an equivalent force 𝐹𝐹𝑤𝑤� and 
impedance 𝐼𝐼(𝑗𝑗𝜔𝜔). Then we have demonstrated that the gyropendulum system allows to project 
more input force on the PTO axis than a simple gyroscopic configuration. Such an improvement 
of input power ranges from 70 to 20%, accordingly to the flywheel speed. 
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Abstract. We propose a shielding technique for the magnetic field localization around permanent 
magnets (PMs) for sharpening the magnetic force-displacement curve in the frequency up-
conversion (FuC) of piezoelectric vibration energy harvesters (PVEHs). We present a concept with 
theoretical formulation, computational analyses, and experimental validation that confirms the 
supposed principle. The numerical study on a PVEH shows that with the shielding, for varying 
actuation velocity, high values of peak power (50 mW – 150 mW) can be reached at low speeds 
(e.g. 0.5 m/s – 2.6 m/s). The unshielded device exhibits a good behavior for velocities over 3 m/s. 
This result makes the technique useful for the design of FuC mechanisms depending to its 
operating velocity.  
Introduction 
The manipulation of the magnetic field has been largely studied in the last decades because of 
immediate practical applications (e.g. electromagnetic induction heat treatments). The basic idea 
to manipulate the magnetic field is to exploit a magnetic flux concentrator (MFC) which is a piece 
of soft ferrous material with high magnetic permeability. As a consequence, the field lines are 
forced to follow a specific path in the surrounding space and they remain free to expand where 
there is not high permeability as shown in Fig. 1a. 

 

 
Figure 1. a) Illustration of the field lines path with and without the magnetic concentrator, b) 
proposed shielding layout of a PM with indication of the poles, c) PVEH with magnetic FuC 

 
The approach can be used to control rapid temperature cycling (RTC) technologies as made by 
Mrozek et al [1], or to improve the gap-to-gap induction heating as proposed by Wen et al [2]. In 
the micro-electro-mechanical systems (MEMS) industry the MFCs are used to increase the 
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sensitivity in Hall-effect based transducers [3]. The magnetic field can be also manipulated with 
high-rate triode sputtering of patterned thin films as made by Chigirinsky et al [4]. In this work we 
propose a technique of concentration with an innovative application on the contactless frequency 
up-conversion in PVEHs. The motivation is the fact that it is not always possible to have a real 
impulsive phenomenon [5] in plucking of transducers. To have an efficient mechanism also at a 
very low frequency or input velocities such in case of the human motion (e.g. 0.1-5 Hz), it is 
possible to tune the shape of the magnetic force by means of additional PMs. 
Shielding technique  
The magnetic plucking mechanism, as proposed in [6], is composed of a piezoelectric transducer 
equipped with a PM that magnetically interacts with another dynamical systems also equipped 
with a PM, Fig. 1b. In this framework the goal is the sharpening of the magnetic force with respect 
to the relative distance between them. The idea is to capture the field lines with additional PMs 
with an inverse poles orientation as indicated in Fig. 1c. The shielding material is put only on the 
sides of the central (main) magnet that contain both the poles (4 over 6 faces in a parallelepiped 
case). Both the main magnet and the material around it are made of Neodymium-Boron-Iron alloy 
(NdFeB). An important point is that the technique remains conceptually valid if either both or only 
one of the involved main magnets are shielded. 
Mathematical modeling 
In this section we present the modelling of the magnetostatics problem and the PVEH reduced 
order model. 
Magnetostatics problem 
In absence of electrical current, the first Maxwell’s equation [7] in a domain Ω is: 
 

∇ x H=0                  in Ω                                                                                                                 (1)  
 

where H is the magnetic field density vector. The problem is conservative, and it is possible to 
define a scalar magnetic potential φM inside the domain: 
 

H=-∇ φ𝑀𝑀               in Ω                                                                                                                 (2)  
 

Then we assume a linear constitutive law between the magnetic field H and the magnetic flux 
density B also by considering the magnetization vector M of the PM: 
 

B =𝜇𝜇0(𝐇𝐇 + 𝐌𝐌)       in Ω                                                                                                                (3) 
 

where µ0 is the permeability of the vacuum equal to 4πe-7 N/A2. It is then possible to write an 
equation of magnetic flux conservation by means of the Gauss’ Law: 
 

∇ ∙ B = 0                 in Ω                                                                                                                 (4)  
 

Eqs. (1)-(4) must be considered together with the boundary conditions (BCs). A Neumann BC, 
also called insulation equation, can be put on symmetry planes where the magnetic field is 
tangential to the plane: 
 

n ∙ B =0      on       𝜕𝜕Ωins                                                                                                                (5) 
where n is the normal outward unit vector and 𝜕𝜕Ωins is the insulated surface. In case the magnetic 
field is orthogonal to the boundary, a constant value of the magnetic potential leads to impose a 
Dirichlet BC: 
 

φ𝑴𝑴 =𝜑𝜑�       on       𝜕𝜕Ωpot                                                                                                                (6) 
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where 𝜑𝜑� is the prescribed magnetic potential value at the boundary 𝜕𝜕Ωpot. The magnetic force is 
then computed by integrating over the surface of the permanent magnet the Maxwell’s stress tensor 
T. 
 

𝐅𝐅𝑴𝑴𝑴𝑴𝑴𝑴 = ∫ 𝐧𝐧 𝑇𝑇 𝑑𝑑𝑑𝑑𝜕𝜕Ω𝑀𝑀𝑀𝑀𝑀𝑀
= - 1

2 ∫ [𝐧𝐧(𝐇𝐇 ∙ 𝐁𝐁) + (𝐧𝐧 ∙ 𝐇𝐇)𝐁𝐁𝑇𝑇] 𝑑𝑑𝑑𝑑𝜕𝜕Ω𝑀𝑀𝑀𝑀𝑀𝑀
                on           𝜕𝜕ΩMAG             (7)                                                                

 

The problem is then solved via the Finite Element Method (FEM) through COMSOL 
Multiphysics® with serendipity quadratic FEs. 
 
Piezoelectric vibration energy harvester 
The typical PVEH is a layered cantilever beam as represented in Fig. 1b. In this work we assume 
linear behavior of the material [8,9]. The modelling of the beam is carried out by considering only 
the so called 31-mode and through a lumped-parameter approach [10] with one degree-of-freedom 
(dof) both for the displacement field and the voltage. The electromechanical equations of motion 
are derived by using the Euler-Lagrange equations obtaining the following differential system that 
has been implemented in a MATLAB© code: 
 

�
𝑚𝑚�̈�𝑊(𝑡𝑡) + 𝑐𝑐𝑚𝑚�̇�𝑊(𝑡𝑡) + 𝑘𝑘𝐿𝐿𝑊𝑊(𝑡𝑡) − θ𝑉𝑉(𝑡𝑡) = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒

𝐶𝐶 𝑉𝑉(𝑡𝑡) + θ�̈�𝑊(𝑡𝑡) + 𝑉𝑉(𝑡𝑡)/𝑅𝑅 = 0
                                                                          (9)                                                                                                                                                                                           

 

where W is the tip displacement of the cantilever, V the voltage output from the piezo. m is the 
inertial term, cm the linear damping coefficient, kL the linear stiffness, C the capacitance of the 
piezo and θ the piezoelectric coupling coefficient. fext is the forcing function, and it includes the 
magnetic force.  
 

Simulation 
Magnetic force 
To numerically investigate the shielding technique, we simulate the magnetic force between two 
magnetic systems as depicted Fig. 1c, in repulsive configuration with both or only one shielded 
magnets. The main magnet is a cube with a side length of 3 mm and a magnetization M equal to 
1.32 T. The cover is realized with the same material and magnetization. In the case in which both 
magnets are shielded, we consider two values as cover thickness (0.5 mm, 1.0 mm) and four values 
of gap distance h (0.5, 1.0, 1.5, 2.0 mm). In the case in which only one of the cubic PMs is shielded, 
we consider the cover thickness of 1 mm and two values of gap distance (1.0 and 1.5 mm). We 
compare all the cases with the layout without shielding. According to the reference system of Fig. 
1b we are interested in the z-component of the magnetic force with respect to the relative distance 
on the same axis. All the plots in the Figs. 2 and 3 show that, using the shielding on one or both 
PMs, it is possible to tighten the force-distance curves. The cover induces an inversion in sign in 
such way that the gradient of the force is modified, and the sharpening is the result. 
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Figure 2. z-component of the magnetic force with both shielded PMs and without shielding for 

different gaps: a) 0.5 mm, b) 1.0 mm, c) 1.5 mm d) 2.0 mm  
 

 
Figure 3. z-component of the magnetic force with only one shielded PM and without shielding 

for different gaps: a) 1.0 mm, b) 1.5 mm  
 

Magnetically plucked piezoelectric energy harvester 
In this section we use the computed magnetic force to analyze the plucking mechanism on a PVEH. 
The data of the cantilever are summarized in the Table 1.  

Material ρ 
[kg/m3]  E [GPa]   n [-]   d31 [pC/N]  ε33s[-] t[µm] Width 

[mm] 
Length 
[mm] 

Titanium 4500  115   0.3 -    - 65 1.5 15 

PZT 7500  60   0.3 212    2000 
280 per 
layer 
(series) 

1.5 15 

Table 1. Physical parameters and geometry of the bimorph 
We simulate the response of the cantilever by solving the differential system of Eq. (9) by using 

the presented magnetic forces in repulsive configuration as fext. We look at the peak of power 
output for varying velocity of the interaction in the range 0.1-10 m/s (i.e. velocity of the moving 
magnet in Fig. 1c supposed at constant velocity) with a value of the resistor R = 100 kΩ. The 
instantaneous power is computed trough the Joule’s Law: 
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P = V2/R                                                                                                                                       (10) 
To compare two oscillators working at the same frequency of 366.06 Hz, we use in the layout 

without shielding two magnets with dimensions 5 x 5 x 3 mm3 and in the case with the shielding 
a cubic main magnet with a length side of 3 mm and a cover thickness of 1 mm to get the same 
global dimensions. The results in Fig. 3b show that the adoption of shielding induces a huge 
increment of peak power in the low-speed range (0.1-2.6 m/s), that is typical for the human 
movements. On the contrary, the case without shielding is connected with the absolute maximum 
power, reached for quite large velocity (4.5 m/s). 

 
Figure 4. a) z-component of the magnetic force with and without shielding b) peak power for 

different velocities of the seismic system with a resistor R = 100kΩ 
Experimental validation 
We present in this section an experimental validation of the concept in case only one of the couple 
of interacting PMs is shielded for gap values of 1.0 mm and 1.5 mm. The details of the setup are 
summarized in [11]. The supposed principle is confirmed because by considering only the 
experimental curves in the plots of Fig.5, the shielded layout (S) shows a sharper behavior with 
respect the unshielded case (NS) in terms of force-distance curve. On the other side, the 
comparison between numerical results and experiments with shielding (S) shows some 
discrepancies in the inversion of sign which may be the subject of further studies and works. 
Anyway, the physics of the phenomenon is well captured as well as the peak force. 
 

 
Figure 5. z-component of the magnetic force for the case of a) gap 1.0 mm and b) 1.5 mm. NS: 

no shielding, S: with shielding 
Conclusions 
In this work we studied a strategy to sharpen the force-displacement magnetic curve between PMs 
through a specific arrangement of the magnetization of additional polarized ferromagnetic material 
to a main magnet. The aim is to realize a dynamical load as impulsive as possible for PVEH 
systems. We proposed a concept, a theoretical formulation, and a computational study together 
with an experimental validation that confirms the principle. The numerical investigation applied 
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to a PVEH case study shows that the technique can be used to set the performance of the harvester 
depending on the velocity of the magnetic interaction. The shielded harvester obtains a larger 
amount of power (until 150 mW) than the unshielded one in a very low speed range (0.1-2.6 m/s). 
The technique can be also applied in a more general context of the mechanics (e.g. actuation and 
sensing) and this opens new motivations to improve the modelling and to implement this technique 
also at the MEMS scale. 
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Abstract. The global demand for renewable energy is expanding in the attempt to mitigate the 
impacts of climate change. Offshore wind energy is, alongside with other “green” forms of energy, 
at the core of seeking carbon-neutrality of various countries. Based on the International Energy 
Agency, offshore wind energy could become the main source of power generation in Europe by 
2042 [1]. Consequently, interest in offshore wind power is on the rise. By 2020, already 25 GW 
had been installed in Europe, and according to the latest projections by Wind Europe, 450 GW 
could be deployed by 2050 [2]. The article will present in detail the project of the offshore wind 
farm built a few months ago near the Taranto harbor. The project was conceived and carried out 
entirely by the iLStudio and Nicetechnology srl. In particular, not only the design phases but also 
the bureaucratic and planning process of the plant will be described, highlighting how long it took 
to get to its complete realization (14 years). At present we have become pioneers in the 
development of this technology.  
Introduction 
Climate change is the challenge of our time. Carbon dioxide levels in the atmosphere are higher 
than they have been for the last 800.000 years and are increasing, with an almost linear correlation 
with the average increase in our planet's surface temperature. 

The solution clearly passes through the decarbonization process: the energy transition towards 
a massive use of renewable energy sources is underway, but further progress is needed to trigger 
positive effects on climate change and at the same time satisfy the growing energy demand.  

The EU Strategy [3] for offshore renewable energy has set as a goal the installation of a capacity 
of 60 GW of wind energy by 2030 and 340 GW by 2050. Directive 2018/2001/EU (RED II) [4] 
provides for the gross consumption of renewable energy to be equal to (at least) 32% of the energy 
mix. According to statistics published by the World Wind Energy Association (WWEA) [5], the 
overall power generation capacity through wind farms currently exceeds 840 GW.  

Considering that for 60% of the population wind power represents the most convenient option 
for producing electricity, the importance of this sector for the energy transition and sustainable 
development is undeniable. 

In this context, building wind farms that are efficient and respectful of the environment 
represents a fundamental challenge for the near future. 

Making wind farms sustainable means not only eliminating harmful emissions, but also 
protecting biodiversity and natural habitats.  

For what concerns offshore wind sector the PNIEC (Piano Nazionale Integrato per l’Energia e 
il Clima) [6] sets a target of 900 MW for 2030.  

Currently, the only existing offshore wind farm in the Mediterranean Sea is the one built in the 
external harbour of Taranto. The idea of exploiting the wind resource offered by the Mediterranean 
Sea was born from the intuition of the Eng. Luigi Severini. It should be noted that over 20 offshore 
wind farm projects were rejected and did not reach the end of the procedural process. 
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The offshore wind farm consists of 10 turbines of 3 MW each, for a total nominal power of 30 
MW.  

Following, Chapter 2 will describe in detail the Taranto offshore wind farm project, with 
particular reference to the geotechnical and structural characteristics of the windfarm. Chapter 3 
will describe the bureaucratic process that led to the final construction of the park and, in the end, 
the conclusions and future developments in this sector. 
Taranto Offshore wind farm project: design process 
The Taranto wind farm was inaugurated on 21 April 2022.  

Located in Italy’s Apulia Region near the Taranto harbour, the 30 MW offshore wind farm will 
provide about 58.000 MWh of electricity per year, equal to the annual requirement of 60 thousand 
people. In environmental terms, it means that, over the 25-year life, it will save approximately 
730.000 tons of CO2. 

 
Figure 1 Taranto Offshore Wind Farm [ph.: Renexia] 

The windfarm layout creates a design conforming to the site's current infrastructure templates. 
The windfarm is divided into two subgroups: the first group of turbines is located at a distance 

of about 300 m from the coast and is parallel the multi-sector pier, while the second one is 
positioned behind the breakwater and has a triangular layout (Fig. °1). This area was selected on 
the basis of careful studies, in consideration of the available wind resource, the presence of 
regulatory, urban and environmental constraints, the distance from the coastline, the characteristics 
and depth of the seabed and the possibility of connection to the national electricity grid. 

The height of the wind towers from the center of the rotor to mid-sea level is about 100 m; the 
submerged part of the tower varies from 4 m to 18 m; the foundation reaches a depth of about 30 
m from the seabed. 

The energy produced by each low voltage wind turbine is transformed to 33 kV by the 
transformer present in the turbine itself and transported to the base of the tower by internal cables. 
Subsequently, the energy is transported through submarine cables to the junction box which 
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connects it to the onshore cables and then to the transformer substation, located onshore, that 
transforms the produced energy at the distribution voltage of 150 kV (Fig. °2). Electricity 
production will be used to fuel all port activities as well, allowing their energy transition.  

 

 
Figure 2 Taranto offshore windfarm layout [iLStudio] 

During all the design stages, there were many challenges to be addressed and overcome. First of 
all, the design of monopile foundations embedded into an over-consolidated clay (grey-blue clay). 
This type of soil is still not well investigated for what concern the soil-foundation interaction. 

A geognostic campaign and laboratory geotechnical analysis were carried out in order to obtain 
geophysical, geomorphological and geotechnical characterization of the site.  

Consequently, many national/international standards had been followed and many FEM analyses 
had been carried out regarding the most suitable methodology for the monopiles design (i.e. p-y 
curve method [7]). All analyzes and software used were in source. Besides, it was designed the 
direct coupling [8] between the monopile flange and the wind turbine flange without using the 
transition piece. 

Further issues concerned the design of the secondary steel (service platform, boat landing, etc.) 
and the electrical cables installation which had to be adapted to the innovative configuration of entire 
structure. 

The foundations of the wind turbines consist of steel monopiles. All the monopiles have an 
external diameter of 4,5 m and a plate thickness ranging from a minimum of 50 mm at toe to a 
maximum of 85 mm. The monopiles were installed with a suitable hydraulic hammer. 
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The service platform and related accessory structures (stairs, boat landing, etc.) were also 
designed by performing finite element simulations using SOLIDWORKS. Then, the platform and 
the other structures were installed on the top of the monopile. The entire installation process was 
carried out by Van Oord with Van Oord’s offshore installation vessel MPI Resolution with a 
variety of equipment on board including a hammer, sea fastening, upend tool and lifting 
equipment. 

The dimensioning of the foundations was carried out considering the geotechnical data obtained 
from the geognostic campaigns carried out on site. 

The design loads relating to the wind turbine were supplied by the turbine manufacturer 
(MingYang Smart Energy), who assessed, for the tower - foundation assembly, the loads acting 
according to the IEC 61400 deriving from the operating conditions, from the maximum design 
wave, from currents, from impact with ships and from possible seismic interactions. The 
calculation was performed with reference to the Technical Standards for Construction NTC 2018 
(D.M. January 17, 2018) and the International Standards IEC 61400. 

The numerical analyzes for the pile-soil interaction were processed with MIDAS GTS NX a 
geotechnical software while the mechanical structural analyzes of the monopiles and secondary 
steel were processed with finite element software (FEM) SOLIDWORKS (v.2017).  

The design and verification of foundations as well as the management of the entire project over 
all these years has been carried on by iLStudio with the support of Nicetechnology s.r.l. 

An overview of the entire bureaucratic and management process that led, after more than ten 
years, to the construction of the first offshore wind farm in the Mediterranean is presented below. 
Taranto offshore wind farm project: bureaucratic and managerial overview 
After 14 years of waiting and various vicissitudes (corporate, industrial, administrative and judicial 
vicissitudes in front of the TAR (Regional Administrative Court)), Taranto inaugurated the first 
Italian offshore wind farm on 21 April. This project was done by Renexia, a company of Toto 
holding. The investment is 82 million euros. 

The offshore wind farm will supply not only energy to the local population but also to the port 
of Taranto. An agreement already signed provides for the sale of at least 10% of the energy 
produced for a quantity of not less than 220 MWh per year. But this park also aims to supply, 
through electrolysis, green hydrogen to the former Ilva steel plant and to the Eni refinery. 

The 14 years it took the Taranto project to complete were also an opportunity to reiterate, once 
again, that investments in renewable energy sources must be accelerated if you don't want the 
energy transition to stay on paper.  

It represents the first example of offshore wind farm fully endorsed by the Italian Institutions 
and its realization allows the national and local industrial system to acquire an important primacy 
of knowledge and skills about the construction of such installations.  

The bureaucratic procedure for obtaining the State of Property Concession involved a 
considerable amount of time during which purely administrative issues are intertwined with purely 
economic-design issues. A brief description of the entire procedure is shown below:  
The State Property Concession of the project area has been formally requested to the Port Authority 
on 2008. After this date, a period of eight years has taken place during which further authorizations 
have been requested for the final grant of the Concession.  
The required Authorization are as follows: 

• The Environmental Compliance Decree, with VIA / VAS procedure, was issued by the  
Minister of Environment in agreement with Minister of Cultural Heritage and Activities on 
24.07.2012; 

• The Single Authorization for the construction and operation of the plant was issued by the 
Ministry of Infrastructure and Transport by Order No. 1 of 27.06.2013.  

http://context.reverso.net/traduzione/inglese-italiano/Environment+Minister
http://context.reverso.net/traduzione/inglese-italiano/Environment+Minister
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• After obtaining the previous Authorizations, the State of Property Concession has been 
granted on 03/11/2016. 

• The favorable opinion expressed by MIBAC (Ministry of Cultural Heritage and Activities 
and Tourism) is also peculiar: "... it is possible to share the methodological setting of the 
project ... structures should not compromise the recognition elements of sites but they have 
to introduce new perceptual values through non-random projects capable of introducing 
new forms of spatial relationship with precise alignments and compositional devices. ... the 
localization of wind turbines ... capable of creating an evocative layout ... is not definable 
as the pathological alteration of existing visuals ...At this project goes the merit of having 
correctly identified the maximum number of site-compatible wind turbines ... unlike how 
often it can be found in other offshore wind power projects ... out of any relationship with 
the existing ....In this particular case, the interference generated by the new wind farm is 
not dissonant with respect to the present condition of the landscaping interest of the area, 
whose values are still preserved. " 

Furthermore, during these years the supplier of the turbines, previously appointed, has been 
replaced (due to the insolvency of the company in 2019). This led to additional times, before the 
actual construction of the windfarm, resulting from the choice of a new supplier by proceeding 
with a specific request for a variant to the Ministry of the Environment (for dimensional changes 
of the new turbines).  

After having obtained a positive opinion from the Ministry of the Environment, it was possible 
to continue with the management of the project from the logistical / implementation point of view. 

The case of Taranto is unfortunately only the tip of the iceberg. If we want to close all fossil 
fuel power plants by 2035, we must push on the development of renewables in Italy, build many 
wind farms and we must overcome the no of the Superintendencies, Regions, local administrations, 
local committees and environmental associations. 
Conclusions 
Wind-based renewable energy sources represent one of the key technologies for economic 
recovery and the creation of millions of jobs, towards a fully sustainable future.  

Studio Severini with the support of Nicetechnology s.r.l. has managed and fully carried out all 
the activities necessary for the complete realization of the of the first offshore wind farm in the 
Mediterranean Sea: bureaucratic procedure, foundations design, power transmission grid design, 
structural and geotechnical analysis, development of innovative design solutions for secondary 
steel, material research and contact with suppliers.  

Every challenge was overcome in order to create an offshore wind power plant that could be 
integrated in the best possible way within the surrounding environment, which is already heavily 
harmed by industrial pollution.  

It is a symbolic case of the red tape in Italy. The project proposal was presented in 2008 (14 
years ago). The Superintendence succeeded in giving a negative opinion due to the visual impact 
generated (in front of it there are the chimneys of the former Ilva, the Eni refinery, the cement 
factory and the cranes of the industrial port).  

We need to increase the installation speed of renewable energy plants tenfold - primarily wind 
by 2025. The Planet can no longer wait. 

Wind farms make it possible to make great strides towards the definitive exit from dependence 
on fossil fuels, without causing impacts on the environment and biodiversity. 

Future aims will be to investigate in detail the most promising areas and promote the developing 
new projects in selected sites in Italy (ex. floating offshore windfarm). The objective is to become 
pioneers in the national offshore wind sector, opening the way for the Italian growth of this type 
of technology. 
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Abstract. An experimental campaign on aerodynamic noise generation by orifice plates in 
rectangular ducts for low Mach number flows is carried. The test plant allows for the measurement 
of the total emitted acoustic power both upstream and downstream of the orifice plates for varying 
mass flow rates through the 2N-Port method. A modal decomposition for the first eight 
propagating higher-order acoustic modes is also performed. Keeping the free flow area and the 
plates’ thickness constant, the tests allowed for a study of the influence of the number of circular 
orifices on the generated acoustic power as well as its modal composition. It is found that the 
orifices’ number does not influence the overall pressure drop caused by the presence of the 
obstacle. The generated noise on the contrary is greatly affected by such a parameter both for the 
plane-wave frequency range and especially so in the multi-modal one. 
Introduction 
Heating, Ventilation and Air Conditioning (HVAC) systems play a fundamental role in ensuring 
a safe and comfortable environment in both buildings and vehicles. Part of the requirements for 
such systems is that they generate as less noise and vibrations as possible during operation. 
Amongst the various components concurring to the production of noise (e.g., fans, 
compressors…), flow singularities in ducts are one of the most common sources [1]. The flow is 
usually in the turbulent incompressible regime with very low Mach numbers (Ma < 0.1). In 
undisturbed flows (e.g., sufficiently long straight ducts), sound is aerodynamically generated by 
the turbulent boundary layer, and it is propagated inside the duct [2]. Whenever a singularity is 
present (e.g., valves, bends) intense turbulence is produced in its vicinity as the flow detaches from 
the ducts’ walls. Part of the turbulence kinetic energy is converted into sound, which reaches 
largely higher values than in the case of undisturbed flows [3]. In unconfined low Mach number 
flows, previous studies have shown that in the presence of fixed surfaces noise generation can be 
predicted once the pressure fluctuations on such surfaces are known [4]. This amounts to equating 
the noise generation mechanism to a distributed dipole source. Addition of confinement (as in 
ducts) further modifies such noise generation mechanism. In particular, the fact that sound 
propagates in higher-order (or transversal) modes from a given cut-on frequency onwards 
fundamentally changes the propagation mechanisms compared to unconfined free-field conditions 
[5]. Obstacles perpendicular to the flow have received much attention due to their relatively simple 
geometry as well as their widespread use in duct systems (e.g., spoilers, orifice plates). A 
successful theory has been developed for aerodynamic noise prediction in the plane-wave 
frequency range by assuming that the pressure fluctuations over the obstacle’s surface be 
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proportional to the total drag force acting on it [6,7]. Attempts at models involving higher-order 
acoustic modes have been however somewhat less conclusive. Recent experimental work has shed 
more light on the phenomenon by directly measuring the fluctuating pressures over both sides of 
a circular orifice plate perpendicular to the flow [8]. It was found that the intensity of the pressure 
fluctuations was highest in the immediate vicinity of the orifice’s edge, after which an exponential 
decrease was observed.  

In the present paper, the results of an experimental investigation on noise production by ducted 
orifice plates are presented. The tests were performed at the Roberval Laboratory of the University 
of Technology of Compiègne (France), where an experimental bench allows for the measurement 
of the total internal aerodynamically generated acoustic power as well as its modal decomposition 
in the propagating higher-order acoustic modes through the 2N-port method [9]. The remainder of 
the paper is structured as follows. The basic theory of sound propagation in ducts and of 
aerodynamic sound production in ducts is first recalled. The experimental test plant is then briefly 
described, together with the tested orifice plate geometries. Finally, the results of the tests on the 
plates are discussed and some conclusions are drawn. 
Theory 
Acoustic pressure waves in ducts travel with a constant amplitude distribution over the cross-
section until a particular “cut-on” frequency is reached. Above that, waves with a non-uniform 
sectional pressure distribution propagate alongside the plane wave form. The cut-on frequencies 
are usually referred to as 𝑓𝑓𝑚𝑚𝑚𝑚 where the subscripts 𝑚𝑚 and 𝑛𝑛 refer to the number of nodal lines along 
a particular direction depending on the type of cross section. For an obstacle inserted 
perpendicularly to a ducted low Mach number flow, the Fourier transform of the aerodynamically 
generated acoustic pressure in a point (𝑥𝑥1, 𝑥𝑥2. 𝑥𝑥3) can be expressed as [10]: 

 

�̂�𝑝(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = ��
1

2𝐴𝐴
𝜌𝜌0�̂�𝑐𝑚𝑚𝑚𝑚𝜓𝜓𝑚𝑚𝑚𝑚(𝑥𝑥1, 𝑥𝑥2)𝑒𝑒−𝑖𝑖𝑘𝑘�𝑚𝑚𝑚𝑚𝑥𝑥3𝑄𝑄�𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚

(1) 

 
where 𝐴𝐴 is the duct’s area, 𝜌𝜌0 is the density of the medium at rest, �̂�𝑐𝑚𝑚𝑚𝑚 = 2𝜋𝜋𝑓𝑓/𝑘𝑘𝑚𝑚𝑚𝑚 is the modal 

phase velocity, 𝜓𝜓𝑚𝑚𝑚𝑚 is the modal shape function of the duct,  𝑘𝑘�𝑚𝑚𝑚𝑚 is the axial modal wave number 
and 𝑄𝑄�𝑚𝑚𝑚𝑚 is a coefficient which takes into account the coupling between the fluctuating force spatial 
distribution and the ducts’ modal shape function. The expression of such a coefficient for the 
present case is [6]: 
 

𝑄𝑄�𝑚𝑚𝑚𝑚 =
1
�̂�𝑐𝑚𝑚𝑚𝑚

 �� 𝑓𝑓3
𝐴𝐴𝑠𝑠

(𝑥𝑥1′ ,𝑥𝑥2′ )𝜓𝜓𝑚𝑚𝑚𝑚(𝑥𝑥1′ , 𝑥𝑥2′ )𝑒𝑒𝑖𝑖𝑘𝑘�𝑚𝑚𝑚𝑚𝑥𝑥3𝑑𝑑𝐴𝐴  (2) 

  
where 𝑓𝑓3 is the Fourier transform of the net fluctuating perpendicular force per unit area and 

per unit density over the obstacle’s surface 𝐴𝐴𝑠𝑠. This expression shows that the value of the 
coefficient 𝑄𝑄�𝑚𝑚𝑚𝑚, and therefore of �̂�𝑝 through (1), increases the more the distribution of 𝑓𝑓3 follows 
that of the modal shape function 𝜓𝜓𝑚𝑚𝑚𝑚.   
Experimental setup  
The experimental set-up for the results discussed in the present paper was conceived for the 
acoustic characterization and the estimation of noise emissions of HVAC components through the 
2N-port method. Such experimental plant was used in several other publications on the subject 
(e.g., [2]) and the reader is referred to [9] for a more complete description both of the plant and of 
the 2N-port method.  
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The setup consists of a duct of rectangular cross section of width 𝑏𝑏 equal to 200 mm and height 
ℎ of 100 mm. Its total length is 4.1 m and anechoic terminations on both sides allow for a removal 
of end reflections starting from a frequency of 100 Hz. For such a cross section and neglecting the 
effect of the flow, the cut-on frequencies are computed from 𝑓𝑓𝑚𝑚𝑚𝑚 = 1/
𝑐𝑐 �(𝑚𝑚𝜋𝜋/𝑏𝑏)^2 + (𝑛𝑛𝜋𝜋/ℎ)^2 . The modal shape functions are instead given by 𝜓𝜓𝑚𝑚𝑚𝑚 =
𝑁𝑁𝑚𝑚𝑚𝑚cos (𝑚𝑚𝜋𝜋𝑥𝑥1/𝑏𝑏)cos (𝑛𝑛𝜋𝜋𝑥𝑥2/ℎ) with 𝑁𝑁𝑚𝑚𝑚𝑚 a normalizing factor ensuring that the average squared 
value of 𝜓𝜓𝑚𝑚𝑚𝑚 is 1 over the duct’s cross section. The cut-on frequencies in the range of study [200 
Hz, 3200 Hz] for the present configuration are reported in Table 1. 
 

Table 1 - Cut-on frequencies 

Mode 
(m,n) 

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (3,0) (3,1) 

𝒇𝒇𝒎𝒎𝒎𝒎 
[Hz] 

0 849 1717 1717 1920 2428 2575 3095 

 
Air is supplied to the system through a centrifugal fan powered by a variable-speed electric 

motor connected to a frequency handle for flow regulation. To reduce the disturbances by the 
machine, an in-line silencer is placed before a stabilization tank which is itself needed to 
compensate for the fluctuations of the incoming flow. The mass flowrate is then measured through 
a Venturi-like flow meter. Static pressure and temperature are also recorded at the stabilization 
tank through a pressure transducer and a Pt-100 RTD probe respectively. A total of 96 condenser 
microphones of 1/4” diameter is flush mounted along the duct between the two anechoic 
terminations in couples of twelve along a given cross-section, four of which upstream and four 
downstream of the mounted obstacles.  

Three different orifice plate geometries have been experimentally tested. The flow to duct area 
ratio 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝐴𝐴 and the plates’ thickness have been kept as constant for all three cases and equal to 
0.25 and 8 mm respectively. The shape of the applied orifices was chosen as circular to avoid 
corners; all are sharp-edged. Table 2 reports the geometry of the tested orifices as well as their 
identification strings and the diameters of the applied holes 𝑑𝑑ℎ. 
 

Table 2 - Orifice plate geometries 

Plate ID A1 A2 A4 
 
 

Geometry 

 

 
 

 

 
 

 

 
 

𝒅𝒅𝒉𝒉 [mm] 80 56 40 
 
Results 
A preliminary measurement campaign was performed to characterize the pressure drop Δ𝑝𝑝𝑅𝑅 caused 
by insertion of the orifice plates into the duct. This was necessary to understand whether 
differences in noise emissions could be due to such a factor, as previous literature highlights its 
importance. The pressure drop was measured varying the mass flowrate and keeping the outlet 
pressure at atmospheric level as the duct discharges into the outside environment. Figure 1 reports 
a dimensional and a nondimensional plot of the pressure drop due to the added resistance as a 
function of the mass flowrate. The nondimensionalization of Δ𝑝𝑝𝑅𝑅 was made by computing the total 
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drag force acting on the plate as  𝐹𝐹�3 = Δ𝑝𝑝𝑅𝑅𝐴𝐴 and expressing it in terms of a drag coefficient 𝐶𝐶𝑑𝑑 as 
𝐹𝐹�3 = 0.5 𝜌𝜌0𝑈𝑈2𝐶𝐶𝑑𝑑𝐴𝐴𝑆𝑆 where 𝑈𝑈 is the average velocity of the flow in the axial direction. The 
Reynolds’ number is defined as 𝑅𝑅𝑒𝑒 = 𝜌𝜌0𝑈𝑈𝐷𝐷ℎ/𝜇𝜇 with 𝐷𝐷ℎ the hydraulic diameter of the duct (𝐷𝐷ℎ =
4𝐴𝐴/𝑃𝑃, with 𝑃𝑃 the duct’s cross section perimeter). The pressure drop (or the drag coefficient) shows 
a weak dependence on the geometry of the plates having kept constant the flow area and the plates’ 
thickness, with the A2 plate indicating a slightly higher resistance to the flow.  
 

 
 

Figure 1 - (left) Pressure drop versus mass flowrate and (right) drag coefficient versus Reynolds' 
number. 

The sound power level (SWL) in fine bands (Δ𝑓𝑓 = 1.76 Hz) produced by the three orifice plates 
at a section 15 cm upstream of it for a mass flowrate of 505 kg/h (corresponding to a maximum 
local Mach number of ≈ 0.1) is reported in Figure 2. Differences of more than 10 dB are observed 
between, with the A2 plate producing the lowest noise and the A4 the highest outside of the plane-
wave range. The A1 plate is particularly sensitive to the onset of certain higher-order modes (e.g. 
(2,0) and (1,0) modes). The modal decomposition of the SWL for the same tests resulting from 
application of the 2N-port method are reported in Figure 3. The amplitude of a given higher-order 
mode (m,n) in comparison to the corresponding plane-wave mode (0,0) depends greatly on the 
orifice plate geometry. The (2,0) mode for example has a higher value than its plane-wave 
counterpart for the A1 plate, a slightly lower value for the A2 plate and a much lower value for the 
A4 plate. Again, the (1,0) mode displays a relative amplitude with respect to (0,0) lower for the 
A1 geometry and essentially equal for the two plates A2 and A4.  
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Figure 2 - Total upstream sound power level at 505 kg/h for the three geometries tested. Cut-on 
frequencies are highlighted as dashed red lines. 

Figure 3 – Modal decomposition into propagating higher-order acoustic modes of the sound 
power level (SWL) for the different orifice plates tested at 505 kg/h. Cut-on frequencies are 

highlighted as dashed red lines.  
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Conclusions 
In the present short paper, it has been shown that keeping a fixed flow area and plate thickness, 
the pressure drop caused by a low Mach number flow through circular-shaped sharp-edged orifices 
in a rectangular duct does not vary appreciably if the number of the holes is changed. On the 
contrary, the total emitted acoustic power is very sensitive to such parameter. A modal 
decomposition of such acoustic power into the first eight propagating higher-order acoustic modes 
has then been performed. It has been found that the contribution of a given higher-order acoustic 
mode (m,n) relative to the plane-wave mode (m,n) greatly varies depending on the plate geometry. 
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Advanced process mechanics 
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Abstract. Porous ceramics are recognized to have the potential to be used for a wide variety of 
industrial applications, such as catalyst support and molten metal filter. It is a common practice to 
adjust the shape of ceramics in a pre-sintering stage in order to obtain various configurations but 
some limitations due to premature failure of the product, marked tool wear or inhomogeneous 
shrinkage during processing stages may arise, whenever a complex shape is requested. Almost the 
same happens in the case of post-sintering stage ceramics machining leading, in most cases, to an 
inefficient process characterized by a severe tool wear and poor final product quality. Such 
problems, related to tool material, material removal modes and hence process parameters represent 
a huge limitation for many industrial applications of the above materials. Milling of alumina-based 
ceramic foams in a sintered state is the focus of the present work. An experimental campaign has 
been carried out at fixed axial depth of cut, feed rate, number of passes, spindle speed and under 
flood lubrication regime varying tool material (aluminum oxide-based, diamond-coated). Tool 
wear mechanisms and final product quality have been investigated through surface analysis in 
order to verify the workability of alumina based ceramic foams and the related tool wear. 
Introduction 
Porous ceramics are classified as advanced materials, able to supply additional functionalities with 
respect to conventionally used ones; these materials cover a wide range of structures based on 
different morphologies and composition [1, 2]. High porosity materials can be used for several 
applications due to their elevated surface-volume ratio; some applications may require high level 
of refractoriness, creep and corrosion resistance, as properties belonging to ceramic materials.  

For the ceramic foams production several processes are available, some of them involve other 
materials (such as polymer) as precursor, in order to provide the lattice shape after sintering [3]. 
Usually, to change the structure of the obtained ceramic foams, it is possible to take action on 
precursor shape or working on material ahead of sintering [4]. Nowadays, many studies are being 
carried out about new sustainable production processes detection and on complex shape 
development [5], also involving additive manufacturing [6], to avoid premature product failure 
during the production process and inhomogeneous shrinkage in sintering phase [7, 8]. 
Several studies are referred to conventional and non-conventional machining methods of bulk 
ceramic materials [9] while there is still a lack of knowledge concerning the machinability of 
porous ceramic materials. These latter are considered difficult to machine, since they lead to an 
accelerated tool wear [10], together with a poor final surface quality.  
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 It is extremely important to find innovative, cheap and easy to perform production methods in 
order to guarantee high performance, reliable, long lifetime ceramic filters. At the same time, it is 
necessary to optimize resources minimizing the maintenance costs and downtime arising from 
failure of a filter element ensuring, at the same time, the compliance with the environmental 
constraints.   

It is worth noting that effective machining of ceramic foams has not been yet assessed. Most 
commonly used machining techniques for bulk ceramics involve conventional methods (e.g. 
abrasive wheel cutting), non-conventional machining (e.g. wire electrical discharge machining) 
and hybrid machining (e.g. hybrid laser waterjet machining) and the most commonly used tools 
are diamond based ones. However, studies based on these techniques [9] demonstrated that the 
machinability of bulk ceramics still represents an issue for both tool wear and surface integrity of 
the obtained components.  

This paper presents the evaluation of the machinability of alumina based ceramic foams by 
means of spherical end milling process using different tools materials and under flood lubrication 
method. 
Materials and Methods 
The samples under investigation are cylindrical alumina-based ceramic foams, with a diameter of 
30 mm, height of 30 mm and pore density of 30 pores per inch (ppi). They have been provided by 
Lanik s.r.o. and have the following chemical composition: Al2O3 84.0%, SiO2 14.0%, MgO 0.8%, 
Other 1.2%.  The foams, produced via the replica process [8, 11], consist of a network of 
randomly-oriented dodecahedral-shaped cells interconnected through struts (Fig. 1). 

Two different tool materials (Fig. 2) have been selected for the experimental campaign on 
spherical end milling process: vitrified hard bond pink aluminum oxide (average grit size 120 
µm) and electroplated diamonds on a metal substrate (average grit size 118 µm). Tool shank 
and head diameter were respectively 3 mm and 6 mm for both tools. The experimental campaign 
has been carried out varying tool material and at fixed axial depth of cut, feed rate, number of 
passes, spindle speed and under flood lubrication regime. 

Preliminary milling tests have been performed in order to choose the set of parameters for the 
experimental tests, starting from values recommended by the manufacturers for similar bulk 
materials. However, it is worth noting that there are no available recommendations for milling 
ceramic foams. The factors considered for experimental campaign are reported in Table 1. After 
machining, samples and tools have been inspected under a Scanning Electron Microscope in order 
to analyze the surface characteristics prior and after processing and the tool wear mechanisms. 
 

 
 

Fig. 1 – As received alumina based ceramic foam (a) foam structure, (b) SEM image of the as 
received surface.  
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Fig. 2 – SEM images of as received pink aluminum oxide (a) and diamond coated (b) tools. 
 

Table 1. Design of experiments for the experimental campaign. 
 

Factors 
Tool material Aluminum oxide,  Diamond coated 
Lubrication conditions Flood 
Spindle speed [RPM] 10000 
Number of Passes 2 
Depth of Cut [mm] 0.5 
Feed Rate [mm/min] 50 

Results and Discussion 
Tool wear mechanisms 
Tool wear is a direct expression of tool life and it is strictly related to machined surface and 
subsurface quality. Fig. 3a shows the low magnified (100x) surfaces of aluminum oxide tools in 
which the damage is immediately recognizable. Also, adhesive wear takes place during the process 
since a certain amount of adhered foam material can be easily found on tool surface.  

The phenomena of flattening and materials mixing can be attributed to tool and sample material 
affinity in terms of composition and mechanical properties. In particular, adhesion is generally 
reduced by flood lubrication which results, by nature, into an efficient lubrication effect. 

 

Fig. 3 – Aluminum oxide (a) and diamond coated (b) tools after milling at different magnification. 

Concerning diamond coated tools, damage is not easily recognizable at 100x magnification, as 
shown in Fig. 3b. 

Fig. 4 shows a detailed view of tool surfaces after milling process. Fig. 4a has been taken using 
Backscattered Electrons (BSE) mode in order to highlight the presence of different materials, Fig. 
4c shows a void left by a diamond being pulled out while Figure 4d displays a damaged diamond.   

a b
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Fig. 4 – Details of diamond coated tools after milling (a) adhesion phenomenon, BSE image, (b) adhesion 

phenomenon, (c) diamond pull out, (d) diamond fracture. 
Machined surface analysis 
The presented process inevitably involves both brittle and ductile fractures due to the multitude of 
scratches and their relative interactions when abrasive grains cut into ceramic specimens. The 
machined surface results ideally deformed similarly to that left by an indentation process but other 
mechanisms can also take place, such as adhesion between tool/workpiece surfaces, mainly due to 
chemical affinity. Also, excessive local forces can generate different defects like chips, fissures, 
cracks or flaws. The above issues result exacerbated by the geometric characteristics of the 
workpiece under investigation.  

When aluminum oxide tools are employed, the adhesion effect evidently influences the fracture 
mechanism, as shown in Fig. 5. In fact, the chemical affinity between the foam and the tool brings 
to machined surfaces characterized by a higher content of brittle fractures. The analysis reported 
herein also confirms the presence of adhesive wear on the tool, as presented in the previous section. 

 

Fig. 5 – Details of ceramic foam surface after milling with aluminum oxide tools. 

Diamond coated tools result into a more efficient cutting process since less adhesion effect is 
present. Fig. 6 clearly show both ductile and brittle fracture areas, which are typical of the process. 
The diamond abrasive grains exposed on the lip of the milling tool are of random distribution, with 
a consequent difference in the exposure highness of each diamond.  
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The overall machining is achieved by the combined actions of what can be thought as numerous 
micro-cutting edges with locally different depths of cut, causing areas of both ductile and brittle 
fracture when machining ceramics.  

 
Fig. 6 – Details of ceramic foam surface after milling with diamond coated. 

Conclusions 
This paper presents an analysis of workability of alumina based ceramic foams. In particular, such 
materials combine the issues of machining conventional ceramics with those related to 
machinability of geometrically complex workpieces. The experimental campaign involved the 
spherical end milling of the workpieces at varying cutting tool materials.  

The overall results highlighted the tendency of such process to fast wearing the tools and the 
combination of ductile and brittle deformation mode on the machined surfaces.  

 The results obtained allow to state that ceramic foams can be machined by spherical end milling 
in order to try to obtain a variety of complex shapes and that diamond coated tools are, up to now, 
the best available choice. It should be noted that the overall process needs to be optimized in order 
to define a workability window able to minimize the tool wear and maximize the surface quality.  
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Abstract. The evolution of Friction Stir Consolidation (FSC) from recycling towards upcycling 
technique proved to be one of the excellent solid-state methods for manufacturing functionally 
graded billets. Multi-material Functional Graded Materials (FGMs) represent a novel class of 
materials characterized by a gradual change in properties and functions which can be tailored to 
enhance components performance. Manufacturing techniques play a critical role in achieving the 
designed compositional and microstructural distribution. Specifically, FSC allows the 
manufacturing of FGM billets out of metallic chips; the mixing of different metallic chips offers 
mutually exclusive mechanical properties like high hardness and good ductility in a single FSC 
billet with excellent formability. The present research further explores some challenges while 
combining dissimilar aluminum alloys chips in different percentages and spatial order, especially 
in the radial direction. The mechanical and metallurgical properties were assessed through the 
Vickers hardness measurements and microstructure analysis. The results revealed that new 
strategies are needed for a better exploitation of FSC as a solid-state method for fabrication of 
Functionally Graded Material. 
Introduction 
The demand for aluminum is rapidly increasing due to its growing application. The accelerating 
consumption is putting immense pressure on industries to increase the production rate [1]. Roughly 
100 million metric tons of aluminum are currently produced per year. However, per 1 ton of 
aluminum production from the primary source, 12-16 tons of greenhouse gas (GHG) are produced. 
Almost 35 % of the aluminum demand is met by recycling aluminum scraps [2]. The conventional 
recycling route skips many complex steps of aluminum extraction from the primary source, and 
therefore it is a highly energy efficient process. However, this method has further limitations, 
especially during the recycling of aluminum machining chips. Due to their high surface-to-volume 
ratio, these scraps are prone to oxidation, causing permanent material loss during the melting 
process. Therefore, the researchers turned to solid-state recycling (SSR) techniques. 

SSR methods directly transform metal scraps into finished or semi-finished billet through 
mechanical means [3]. Recently, SSR processes have proved their energy and resource efficiency 
[4]. The new frontier of SSR processes could be their application for manufacturing multi-material 
functional graded semi-finished products. At the same time, there is an urgent need to find 
manufacturing solutions for obtaining multi-material components. So far, aluminum alloys have 
been successfully joined with magnesium alloys in bimetallic sheet applications [5]. Graded 
components are nowadays crucial for enhancing the performance of the product under mechanical, 
electrical, and environmental angles [6].  

The authors have recently successfully applied FSC for producing multi-material based FGMs 
[7]. FSC has two main steps: compaction and consolidation. During compaction, chips or powder 
are pressed in a hollow die chamber by applying a specific load through a cylindrical tool. Then 
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compacted materials are further pressed and stirred through high the tool's downward force and 
rotational speed during the consolidation phase. The authors, in their previous research, have 
successfully obtained bimetallic billet in a multimaterial approach starting from AA 7075 and AA 
2011-T3 chips [7]. Further, a discrete change in hardness profile was noticed, a property that is 
found in discontinue FGM. In the present research, chips of aluminum alloys AA 7075 and AA 
2011-T3 were mixed at different proportions to get a continuous graded hardness profile like 
continuous FGM. Further, attempts were made to develop multi-materials based shell-core billet 
by combining the chips along the radial direction of the billet. The purpose was to extend the 
capabilities of the FSC process in manufacturing FGM. The quality of both continuous FGM and 
shell-core billets was evaluated by comparing the results with the previous study [7]. Hardness and 
microstructure are considered the main output criteria. 

 
Material and methods 
Material and process set-up 
Aluminum alloys AA 2xxx and AA 7xxx were considered in the current studies because they are 
popular alloys in the transport and aerospace manufacturing industries where a good balance 
between the product in service and scraps [8] exists. The machining scraps were obtained from 
aluminum alloys AA 7075 and AA 2011-T3 through turning and milling operations, respectively. 
The scraps were cleaned by submerging them in acetone for 30 minutes. Mono-material billets 
were developed from chips of both AA 7075 and AA 2011-T3. Then chips of both alloys were 
combined under proportion (Fig. 1a) and spatial order (Fig .1b) to develop a bi-material billet. 
However, the overall mass of input material was 15g (constant) in all experiments. First, the chips 
were loaded in a cylindrical die with a nominal diameter of 25.4 mm and then compacted at 5 kN 
force by an H13 steel cylindrical tool with a 25 mm diameter. The die and pressing tool system 
was integrated with ESAB-LEGIO (Fig. 1a), a dedicated friction stir welding machine. The final 
consolidation step was applied at 20 kN with a high tool rotational speed of 1500 rpm.  

 

      
Figure 1. FSC experimental setup of bi-material billet for (a) mixing chips at various 

proportion in the mid layer, and (b) chips combining for shell-core manufacturing  
 
Measured output 
The formability of the FSC billet was evaluated with a forging test under cold conditions to turn 
the billet into near-net shape parts. The forging die and tool were coupled with Galdabini hydraulic 
press tensile testing machine (Fig. 2), and billets were reduced to 40% of the initial height. 

The hardness was evaluated through the Vickers hardness measurement. A load of 49 N (5 kg) 
was used for 15 seconds. Due to process symmetry, the FSC billet was sectioned along the 
longitudinal axis, and only four lines were selected along the longitudinal direction, as shown in 
Fig. 3. Keller’s reagent was also applied to the cross-section to examine the microstructure of the 
samples. 
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Figure 2.  Forging tool and die setup  integrated  
with Galdabini tensile testing machine 

Figure 3. Sample for Vickers hardness 
measurement 

Results and discussion  
Hardness of the typical FSC bi-material AA 7075/AA 2011-T3 billet 
Two factors were found that caused variation in the hardness of the bi-material billet. First was the 
material aspect, as material retained mechanical properties their properties in the case of bi-
material billet [7]. Thus, the part of bi-material that consisted of soft material (AA 2011) showed 
lower hardness comparing the part that consisted of hard material (AA 7075). Second, a typical 
FSC mono-material billet is characterized by decaying hardness values along the longitudinal 
direction and radial direction due to different strain rates and thermal gradients during the FSC 
process.  

 
Forgeability characteristics of bi-material AA 7075/AA 2011-T3 billet 
Analyzing the cross-section of the forged section, a defect-free sample was observed for mono-
material AA 2011 billet that showed good forgeability due to its good ductility. However, many 
defects in the form of debonding chips occurred near the external surface for the AA 7075 billet 
section (Fig. 4). The reason is that AA 7075 is a poorly ductile material. While combining AA 
7075 and AA 2011 in a bi-material billet, the sample showed good forgeability without any defect. 
The reason was that AA 7075, exploited the good ductility of AA 2011 in the case of bi-material 
billet. Further, changes due to forging were analyzed by comparing the hardness profile of non-
forged and forged bi-material. For the sake of better understanding, only hardness along one line 
(L0) was considered, as shown in Fig 5. Forged bi-material billet showed an increase in hardness 
due to strain hardening and a reduction in height compared to unforged billet.  
 

 

 

Figure 4. Forged and etched samples of 
mono and bi-materials billets  

Figure 5. Hardness profile comparison at L0 for bi-
material forged and unforged billets 

 
Chips mixing of two dissimilar aluminum alloys in the middle zone of the billet 
FSC process mechanics and material aspects are the main factors that cause variation in hardness. 
Comparatively changing material is more dominant than the FSC process mechanics factor. 
However, the material change causes abrupt variation in hardness and leads to fabricating billet 
with a hardness profile similar to a discontinuous functionally graded material. Therefore, attempts 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 713-118  https://doi.org/10.21741/9781644902431-114 

 

 
716 

were made to control hardness based on material mixing and obtain a billet that possessed 
properties like continuous graded materials. Therefore, a three layers multi-material billet was 
developed, as shown in Fig. 6a. Each layer has a constant mass of 5g. AA 7075 chips were placed 
in the top layer, AA 2011-T3 existed in the bottom layer, while in the middle layer, both alloys 
were mixed at different proportions. For the sake of better understanding, the percentage of AA 
2011 in the middle layer was considered a reference. An abrupt drop from higher to lower hardness 
value was found for 100% (Fig. 6b) and 0% (Fig. 6f) percent AA 2011 composition in the middle 
layer. In the case of 75 % and 25% the fluctuation trend was noticed in the transition zone, but 
still, the hardness profile was more inclined towards AA 2011 and AA 7075, respectively. For 50 
%, a balance fluctuated hardness profile between AA 2011 and AA 7075 was observed. These 
results show that continuous hardness variation is not possible based on changing the proportion. 
The fact is also visible from the etched section (Fig. 7). Actually, the two alloys do not mix with 
each other to get a uniform solution because FSC is a solid-state process, and the process 
temperature does not reach to the melting point of aluminum alloys. 

 

 

 

Figure 6.  Three layers multi-material billet (a) 
schematic, and  hardness profile with percentage 

distribution of AA 2011-T3 in the middle layer (b) 100%, 
(c) 75 %, (d) 50%, (e) 25 %, and (f) 0% 

Figure 7. Eetched section for bi-material 
billet with 100%, 75 %,  50%, 25 %,  and 
0% AA 2011-T3 distribution in the middle 

layer 
 
Bi-material billet in radial direction 
Two different single-step strategies were applied to manufacture multi-material shell-core 
cylindrical billet from AA 7075 and AA 2011 chips. 
 
Method I 
In this method, a hollow flexible thin wall plastic cylinder was placed in the die. The plastic 
cylinder had a diameter less than the diameter of the die and was concentric with the die. AA 7075 
chips were loaded inside the plastic cylinder and surrounded by AA 2011 chips (Fig. 8a). The 
plastic cylinder was carefully removed after chips compaction. Then the whole charge was 
consolidated. Keller’s reagent was applied to analyze the billet section (Fig. 8b) as this method 
was previously proved to effectively differentiate the boundary between different aluminum alloys 
in multi-material billet [7]. Problems like the mixing of chips at the top zone of the billet and an 
irregular boundary line between the shell and core were found. It is assumed that problems were 
caused by material flow due to unwanted backward material extrusion, which will be discussed in 
the following section. Further, this strategy also involves manual steps. So, the next strategy was 
tested. 
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Figure 8. (a) Method 1 schematic presentation for fabricating of shell-core multi-material 
billet,  and (b) etched section of the shell-core multi-material FSC billet 

 
Method II 
In the second strategy (Fig. 9), a solid cylindrical rod was placed inside the die, and the gap 
between the rod and the die was filled with AA 7075 chips (shell). Then hollow tool was used to 
press the chips AA 7075. The purpose of the rod was to develop a hollow shell of AA 7075 and 
provide support to the internal wall support of the compacted step. The surface of the supporting 
rod was also very well polished so that chips of the shell did not stick during the compression 
phase, and the rod could be easily removed. In the next step, cylindrical support was removed, and 
the cylindrical cavity was then filled with chips of AA 2011 for core development. A tool with a 
diameter comparable to the diameter of the core was used for chips compaction of the core. Finally, 
the whole charge was consolidated through the FSC tool. On analyzing the etched cross-section 
(Fig. 10) of the multi-material core-shell billet, again irregular boundary, chips mixing, and further 
non-symmetrical (along the longitudinal axis) core material distribution were found. These 
problems were caused by problems discussed in the previous method. 
 

 
Figure 9. Method 2 schematic presentation 

for fabricating of shell-core multi-material billet 

 
Figure 10. Method 2 etched section ofthe 

shell-core multi-material FSC billet 
 
Additional challenges in manufacturing FSC multi-material billet  
During the FSC process, unwanted material flow within the clearance between the tool and the die 
occurred. It is assumed that by proper selection of process parameters or at a higher technology 
readiness level (TRL), this unwanted material flow can be controlled [7]. 

Besides, it is challenging to numerically model a bi-material billet. As assigning two materials 
to a single billet is possible through phase transformation in Deform 3D software, but it is very 
difficult to obtain a discrete boundary between materials, even choosing a very refined mesh size. 
Conclusion 
FSC stir consolidation is an efficient technique to develop multi-material based FGM with 
excellent control on mechanical properties. Based on the previous discussion, the following 
conclusion can be drawn.  
1. Mixing of different alloy chips at any proportion does not lead to develop continuous FGM. 
FSC is solid-state process and therefore, materials do not join to mix and form a uniform solution. 
2. Multi-material shell-core billet is challenging to develop through a single-step FSC process.  
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3. Backward extrusion is the drawback of the FSC and can be controlled with a proper selection 
of key process parameters or at a higher technology readiness level. 
4. The existing numerical model needs improvement to bring it closer to the real FSC process for 
proper modelling.  
The future potential research in FSC could concern: 1/advanced mechanical and metallurgical 
characterization, 2/ numerical modelling and environmental assessment through Life Cycle 
Assessment methods. 
References 
[1] T.G. Gutowski, S. Sahni, J.M. Allwood, M.F. Ashby, E. Worrell, The energy required to 
produce materials: constraints on energy-intensity improvements, parameters of demand, 
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 
Sciences 371.1986 (2013): 20120003. https://doi.org/10.1098/rsta.2012.0003 

[2] D. Raabe et al., Making sustainable aluminum by recycling scrap: The science of “dirty” alloys, 
Progress in Materials Science. (2022): 100947. https://doi.org/10.1016/j.pmatsci.2022.100947 

[3] B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Review of solid state recycling of aluminum 
chips, Resources, Conservation and Recycling.125 (2017):37-47. 
https://doi.org/10.1016/j.resconrec.2017.06.004 

[4] J.R. Duflou, A.E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K Kellens, W Dewulf, D. 
Paraskevas, Environmental assessment of solid state recycling routes for aluminium alloys: can 
solid state processes significantly reduce the environmental impact of aluminium recycling?. CIRP 
Annals (2015) 64(1) pp 37-40. https://doi.org/10.1016/j.cirp.2015.04.051 

[5] J.H. Bae, A.P. Rao, K.H. Kim, N.J. Kim, Cladding of Mg alloy with Al by twin-roll casting 
Scripta Materialia (2011) 64(9) pp 836-9. https://doi.org/10.1016/j.scriptamat.2011.01.013 

[6] C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, E.J. Lavernia, Additive manufacturing 
of functionally graded materials: a review Materials Science and Engineering A (2019) 764 p 
138209. https://doi.org/10.1016/j.msea.2019.138209 
[7] A. Latif, G. Ingarao, L. Fratini, Multi-material based Functionally Graded billets 
manufacturing through Friction Stir Consolidation of aluminum alloys chips CIRP ANNALS, in 
press (2022). https://doi.org/10.1016/j.cirp.2022.03.035 
[8] J.M. Allwood, J.M. Cullen, M.A. Carruth, D.R. Cooper, M. McBrien, R.L. Milford, M.C. 
Moynihan, A.C. Patel, Sustainable materials: with both eyes open, Vol. 2012, Cambridge, UK: 
UIT Cambridge Limited, 2012. 
 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 719-724  https://doi.org/10.21741/9781644902431-115 

 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

719 

Process mechanics in continuous friction stir extrusion process of 
aluminum alloy 

Gianluca Buffa1, a, Davide Campanella1, b *, Livan Fratini1, c, 
Adnan Muhuammed1, d  and Fabrizio Micari1, e  

1Department of Engineering, University of Palermo Italy  
agianluca.buffa@unipa.it, bdavide.campanella@unipa.it, clivan.fratini@unipa.it, 

dmuhammad.adnan06@community.unipa.it efabrizio.micari@unipa.it 

Keywords: Recycling, Metals, Friction Stir Extrusion 

Abstract. Friction Stir Extrusion (FSE) is an innovative direct-recycling technology developed for 
metal machining chips. A rotating die is plunged into a cylindrical chamber containing the material 
to be recycled during the procedure. The die's stirring action causes strong bonding, enabling for 
the back extrusion of a full dense rod. One of the technology's major flaws is the process' 
discontinuity, which limits the volume of extrudes to the chamber's capacity. Based on the previous 
experience of some of the authors have designed a machine tool for continuous solid-state 
recycling of metal chips with the aims to overcome the limitations of the discontinuous process 
which makes it potentially appealing to industry. In this work, Friction Stir Extrusion process is 
defined, the set-up machines tool is presented, and the experimental findings of case studies are 
shown and analyzed. Finally, with the goal the mechanics of the FSE continuous process, a 
numerical model was created starting from the experimental results obtained by discontinuous 
process. 
Introduction 
One of the main issues facing the current era is the development of environmentally sustainable 
industrial techniques. Numerous international agreements, including the Kyoto Protocol, oblige 
signatory nations to gradually cut their emissions of greenhouse gases over the following few 
years. It's interesting to note that the production of raw materials contributes significantly to these 
annual worldwide emissions. According to a study by Worrell et al. [1], five materials in particular 
steel, cement, paper, aluminum alloys, and polyethylene plastics have the greatest energy impact. 
For instance, cement has a very cheap production cost, but because it is a material that is utilized 
extensively, its impact is far from insignificant. Thus according to research by Worrel et al., around 
20% of the world's CO2 emissions are released into the atmosphere during the manufacture of 
materials. It is predicted that demand for aluminum will expand exponentially and at a faster rate 
than that of the other materials indicated above, based on the trend in demand seen in previous 
years. It is vital to put procedures in place that will extend the material's usable life as much as 
feasible in order to reduce the subsequent rise in emissions caused by the rising demand for the 
material. Since it has several technological and environmental advantages over other methods, 
including as large energy savings compared to original production, recycling is currently the most 
popular method for dealing with metals. Recycling can result in primary energy savings of up to 
90% for aluminum alloys, as well as for magnesium and titanium [2]. The savings for steel are a 
little less, at 69 percent. [3], the demand for aluminum is anticipated to increase by a factor of 2.6 
to 3.5 between 2005 and 2050, while the demand for steel is anticipated to increase by a factor of 
1.8 to 2.2. Due to the circular economy is become more popular [4] the most popular method for 
recycling metals now is conventional recycling, which has numerous advantages over alternative 
technologies in terms of both technology and the environment. Recycling is significantly more 
cost-effective from an energy consumption point of view when it comes to light alloys, where main 
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energy savings of up to 90% can be made [5]. Furthermore, metal scrap frequently consists of 
sheets from finishing after forming procedures and chips from machining operations. The type of 
scrap is categorized as "process scrap" or "new scrap" [6] according to European standards and is 
made up of leftover materials from the entire production chain of the product, from its creation to 
its sale to the consumer. Because of its high surface area to volume ratio and the presence of oxides 
and/or other impurities on its surface, this form of scrap is among the most difficult to recycle. 
Due to this, material losses of up to 15-20% can be attained when recycling light alloys using 
annealed scrap metal [7]. Even "old scraps" from used products can be transformed into "process 
scraps" through the application of the proper cleaning, sorting, and cutting procedures reducing 
the melting energy cost. According to Samuel's study [8], one of the first initiatives using this type 
of processing led to the recycling of 96% of the processed scrap with very little loss. A 
revolutionary process called friction stir extrusion (FSE), which is based on the FSW technology, 
has been created. Its distinctive characteristic is that frictional heat is also provided to the extrusion 
process in addition to the softening of materials. The FSE process, which is widely used in the 
creation of high-quality wires or rods from metal powders, chips, or billet, has recently been 
presented as a direct conversion technique of recycling. The limited length of wire that may be 
produced in a single operation using the FSE technique is one of its key drawbacks. This problem 
can be attributed to both the inherent discontinuity of the operation and the design of the extrusion 
machine itself. Most of the equipment used by researchers is an adaptation of milling machines, 
much as it was during the early development of FSW. In this paper a process design approach was 
carried out through numerical analyses based on FEM models, aimed to define the conditions for 
a continuous extrusion process. In particular, after preliminary analyses carried out using a Von 
Mises plastic yield surface of the material, the Shyma-Oyane models was used, modelling the 
incoherent chips as a porous material, to follow the density evolution during the stage of the 
process and to get closer to the transient condition of the chips. 
Experimental setups 
Some of the authors of this research conducted FSE experimental campaigns on both aluminum 
alloys [9-10] and magnesium alloys, such as AZ31B, [11] to examine the effects of the key process 
parameter and create a specialized numerical model to study the mechanics of the process[12]. An 
ESAB LEGIO 3ST machine was used for the experiments. This machine was developed for FSW 
processes and allow to control the vertical force on the tool. This capability resulted to be 
particularly relevant since the extrusion force is one of the most important technological 
parameters to be controlled during FSE. The tools used for the experiments were a hollow chamber 
and a specifically designed rotary die mounted on the machine chuck. The extruded wire was 
housed inside the mandrel and successively extracted in between the extrusions. The die presented 
a conical shaped shoulder to guide the material flow toward the extrusion channel. The grasping 
of the die during the trials was a recurrent problem caused by the plasticized material flowing into 
the space between the die and the chamber itself, so the chamber was created as a detachable tool. 
This experimental setup enabled the production of sound wire using both magnesium and 
aluminum alloys. The following reference experiments were run with the fixture shown. As shown 
in Fig. 3, the Esab Legio 3ST machine could manufacture wires up to a maximum length of 70 
mm (2 pieces), 40 mm (1 piece), and 30 mm (3 pieces). During a preliminary campaign that also 
enabled fine-tuning of the tool design with an emphasis on the extension in length of the extrusion 
channel, the process parameters for the extrusion (R = 900 rpm F = 22 kN) were chosen. Three 
times were given to each set of procedure parameters, and each time, samples were taken for 
further study. 
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Fig. 2 Extruded wire at 900 rpm and 22 kN with an extrusion ratio equal to 8 

Numerical models 
Such activity as mentioned was carried out through a numerical simulation-based study was carried 
out using the Deform software characterized by a lagrangian implicit solver able to carry out 
thermo-mechanical 3D analyses whose governing equation have been discussed in detail by 
Tekkaya [13]. The software was used with the aim to investigate the effects of the most relevant 
process parameters and to define an actual process window able to obtain sound continuous wires. 
In Fig. 3 sketches of some parts of the machine, designed through the numerical simulation are 
shown. The tools have been simulated as rigid parts by attributing as material AISI-H-13 present 
in the Deform library. While the chip, considered a coherent workpiece, was imported as a 
deformable element, attributing it as material AA2024 (20-550 °C). The geometry of the cochlea 
has also been optimized with the aid of simulation. To obtain the extrusion, two different mesh 
windows were created which allowed local refinement in critical points thus avoiding the need for 
recurrence to an excessive number of elements along the extrusion mouth and in the compacting 
area of the material. The single block cochlea, the container in which it rotates, with static walls 
of the extrusion chamber, and the rotating extrusion die were modelled as rigid bodies and meshed 
with 27778, 19915 and 14175, elements, respectively, to solve the thermal problem. The 
workpiece, representing the AA2024 aluminium alloy compacted chips, was modelled as a unique 
body and meshed with 40408 tetrahedral elements of variable size. It is assumed that the chips 
have already fulfilled the whole screw thread and the extrusion chamber. The cochlea rotated 
around its longitudinal axis and was considered fixed in its axial position; the extrusion chamber, 
together with the container, was fixed in space, while the extrusion die rotated around its 
longitudinal axis and was fixed in its axial position. No addition of chips was considered. An 
experimental campaign was carried out aimed at knowing the best process conditions. It was 
decided to perform a velocity control on the auger and matrix, thus reducing the computational 
difficulties that would have arisen in the case of a force control. A speed of 1600 rpm was set for 
the axial rotation of the die, and a rotational speed of 100 rpm for the screw; with all elements 
fixed in space. Having defined the movements of the various elements, the contacts between them 
were generated by establishing the friction conditions. A friction coefficient of μ = 0.7 was 
imposed in the contact elements between chip and die. 
Results 
Several problems were encountered: the breakage of the plastic material during the process due to 
the shear action of the cochlea, that, as the rotation speed increased, determined the fact that the 
shear strength limit of the material was locally reached, the contacts between the tool and the 
material that can be estimated from the load trend (peaks on the load). The loss of contacts led to 
a reduction in temperature as well as pressure. To obtain an effective simulation a strong increase 
of the number of elements here and there in the mesh was necessary: in this way in the critical 
points two mesh windows (as shown in Fig. 4c) were used. Furthermore, a frequent remeshing was 
adopted due to the strong strain level and distortion of the elements. Once the model was set up, a 
proper calibration was needed: the latter was carried out through an inverse approach starting from 
experimental evidence using temperature history data derived from the discontinuous FSE process, 
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where a proper thermocouple was placed in the scrap metal chamber. For the tuning phase of the 
simulation, therefore, an analysis was made using the temperature acquired in the scrap metal 
chamber. To proceed with the actual tuning referred to the new fixture, 4 temperatures loci were 
tacked on the basis of the positions of the four thermocouples placed in the actual machine. In the 
Fig. 9 show the comparison between the numerically calculated temperatures in positions 1 and 2. 

 
Fig. 9 (a) Position of the thermocouples in the scrap metal chamber and (b) comparison between 

temperature acquired by thermocouples T1 and T2 and numerical prediction - R=900 rpm, 
F=22 kN  

Using the point tracking was possible to perform a study on the flow of the material generated 
during the process. Fig. 10 show the positioning of these points. 

 

 
Fig. 10 Point tracking positions in three different steps: (a) initial, b)-c) out of the extrusion 

channel at different time – R = 900 rpm, F = 22 kN 
 
Once the simulation of the process was established, the material modeled by Shyma-Oyane 

yield surface was used, with an initial density of 0.8. The process therefore remains the same with 
the only new filed variable being the porosity of the material. It has been observed that the 
extrusion mechanics is activated only after reaching the full density (1) of the material (Fig. 11) 

Numerical instabilities were observed due to the quite low value of the material density with 
some sudden variations of temperature due to local losses of contact. In Fig. 11 (a and b) are shown 
difference noted in the achievement of the unitary value of the density, compared to what happens 
in the traditional process [14]. In such continuous process an intermediate compacted layer of the 
material is obtained depending on the actual distance between the cochlea and the scrap metal 
chamber during the process. This observation led to the conclusion that the process must consist 
of the following three distinct phases: 
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I.  Pre-compacting by cochlea with zero tool rotation: in such stage just the axial 
motion of the cochlea is acted determining a sort of upsetting process mechanics 
and the consequent compacting of the chips.  

II.   Under a constant load by the cochlea, the tool starts rotating with established 
rotational speed: the axial force by the cochlea increases step by step until reaching 
the imposed value (process parameter); (at this stage, the process becomes a load 
controlled one). 

III.  Locking the advancement of the cochlea and starting the rotation of the cochlea to 
intake new scrap metal maintaining thus a constant pressure in the chamber. 

 

 
Fig. 11 Relative density and temperature at a)-c) 1.5 sec and b)-d) 2.5 sec 

 
The contact between the chip and the tool is also linked to the inclination of the thread, therefore 

there is a point of maximum pressure and a minimum point, a hypothesis in the verification phase 
provides for a linear displacement of the auger, by means of application of a force towards the 
tool, in order to self-regulate the pressure in the chamber avoiding lack of pressure phenomena 
which contribute to the interruption of the material plastic flow directed towards the tool and then 
the interruption of the consolidated material extrusion. Once the obtained numerical data will be 
verified with the experimental ones, it will then be possible to proceed with the full process 
engineering. 
Conclusion 
The study conducted demonstrates that Friction Stir Extrusion technology operated continuously 
represents a state-of-the-art solution for the primary recycling of light alloys, such as aluminum. 
The continuous process represents a very viable alternative to more classical material remelting 
methods and an excellent alternative to the Solid-State Recycling landscape. The numerical 
analyses carried out show how the proposed FEM model fully represents the reality of the process, 
being able to provide that information which is not directly measurable by the experimental test. 
It has been shown how the model is able to help the experimental campaign by providing useful 
data such as: output parameters for the achievement of the solid bonding phenomenon such as, the 
temperature distribution, the strain rate trend and thus the material flow; but also input parameters 
necessary for the proper operation of the process such as the force trend required for the extrusion 
and the rotation speeds of the moving elements. The solution, identified in the continuous extrusion 
process, allows recycling to be carried out directly "on site". An additional advantage of the 
application of continuous FSE is that it overcomes the geometric limitations associated with its 
"single block" version. Finally, it is noted that the developed FEM model is a first attempt model, 
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which has shown encouraging and plausible results, but to become an industrial design tool it will 
have to be calibrated appropriately. A study should, in the future, be carried out as parameters such 
as friction, conductivity coefficients and mesh sensitivity. 
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