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Preface 
 
The first GREENER conference was held in Trinity College Dublin in September 2019.   
 
GREENER is a biennial initiative of the ICONN project, and draws together a select group of 
leading scientists, innovators, industrialists and decision makers from all over the world to 
discuss and share state-of-the-art research, innovation and practice in the development and 
deployment of present and future offshore energy machines and devices. 
 
The ICONN project was a European Commission supported Industrial Research Training 
initiative (Grant Number: 675659) coordinated by Trinity College Dublin, Ireland.  Under the 
auspices of the Marie Skłodowska-Curie Innovative Training Networks programme the ICONN 
consortium helped train, develop and build future European Research and Innovation capacity – 
through the fostering and development of both human capital and cutting-edge wind and wave 
energy research and training innovations.  The GREENER conference is one of the enduring 
communication activities of the ICONN project. 
 
This genesis of the GREENER conference is evident in the papers gathered in this volume.  The 
papers span a diverse range of advanced technical topics relating to offshore energy, whilst 
simultaneously embracing the essential excellence in training underpinning of the MSCA-EID 
ICONN project. 
 
The early papers in the volume introduce both offshore wind and wave devices, and provide 
valuable overviews of the state-of-the-art in the respective domains.   
 
Thereafter the accepted papers document specific advances and innovations in the modelling, 
design, control, operation and testing of offshore energy machines – having particular regard for 
the effect and impact of their marine environment on both the devices and their generating 
efficiencies. 
 
The Editors would like to express their sincere thanks to the following for their assistance and 
support in the organization and running of the 2019 Greener conference. 
  

https://cordis.europa.eu/programme/id/H2020_MSCA-ITN-2015-EID/en
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Overview on Oscillating Water Column Devices 
António F.O. Falcão 

IDMEC/LAETA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal 
antonio.falcao@tecnico.ulisboa.pt 

Keywords: Wave Energy, Oscillating Water Column, Air Turbines, Control 

Abstract. Oscillating-water-column (OWC) converters, of fixed structure or floating, are an 
important class of wave energy devices. A large part of wave energy converter prototypes 
deployed so far into the sea are of OWC type. The paper presents a review of recent advances in 
OWC technology, including sea-tested prototypes and plants, new concepts, air turbines, model 
testing techniques and control. 
Introduction 
The sea waves are a vast, practically untapped, renewable energy resource. Many concepts and 
technologies for their utilization have been proposed and developed with varying success. They 
have been classified with respect to their basic concept and to their location with respect to the 
shoreline. The oscillating water column (OWC) is widely regarded as the simplest and most 
frequently adopted type of wave energy converter. More OWC prototypes have been deployed and 
tested in the real sea than of any other type of wave energy device. The OWC converters may be 
bottom standing, integrated into a breakwater or floating. They consist of a hollow structure, fixed 
or floating, open at its submerged part, within which the air trapped above the inner free-surface is 
alternately compressed and decompressed by wave action. In almost all cases, the air chamber is 
connected to the atmosphere by a self-rectifying turbine. An extensive review of OWCs can be 
found in [1]. 

Resonance plays a central role in almost all wave energy converter concepts if a satisfactory 
efficiency is to be attained. This involves one or more oscillating bodies or oscillating masses of 
water (water columns). A single-oscillating-body converter reacts against a fixed frame of 
reference, in general the sea bottom or a bottom standing structure. This may be avoided in floating 
devices consisting of two or more bodies that are mechanically inter-connected (hinge or other 
connection). In OWC devices, the water column acts as an oscillating body without the need of any 
mechanical connection. 

In almost every case, the power take-off system (PTO) of an OWC converter is relatively 
conventional and reliable: an air turbine (in most cases a self-rectifying version) directly driving an 
electrical generator, located above sea water level. A dielectric elastomeric membrane generator 
capable of converting deformation into electrical energy has recently been proposed as an 
alternative to the air-turbine-generator set [2]. 
Recent sea-tested OWC prototypes and plants 
OWC prototypes have been deployed into the sea since the 1970s, an early case being the Kaimei 
floating vessel in Japan. Here, only recent realizations are mentioned. 

A bottom-standing plant was deployed in 2016 near the coast of Jeju island, South Korea, 
Fig. 1. It is equipped with two self-rectifying axial-flow impulse turbines of 250 kW rated power 
each. 
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Fig. 1. Bottom-standing OWC in Jeju island, South Korea, completed in 2016. It is equipped with 

two 250 kW self-rectifying axial-flow impulse air turbines. 
 

The integration of wave energy converters into harbour protection structures has been 
considered an interesting option since the early times of wave energy development. The costs of 
the dual-purpose structure are shared, and the access for construction, installation and maintenance 
are made easier. OWCs are especially appropriate for integration into breakwaters. 

A breakwater with 16 OWCs was constructed at Mutriku harbour, in Basque Country, Spain. 
The plant, completed about 2012, was equipped with 16 bi-plane Wells turbine-generator sets 
rated 18.5 kW each (Fig. 2). 

 

 
Fig. 2. Mutriku harbour breakwater with 16 OWCs, completed about 2012. 

 
A much longer breakwater was constructed at the port of Civitavecchia, Italy, integrating 124 

OWCs (completed in 2016) (Fig. 3). Only one turbine (bi-planeWells type) was (temporarily) 
installed. The U-shape of the Civitavecchia OWCs, invented by P. Boccotti [3], allows a longer 
(and more easily resonant) OWC, while keeping the mouth close to the sea surface, Fig. 4. The 
U-OWC breakwater concept is planned to be replicated elsewhere in Italy. 

Several floating OWC concepts have been proposed and studied so far. Here we mention two 
that reached the stage of sea tested prototype in the last decade or so. 

The backward-bent-ducted-buoy was proposed in the mid-1980s by Yoshio Masuda. A large 
model, at scale about 1:4th, was tested in Galway Bay, Ireland. It was equipped firstly with a Wells 
turbine and later with an axial-flow impulse turbine (Fig. 5). A full-scaled prototype was very 
recently constructed in Portland, Oregon, USA, to be deployed in Hawaii (Fig. 5). 
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Fig. 3. Breakwater at Civitavecchia with 124 OWCs (2016). 

 

 
Fig 4. Cross-section comparison of the Mutriku breakwater “conventional” OWC and the 

U-shaped OWC of Civitavecchia breakwater. 
 

 
Fig. 5. BBDB prototypes. Left: 1:4th scale being tested in Galway Bay, Ireland, about 2008. Right: 

full-sized prototype in shipyard, in Portland, Oregon (2019), for deployment in Hawaii. 
 

Another floating OWC concept is the spar-buoy OWC converter, consisting of an axisymmetric 
floater with a long coaxial vertical tube, open to the sea at its bottom end, within which is located 
the water column. This concept was extensively studied theoretically, numerically and in wave 
tank in the last few years. A prototype, scaled about 1:3rd, was built and tested at the BiMAP test 
site, Basque Country, Spain, in 2018-2019. The converter was equipped with a 30 kW bi-radial 
self-rectifying air turbine. The turbine-generator set had been previously tested for one year at one 
of the OWCs of the Mutriku breakwater. 

Since the lower opening of the spar-buoy tube is deeply submerged (typically of the order of 
30 m below the sea surface), the wave energy is essentially absorbed through the interaction 
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between of the oscillating floater and the surrounding waves. A concept in which the opposite 
situation occurs is the co-axial tube OWC. It may be regarded as a floating axisymmetric version 
of Boccotti’s U-OWC (sea above), Fig. 7. Here, the facing-up opening of the tube is close to the 
sea surface. Besides, since the water plane area (i.e. the annular cross-sectional area of the inner 
tube wall at sea water surface level) is very small, the hydrostatic restoring force is also very small, 
and so is the frequency of the free oscillations of the floating structure that behaves as a 
semisubmersible structure. For this reason, the heave and pitch oscillations are very weakly 
excited by sea waves, which makes this kind of wave energy converter appropriate to fit multiuse 
floating platforms. A rigidly-connected array of five such OWCs was model-tested in 2017 within 
the framework of the H2020 project WETFEET (Fig. 7). 

 
Fig. 6. Marmok-A-5 spar-buoy OWC tested at the BiMEP test site, Basque Country, Spain, 2019. 

The converter is equipped with a 30 kW bi-radial self-rectifying air turbine (see Fig. 8). 

 
Fig. 7. Co-axial-tube OWC (left); five-OWC rigidly-connected array model (centre); and array 
being tested in the wave tank of the Coastal Laboratory, University of Plymouth (2017) (right). 

 

Air turbines 
An OWC converter is in general equipped with an air turbine coupled to a conventional electrical 
generator. This may be regarded as a simple and reliable type of power take-off system and is one 
of the attractive features of the OWC concept. If rectifying valves are to be avoided (which has 
been the case except in small wave-powered navigation buoys), the turbine must be self-rectifying, 
i.e., its rotational speed direction remains unchanged when the air flow is reversed by the 
reciprocating motion of the air column. Two types of such turbines were proposed and patented in 
the mid-1970s: the Wells turbine and the axial-flow impulse turbine, with variants of both. In spite 
of their limitations in terms of aerodynamic performance, they remain popular in OWC 
applications due to their mechanical simplicity and low cost. More sophisticated and efficient 
self-rectifying air turbines were developed in recent years. 
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Here, we mention especially the biradial turbine. This is an impulse turbine that is symmetrical 
with respect to a plane perpendicular to its axis of rotation. The flow into the rotor is radial 
centripetal and the flow out of the rotor is radial centrifugal. The rotor is surrounded by a pair of 
radial-flow guide-vane systems, each one connected to the corresponding rotor opening by a duct 
whose walls are flat discs (Fig. 8). A 30 kW biradial turbine was tested at Mutriku and then 
installed the Marmok-A-5 spar-buoy OWC in 2018-2019 at the BiMAP test site, Basque Country, 
Spain (Fig. 6). The turbine was equipped with a fast axially-sliding valve (opening or closing time 
0.2 s) capable of achieving phase control by latching (see below). 

 

 
 

Fig. 8. Biradial air turbine. Perspective drawing showing the concept (left). Prototype before 
installion at the Marmok-A-5 spar-buoy OWC (centre), equipped with an axially-sliding 

high-speed valve (right). 
 

The use of a conventional unidirectional air turbine requires a system of rectifying valves. This 
has been implemented in early small navigation buoys. Unidirectional turbines with rectifying 
valves were tested in Japan on the Kaimei floating vessel in 1978-80 and 1985-86, but the results 
were not encouraging [1]. The Tupperwave is a new concept of spar-buoy OWC equipped with a 
unidirectional turbine and check valves. The air flows in closed circuit, with low- and 
high-pressure reservoirs. Model tests were performed in wave tank with an orifice simulating the 
turbine [5]. The valves seem to remain a major problem. 
The spring-like air compressibility effect 
The volume of the air chamber of an OWC converter should be large enough to avoid ingestion of 
green water by the air turbine under rough sea conditions. Typical design values of the air chamber 
volume divided by the area of the OWC free surface range between 3 and 8m. The spring-like 
effect of air compressibility in the chamber is related to the pressure-density relationship, and 
increases with chamber volume. Such effect is important in a full-sized OWC converter. For such 
effect to be adequately simulated in model testing (Froude linear scale 𝜀𝜀 < 1 for the submerged 
parts of the converter), the ratio between the air chamber volume of model and prototype has to be 
equal to the square 𝜀𝜀2, not the cube 𝜀𝜀3, of the scale [6]. This implies a much larger air volume in the 
model which in general requires an additional rigid-walled air reservoir connected to the model air 
chamber. This rule is rarely implemented in model testing of OWCs, which means that most 
experimental results (published or unpublished) from OWC model testing could be affected by 
significant errors.  

The compressible air in the chamber acts as a spring in series with the damping effect provided 
by the turbine. This produces a reactive effect that modifies (increases) the resonance frequency 
and consequently the frequency response of the converter. This effect may be unfavorable or 
(more rarely) favorable in terms of wave energy absorption (depending on incident wave 
frequency), but should not be ignored [6]. 
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Control 
Most wave energy converters, including especially OWCs, perform more efficiently near 
resonance conditions. Since real sea waves are irregular (rather than purely sinusoidal) and sea 
states vary widely along the year, control plays an essential role in converter performance. 
Generally control is implemented on the power take-off system (PTO), and so control strategies 
must be adapted to the converter type and especially the mechanical/electrical arrangement of the 
PTO. A wide range of control methods have been proposed and adopted [7,8]. 

In OWC converters, the PTO consists of an air turbine driving an electrical generator. The 
wave-to-wire efficiency of an OWC converter involves three processes: (i) hydrodynamics of 
wave energy absorption, (ii) aerodynamic performance of the turbine (this may include losses at 
non-return valves if the turbine is unidirectional), and (iii) performance of the electrical 
equipment. All three processes are coupled though the rotational speed of the turbine-generator 
set, and so control of the OWC converter relies largely on rotational speed control. 

Phase control by latching was proposed in 1978 by Falnes and Budal to improve the wave 
energy absorption by oscillating body converters (especially point absorbers). It consists in 
latching the body in a fixed position during certain intervals of the oscillation cycle. Extending the 
latching control strategy to OWCs requires to air flow to be stopped during certain intervals of 
time; this requires a fast acting valve. Because in an OWC air is compressible, latching can be 
activated at any time without causing large peak forces, which makes it more versatile. For the 
same reasons why unidirectional air turbines have been unpopular (because valves are needed), 
also phase control by latching of OWCs has not been seriously considered until recently. The 
high-speed sliding valve that integrates the new biradial turbine (see above) may be used to 
successfully implement phase control by latching [9]. The numerical results in Fig. 9 show how 
latching control may dramatically increase the regular wave energy absorption by a spar-buoy 
OWC over a significant range of wave periods. Naturally, latching control may be effective only if 
the device’s resonance frequency exceeds the wave frequency. 

 
Fig. 9. Dimensionless absorption width of a spar-buoy OWC in regular waves with optimal 

latching control and without control. Buoy diameter 15 m, draft 38 m. Results from 
theoretical/numerical modelling [10]. 

 
Control of an OWC converter in most cases consists simply in controlling the rotational speed 

of the turbo-generator set through the electromagnetic torque 𝐿𝐿e of the generator. This is mainly 
because the turbine aerodynamic efficiency depends strongly on its rotational speed. It should also 
be taken into account that kinetic energy is alternately stored in, and released from, the rotating 
masses (flywheel effect). An effective control algorithm is 𝐿𝐿e = 𝑎𝑎Ω𝑏𝑏−1 , where 𝐿𝐿e  is the 
electromagnetic of the generator, Ω is rotational speed and the exponent b is (from turbomachinery 
non-dimensional analysis) approximately 𝑏𝑏 = 3. Coefficient a depends on device configuration 
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and size, and on turbine type and size, and must be optimized numerically or experimentally. This 
algorithm should be complemented to account for constraints related to maximum allowable 
rotational speed (especially if the turbine is of Wells type) and maximum allowable electrical 
power (especially in power electronics). 
Electrical equipment control 
Electrical generators are in general highly efficient machines (about 95%) in the power range 
above about 2/3 of the rated power. Below that level, the efficiency decreases markedly (see 
Fig. 10). The power absorbed from the waves varies greatly, depending on the sea state. The 
highly energetic sea states occur in only a small fraction of the year but their contribution to the 
total produced energy may be substantial if the rated power of the electrical equipment is large 
enough to accommodate that. On the other hand, most of the available wave energy concerns the 
less energetic sea states that occur most of the time. This raises questions: (i) at which level shall 
the electrical rated power be fixed, and (ii) how to proceed so that it is not to be exceeded (which 
could endanger the equipment). 

 
Fig. 10. Electrical efficiency versus electrical              Fig. 11. Control law for OWC converter. 
load factor for an electrical generator. 
 

The latter question (ii) is addressed differently depending on the type of wave energy converter. 
In the case of an OWC device, the power may be constrained by (a) a valve in series or in parallel 
with the air turbine; or (b) by controlling the electromagnetic torque so that the rated power is not 
exceeded (Fig. 11), which results in storing the excess energy as kinetic energy of the rotating 
masses (note that the turbine efficiency drops to very low values at high rotational speeds). 
Obviously, (b) may be limited by maximum rotational speed constraints (either for the turbine or 
for the generator). If this is the case, the power available to the turbine has to be reduced. This is 
done by a mechanical valve to reduce (or simply close) the flow through the turbine. In general, the 
valve is not fast enough to respond to the power peaks, and its aperture position is changed “from 
time to time” simply to match the sea state. 

The availability of a very fast valve (response time about 0.2 s) in series with the turbine (see 
Fig. 8) allows what has been called “peak-shaving”, i.e. preventing the occurrence of unacceptable 
power peaks by partially (or if necessary fully) closing the valve, which is left open at the other 
times. This has been implemented with good results in the biradial turbine tested under real sea 
conditions while installed at the Mutriku OWC breakwater and later at the Marmok-A-5 spar-buoy 
OWC, in 2017-19 (European project OPERA), see Fig. 12 [11]. 
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Fig. 12. Measured results of peak-shaving control of one of the OWC converters of the Mutriku 

breakwater equipped with a biradial turbine and a fast valve [11]. In this test, the electrical 
generator power was constrained not to exceed 7.5 kW. 
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Abstract. The cointegration method has recently attracted a growing interest from scientists and 
engineers as a promising tool for the development of wind turbine condition monitoring systems. 
This paper presents a short review of cointegration-based techniques developed for condition 
monitoring and fault detection of wind turbines. In all reported applications, cointegration 
residuals are used in control charts for condition monitoring and early failure detection. This is 
known as the residual-based control chart approach. Vibration signals and SCADA data are 
typically used with cointegration in these applications. This is due to the fact that vibration-based 
condition monitoring is one of the most common and effective techniques (used for wind turbines); 
and the use of SCADA data for condition monitoring and fault detection of wind turbines has 
become more and more popular in recent years. 
Introduction 
In recent years, with the fast development of wind power technology, the number and capacity of 
wind turbines (WTs) have rapidly increased. However, due to the harsh operation environment 
and time-varying load operation, wind turbines have a high failure rate [1]. It is well known that 
unexpected failures, especially of large and crucial components, can cause costly repair and 
excessive downtime. This leads to the increasing of operation and maintenance costs and 
subsequently the cost of energy. Therefore, it is very important to develop wind turbine monitoring 
systems that can detect turbine faults at the early stage of fault occurrence. Various condition 
monitoring techniques have been developed to detect and diagnose abnormalities of WTs, as 
reviewed in the literature [2-4], such as vibration signal analysis, oil monitoring and analysis, 
acoustic emission, ultrasonic testing techniques, strain measurement, radiographic inspection, 
thermography. Another solution – based on the use and analysis of supervisory control and data 
acquisition (SCADA) data – has been recently developed for early failure detection of wind 
turbines, as reviewed in [5]. This approach is cost-efficient, readily available, and is beneficial for 
identifying abnormal components because only key process parameters need to be tracked [1, 5]. 

Changing environmental and operating conditions of wind turbines are well known to create 
many difficulties in the signal processing of the measured signals. In particular, wind variations 
can lead to load variations on the gearbox. Condition monitoring in this case is more challenging 
and difficult. This implies that monitoring of data trends and removal of undesired effects of 
environmental and operational variability from wind turbine data are important. Many studies have 
aimed at developing data analysis/processing methods for effective trend removal, continuous 
condition monitoring, and reliable abnormal detection of WTs. 

Cointegration, a technique originally developed in the econometrics field [6, 7], has recently 
been introduced to Structural Health Monitoring (SHM) and Condition Monitoring (CM) as a 
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promising data-driven method for the removal of common long-term trends – induced by changing 
environmental and operational conditions – from the measured data. In essence, the theory of 
cointegration can be used to combine nonstationary variables to create a stationary combination 
purged of all common trends in the original data. Therefore, cointegration has been seen as an 
effective solution to the data normalisation problem in SHM. The main idea behind the use of 
cointegration for SHM is based on the concept of stationarity and nonstationarity. In a brief 
description, the variables of interest are cointegrated to create a stationary residual whose 
stationarity represents normal (or undamaged) condition. Then any departure from stationarity 
may indicate that monitored processes (or data from monitored structures) are no longer operating 
under normal condition. Since its first application for the condition monitoring of an industrial 
distillation unit which was reported in 2009 [8], cointegration has been broadly applied to SHM 
[9, 10]. These applications have demonstrated that the cointegration process can effectively 
remove such common long-term trends induced by varying environmental and operational 
conditions from SHM data. Recently, the cointegration theory has attracted considerable research 
attention from scientists and engineers worldwide for the development of wind turbine condition 
monitoring systems. This paper presents a short review of cointegration-based techniques 
developed for condition monitoring and fault detection of wind turbines in order to demonstrate 
the state-of-art development of the approach. To the best of the authors knowledge, this issue has 
not been addressed previously in the literature. 

The layout of the paper is organized as follows. Section 2 introduces briefly the cointegration 
algorithm. Section 3 presents the review and Section 4 provides a discussion on the cointegration-
based condition monitoring and fault detection techniques for wind turbines. Finally, the paper is 
concluded in Section 5. 
Cointegration analysis 
Consider a time series  presented in the form of the first-order Auto-Regressive  process, 
which is defined as 

 (1) 

where  is an independent Gaussian white noise process with zero mean, i.e. . 
With different values of the coefficient φ , we have three different time series, which are: (1) 
stationary time series ( ); (2) nonstationary time series ( ); and (3) random walk time 
series ( ). 

A random walk time series without a trend is considered as an integrated series of order 1, 
denoted  [11]. For this time series Eq. (1) yields 

 (2) 

Eq. (2) shows that, the first difference of ty , i.e. 1−− tt yy , is a stationary white noise process 
. This implies that a nonstationary  time series becomes a stationary  time series after 

the first difference. In a similar way, a nonstationary  time series requires differencing twice 
to induce a stationary  time series. 

Now, the concept of cointegration can be introduced using a vector tΥ  of )1(I  time series 
defined as T
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vector T

n ),...,,( 21 ββββ =  such that 

ty )1(AR

ttt yy εφ += −1

tε ),0(~ 2σε IWNt

1<φ 1>φ
1=φ

)1(I

tttt yyy ε=−=∆ −1

tε )1(I )0(I
)2(I

)0(I



Floating Offshore Energy Devices  Materials Research Forum LLC 
Materials Research Proceedings 20 (2022) 10-19  https://doi.org/10.21741/9781644901731-2 

 

 

 12 

)0(~2211 Iyyy ntnttt
T ββββ +⋅⋅⋅++=Υ  (3) 

In other words, the nonstationary )1(I  time series in tΥ  are linearly cointegrated if there exists 
(at least) a linear combination of them that is stationary or has the )0(I  status. This linear 
combination, denoted as t

TΥβ , is referred to as a cointegration residual or a long-run equilibrium 
relationship between time series [11]. The vector β  is called a cointegrating vector. One can 
imagine that the cointegration residual ( t

T
tu Υ= β ) is created by projecting the vector tΥ  on the 

cointegrating vector β . 

A review of cointegration-based approaches to condition monitoring and fault detection of 
wind turbines 
This section presents a short review of recent investigations on cointegration-based condition 
monitoring and fault detection techniques for wind turbines in order to illustrate the state-of-art 
development of the approach. 

The work in [12-14] presented a novel data analysis/processing method – based on the concept 
of residual-based control chart – for condition monitoring and fault diagnosis of wind turbines 
(WTs). The cointegration-based data analysis/processing procedure proposed consists of two 
stages, i.e. off-line stage and on-line stage, as illustrated in Fig. 1. The main idea of the proposed 
method relies on the fact that cointegration is a property of some sets of nonstationary time series 
where a linear combination of these nonstationary series can produce a stationary residual. Then 
the stationarity (or nonstationarity) of the cointegration residual can be used in a control chart as a 
potentially effective damage feature. SCADA data – acquired from a WT drivetrain with a nominal 
power of 2 MW in 30 days under varying environmental and operational conditions – were used 
to validate the method. Two known problems of the wind turbine (i.e. an abnormal operating state 
F1 and a gearbox fault F2) were used to illustrate the fault detection ability of the method. The 
work in [12, 13] used six process parameters of the wind turbine (i.e. wind speed, generator speed, 
generated power, generator temperature, generator current, gearbox temperature), whereas the 
investigation in [14] used only the temperature data of gearbox bearing and generator winding. 
Some selected results of the work in [12] and [14] are shown in Fig. 2 and Fig. 3, respectively. 
The results have revealed that both studies could effectively monitor the wind turbine and reliably 
detect abnormal problems with almost the same quality. This confirms that temperature data of the 
gearbox and generator can provide an early indication of wind turbine faults. Additionally, the use 
of only gearbox and generator temperature data helps to reduce the number of sensors needed for 
monitoring the wind turbine. Also, it simplifies the cointegration-based data analysis procedure. 
What is more, the method proposed in [12-14] has been motivated by the fact of its simplicity and 
low computational cost in comparison to other commonly used data-mining techniques, e.g., 
neural network algorithms. 

Following the idea of the method developed in [12-14], the work in [15] also used the theory 
of cointegration for continuously monitoring the operating conditions of wind turbines. First, the 
optimal combination of different parameters from SCADA data in normal operating condition was 
determined by using the Johansen's cointegration test and statistical test. Then, the cointegration 
residuals and stationary threshold boundaries under normal working space were calculated using 
cointegration analysis. The method was tested using SCADA data of a wind turbine (with nominal 
power of 2 MW) with known faults. The results have demonstrated that the proposed method can 
effectively monitor the abnormal state of generator and gearbox, and provide the function of early 
warning. In addition, the method can monitor several key components of the wind turbine more 
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comprehensively, and avoids the disadvantage of traditional techniques which can only monitor a 
single parameter. 

The work in [16] presented a simulation example of the cointegration-based approach for 
removing environmental or operational trends from one damage sensitive variable (using a single 
sensor). This research is meant to be applied for on-line wind turbine gearbox condition monitoring 
under varying load conditions. Simulation of the dynamic response of a three degree-of-freedom 
(3-DOF) system to a random excitation was used in the study. In order to introduce effects of 
imitating environmental or operational conditions, a sinusoidal variation in the stiffness was 
included in the simulated system. Also, damage was introduced by reducing stiffness parameters. 
The recursive least square (RLS) algorithm with a forgetting factor λ=0.9 was used to fit 
autoregressive (AR) models to the simulated accelerations at the model's masses. The order of the 
AR models was chosen to be twenty. The method started with estimating twenty coefficients using 
the RLS method for each acceleration. Subsequently, the first five coefficients produced were used 
to perform cointegration analysis. A statistical process control X-chart was used for anomaly 
detection. The results have demonstrated the method's potential to be applied on vibration data 
measured from a wind turbine transmission system, where cointegration can be adapted as a 
solution for extracting the load variation influences in the gearbox vibration signals. 

Condition monitoring of wind turbine gearboxes based on the cointegration analysis of 
vibration signals was intensively investigated in [17]. Vibration signals taken from three different 
points on a Sinovel1500 wind turbine gearbox were choosen as analysis variables. Acceleration 
sensors were mounted on both high speed and low speed shaft bearing to acquire vibration signals. 
The authors have discussed that the three vibration signals sampled from the gearbox have similar 
trends. So, there must be a linear cointegration relationship among these vibration signals. The key 
idea of the method is to establish a cointegration model of the gearbox in normal condition and 
then analyse the stability of residuals calculated by the cointegration model. Once a gearbox failure 
occurs, vibration features of the testing point which is close to the position of failure will be 
changed. Consequently, the cointegration relationship is broken and the stability of cointegration 
residuals changes accordingly. This work also used statistical process control to set the thresholds 
of residuals as the failure warning level. Through the simulation analysis of gearbox fault data, the 
results verify the effectiveness of cointegration in monitoring condition of wind turbine gearbox. 
Selected results of this work are shown in Fig. 4. 

A cointegration-based monitoring method for rolling bearings working in time-varying 
operational conditions was recently developed in [18]. The proposed method was applied to 
vibration signals measured on an experimental bearing test rig. The signals – acquired during run-
up condition – were first decomposed into zero-mean modes called intrinsic mode functions using 
the improved ensemble empirical mode decomposition method. Next, cointegration analysis was 
applied to the intrinsic mode functions to extract stationary residuals. The feature vectors were 
then created by applying the Teager-Kaiser energy operator to the stationary residuals. Finally, the 
feature vectors of the healthy bearing signals were utilised to construct a separating hyperplane 
using the one-class support vector machine method. The results confirmed that the method could 
successfully distinguish between healthy and faulty bearings even if the shaft speed changes 
considerably. 

An interesting application of cointegration to analyse vibration signals for local damage 
detection in gearboxes was presented in [19]. The work started with the assumption that the 
correlation of given vibration signal is periodic and its period can be measured. Then, signal was 
restructured and divided into sub-signals according to the discovered period. Next, sub-signals 
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were checked if they are integrated and the cointegrating vector was calculated by using the least 
squares method. Finally, in order to test if the cointegrating vector corresponds to healthy or 
damaged gearbox the authors examined whether it exhibits random (chaotic) behaviour by using 
the Wald-Wolfowitz test for randomness. The proposed methodology was validated using 
simulated vibration signals and real data from a two-stage gearbox (with first stage being conical 
and second cylindrical) used in mining industry. Based on the analysis of cointegrating vectors the 
damaged gearbox could be detected. 

In [20], the authors have explored the use of cointegration in detection of structural damage in 
the blade of an operating Vestas V27 wind turbine under the effect of certain environmental and 
operational variabilities (EOVs). The experimental campaign included a measurement period of 
3.5 months, in which the blade in question was instrumented with 11 piezoelectric accelerometers 
(distributed along the leading and trailing edge). The wind turbine was analysed in a 
healthy/reference state and three damaged scenarios where a trailing edge opening was introduced 
gradually to the instrumented blade with increasing size from 15 cm long, to 30 cm long, and 
finally 45 cm long. In addition to acceleration measurements in the different structural states, the 
study recorded the varying environmental and operational conditions (including wind speed and 
direction at different altitudes, ambient temperature, atmospheric pressure and precipitation) over 
the 3.5-months period. The Q-statistics was employed as the damage metric to quantify the 
discordance between the statistical baseline representing the healthy structural state and 
realizations from the potentially damaged state. The results have demonstrated that cointegration 
can be used to successfully detect the introduced damages under conditions not allowing for direct 
discrimination between damage and EOVs. 

It should be noted here that all applications – reported in [8-10] for SHM systems and in [12-
20] for wind turbine condition monitoring – have used the linear cointegration theory that was 
originally developed in [6, 7] and intimately connected with the concept of linear error correction 
models. However, it is well known that response signals (e.g. Lamb waves, vibration data, SCADA 
data) acquired from engineering structures or wind energy systems often exhibit not only 
nonstationarity, but also nonlinear behaviour. Moreover, operational and environmental trends are 
typically believed to be nonlinearly related with response data used for damage detection or 
condition monitoring. If this is the case then the conventional linear cointegration theory might be 
no longer suitable for structural damage detection as well as process condition monitoring and 
therefore nonlinear cointegration approaches are highly needed. 

The work in [21] brought the concept of nonlinear cointegration to SHM. However, a major 
problem was observed, that is, the variance of cointegration residuals (calculated for a healthy 
structure) increased with time, although cointegrated variables were mean stationary. This 
behaviour – known in mathematics as the heteroscedasticity – implied that strictly stationary 
cointegration residuals could not be obtained. When a cointegration residual with unstable variance 
characteristics is used in a control chart (i.e. statistical process control) for condition monitoring 
of a wind turbine, it is not possible to identify accurately that whether a gearbox failure occurs 
when the residual exceeds a threshold. So, it is clear that reliable condition monitoring methods 
for WTs based on nonlinear cointegration would require homoscedastic cointegration residuals 
(i.e. strictly stationary residuals) to prevent false diagnosis results. Recently, the work in [22, 23] 
has investigated a new approach to nonlinear cointegration, with applications towards SHM and 
wind turbine condition monitoring – which could solve the problems of heteroscedasticity and 
nonlinear trend removal. As a result, an approximately homoscedastic nonlinear cointegration 
method has been proposed for the removal of undesired (environmental, operational or 
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measurement) trends from SHM data in general and wind turbine SCADA data in particular. The 
method has been successfully applied for condition monitoring and fault detection of a wind 
turbine drivetrain with a nominal power of 2 MW in the presence of nonlinearity between 
operational parameters. 

 
Fig. 1 Cointegration-based data analysis 

procedure for condition monitoring of wind 
turbines using SCADA data [12]. 

 
Fig. 2 Condition monitoring and fault 

detection of the wind turbine using multiple 
process parameters [12]: (a) abnormal 

operating state (F1) and gearbox fault (F2); 
(b) monitoring of F1 and F2 using the 1st and 
5th cointegration residuals in control charts. 

 
Fig. 3 Condition monitoring of the wind 

turbine using only the temperature data of 
gearbox and generator [14]. 

 

 
Fig. 4 Monitoring of the wind turbine 

conditions using cointegration [17]: (a) the 
residual in fault condition; (b) the residual 

trend in fault condition. 
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Discussion 
Some important remarks and a comprehensive comparison between the cointegration-based 
method and other relevant approaches for condition monitoring and fault detection of wind 
turbines are presented in the following. 

First of all, it should be noted that the major idea of the cointegration-based condition 
monitoring and fault detection techniques for wind turbines [12-23], as reviewed in Section 3, is 
basically relied on the well-known control chart approach, which is one of the primary techniques 
of statistical process control. Basically, control charts plot the quality characteristic as a function 
of the sample number. The charts have lower and upper control limits, which are computed from 
the samples recorded when the process is assumed to be in control. When abnormal sources of 
variability are present, sample statistics will plot outside the control limits and an alarm signal will 
be produced. An advantage of control charts is that they can be automated for on-line structural 
health monitoring. 

Second, condition monitoring systems of wind turbines, as reported in Section 3, have 
employed the cointegration technique for either vibration data [16-20] or SCADA data [12-15, 22, 
23]. It is due to the fact that vibration signals of gearbox contain a large number of operating 
condition information. Hence, it is common to use vibration signals for fault prediction and 
diagnosis. Regarding SCADA-based approaches, since standard SCADA systems have been 
installed in the majority of utility-scale WTs for system control, data logging and performance 
monitoring so that the data needed for analysis is readily available and no additional hardware and 
sensors are required when developing a SCADA-based condition monitoring (CM) system [5, 12]. 
Hence, this is a potentially low cost solution. In addition, SCADA-based CM systems can be 
designed to operate in on-line or off-line mode. Because of these advantages, SCADA data have 
been used with cointegration to develop monitoring systems for WTs. It is suggested that if 
gearbox vibration signals of a wind turbine are combined with its SCADA data for cointegration 
analysis, earlier fault prediction can be achieved with high accuracy. 

Next, it should be mentioned that regression analysis can be used for condition monitoring of 
wind power systems, as illustrated in [24]. However, cointegration analysis has been used in [12-
23] instead of other regression techniques is due to two main reasons: (1) to avoid the problem of 
spurious regression; and (2) to actively deal with the undesired effect of environmental and 
operational conditions in the analysed data. The former has been discussed broadly in the 
econometrics literature [25]. The problem arises when standard regression analysis fails while 
dealing with nonstationary variables, leading to spurious regressions that suggest relationships 
even when there are none. For example, if two time series show monotonic trends, even if the 
trends are not causally related, ordinary least-squares (OLS) regression will potentially find a 
spurious relationship. The later relates to the capability of cointegartion analysis for removing 
undesired effects of environmental and operational variability from wind turbine SCADA data 
(SHM data in general), while still maintaining sensitivity of cointegration residuals to faults, 
structural damage, or abnormal problems. This process is known as data normalisation. 

Finally, in comparison with typical data-mining algorithms, such as neural network (NN), 
support vector machines, adaptive neuro-fuzzy interference systems (ANFIS), decision tree 
learning, or naive Bayes classifier, cointegration-based condition monitoring algorithms are 
simpler and requires much less computational resources. For example, in the study [12-14], the 
calculation of cointegrating vectors in the off-line stage takes only few seconds on a normal 
computer. Then, the cointegration residual is obtained through projecting the SCADA data – 
acquired from the monitored WT under regular working phase for producing electricity – on the 
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resulting cointegrating vectors. This is done simply by multiplying a vector of time series variables 
by one cointegrating vector to form one cointegration residual, or multiplying a matrix of time 
series variables by   cointegrating vectors to obtain   cointegration residuals. This computation 
process can be promptly executed in real-time manner on a computer-based condition monitoring 
system, thereby providing a simple on-line condition monitoring solution for wind turbines. 
Furthermore, cointegration can be used in practice to monitor a wind turbine system without the 
need of analysing many nonstationary variables. Through monitoring a cointegration residual, one 
can achieve the objective of simultaneous monitoring of multiple nonstationary variables [12, 16]. 
Conclusions 
This paper have reviewed recent investigations on cointegration-based condition monitoring and 
fault diagnosis techniques for wind turbines. First of all, it is observed that all reported applications 
have used cointegration residuals in control charts for condition monitoring and early failure 
detection. This is known as the residual-based control chart approach. Second, only vibration data 
and SCADA data have been used with cointegration in these applications so far. This is due to the 
fact that vibration signals are the most common condition monitoring signals and SCADA-based 
condition monitoring has become more and more popular in recent years. 

An important conclusion is that the cointegration-based techniques can automatically interpret 
and analyse a large amount of low-sampling rate SCADA data and enables a transition from a 
singular process parameter analysis to automatic interpretation and analysis of a large number of 
process parameters. Moreover, simplicity and fast computation are the major advantages of 
cointegration-based techniques, if comparted with other common techniques (such as NN-based 
and ANFIS-based algorithms). Hence, the cointegration-based condition monitoring algorithm for 
wind turbines using vibration signals and SCADA data can be computed on-line and deployed on 
a computer for real-time condition monitoring applications. 

Furthermore, the use of cointegration can remove, compensate, or at least, mitigate the effect 
of environmental and operational variability in vibration and SCADA data used for condition 
monitoring and fault detection of wind turbines. 
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Abstract. A derivation of the Ostrovsky equation for internal waves with methods of the 
Hamiltonian water wave dynamics is presented. The internal wave formed at a pycnocline or 
thermocline in the ocean is influenced by the Coriolis force of the Earth's rotation. The Ostrovsky 
equation arises in the long waves and small amplitude approximation and for certain geophysical 
scales of the physical variables.  
Introduction 
The internal ocean waves could have a significant impact on offshore engineering structures, such 
as oil platforms in the oceans as well as stationary tubes for oil and gas transportation stretching 
along the ocean shelf slope [1]. Builders of underwater constructions in equatorial districts, for 
example, experience the influence of huge underwater internal waves and strong surface flows, 
which are interfering with their work activities. 

The internal waves often are driven by tidal motion. The open water exploitation of tidal and 
wave power is under current considerations. It has been estimated globally that 180 TWh of 
economically accessible tidal energy is available. However, due to geographical, technical, and 
environmental constraints, only a fraction of this could be captured in practical terms [5].   

The pattern of the ocean movement around the points of zero tidal wave amplitude 
(amphidromic point) is due to the Coriolis effect. Therefore there are deep interrelations between 
the tidal motion, internal waves and Coriolis forces that deserve detailed studies, since these are 
of potential practical significance.    

In this work we examine the Coriolis effect on the internal wave propagation following the idea 
of nearly Hamiltonian approach, developed in series of previous papers like [6, 4] and [3] and 
generalising the Hamiltonian approach of Zakharov [14]. 

A mass of moving air or water subject only to the Coriolis force travels in a circular trajectory 
called an inertial circle, for the atmosphere see the illustration on Fig. 1(a). For ocean waves the 
Coriolis Effect is not so pronounced, nevertheless it affects the wave propagation. For ocean waves 
of large magnitude, the viscosity does not play an essential role and can be neglected, so effectively 
the fluid dynamics is govern by Euler's equation. 

 
Internal Waves with Coriolis force - the Setup  
The Euler equation with included Coriolis force is  

𝑉𝑉𝑡𝑡 + (𝑉𝑉 ∙ ∇)𝑉𝑉 + 2𝜔𝜔��⃗ × 𝑉𝑉 = − 1
𝜌𝜌
∇𝑝𝑝 + �⃗�𝑔  (1) 
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where the velocity vector field V = (u, v, w) is presented through its components in a local 
coordinate system where the geophysical axis x is oriented to the East, the y axis is pointing to the 
North and the z axis is vertical to the Earth’s surface, �⃗�𝑔 = (0,0,−𝑔𝑔)  is the Earth’s gravity 
acceleration. In addition we have incompressibility, i.e.  div V = 0. p is the pressure in the fluid. 
The Earth’s angular velocity at latitude in this system is 𝜔𝜔��⃗ = 𝜔𝜔 (0, cos 𝜃𝜃 , sin𝜃𝜃),  𝜔𝜔 = 7.3 × 10−5 
rad/s. Introducing the parameters  𝑓𝑓 = 2𝜔𝜔 sin𝜃𝜃  and    𝑟𝑟 = 2𝜔𝜔 cos 𝜃𝜃  we have  

2𝜔𝜔��⃗ × 𝑉𝑉 = (𝑟𝑟𝑟𝑟 − 𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓,−𝑟𝑟𝑓𝑓) . 

For Equatorial motion θ = 0 and f = 0 so there are no forces acting in the y-direction. Moreover, 
the Coriolis forces are supporting the fluid to move along the Equator (in the x-direction), so that 
its motion remains two-dimensional. Such situation with internal equatorial waves and currents is 
studied in [4].  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: (a) Left: Coriolis forces in the atmosphere. Schematic representation of inertial circles of 
air masses in the absence of other forces. Source: Wikipedia; (b) Right: System with an internal 
wave. The fluid domain Ω contains fluid of higher density. The pycnocline/thermocline separates 
the two fluid domains Ω and Ω 1. The function η(x, t) describes the elevation of the internal wave. 

 
We are going to consider now for example θ > 0. In addition we assume that the fluid motion 

is irrotational (i.e. absence of currents and vorticity), apart from the global rotation caused by the 
Coriolis forces. In this approximation the velocity field is potential, i.e. 𝐕𝐕 = 𝛁𝛁𝛁𝛁(𝒙𝒙,𝒚𝒚, 𝒛𝒛, 𝒕𝒕) and the 
Coriolis Effect will be presented as a perturbation to the potential motion. The governing equations 
(1) acquire the form: 

�𝜑𝜑𝑡𝑡 +
|𝛻𝛻𝜑𝜑|2

2
+
𝑝𝑝
𝜌𝜌

+ 𝑔𝑔𝑔𝑔�
𝑥𝑥

+ 𝑟𝑟𝜑𝜑𝑧𝑧 − 𝑓𝑓𝜑𝜑𝑦𝑦 = 0, 

�𝜑𝜑𝑡𝑡 + |𝛻𝛻𝛻𝛻|2

2
+ 𝑝𝑝

𝜌𝜌
+ 𝑔𝑔𝑔𝑔�

𝑦𝑦
+ 𝑓𝑓𝜑𝜑𝑥𝑥  = 0, (2) 

�𝜑𝜑𝑡𝑡 + |𝛻𝛻𝛻𝛻|2

2
+ 𝑝𝑝

𝜌𝜌
+ 𝑔𝑔𝑔𝑔�

𝑧𝑧
− 𝑟𝑟𝜑𝜑𝑥𝑥 = 0,  
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where p is the pressure in the fluid. The internal waves are illustrated on Fig. 1(b). For fixed y 
the system is bounded at the bottom by an impermeable flatbed and is considered as being bounded 
on the surface by an assumption of absence of surface motion. The domains Ω and Ω 1  are defined 
with values associated with each domain using corresponding respective subscript notation. Also, 
subscript c (implying common interface) will be used to denote evaluation on the internal wave  
z = 𝜂𝜂 (x, t). Propagation of the internal wave is assumed to be in the positive x-direction which is 
considered to be eastward. The function η (x, t) describes the elevation of the internal wave with 
the spatial mean of 𝜂𝜂(x,t) assumed to be zero. The system is considered incompressible with ρ and 
𝜌𝜌1 being the respective constant densities of the lower and upper media and stability is given by 
the immiscibility condition ρ>𝜌𝜌1. For long internal waves the parameter 𝛿𝛿 = ℎ

𝜆𝜆
≪ 1  and 𝜑𝜑 is a 

small quantity of order 𝛿𝛿, see for example [4]. The terms proportional to r lead to a very small 
correction (0.01%) of the wave propagation speed  𝑐𝑐0 in the x-direction, for the feasible values of 
the parameters (see for example the calculations in [4]) and thus they can be neglected. The motion 
in the y direction is very slow in comparison to the wave propagation in the x-direction, therefore 
in leading order we have p = p(x, z) and we can use the second equation in Eq. (2) in linear 
approximation to exclude the y dependence, 𝜑𝜑𝑡𝑡𝑦𝑦 + 𝑓𝑓𝜑𝜑𝑥𝑥 = 0 giving formally 

𝜑𝜑𝑦𝑦 = −𝑓𝑓𝜕𝜕𝑡𝑡−1𝜑𝜑𝑥𝑥. 

Assuming further that  f is of order 𝛿𝛿2 ≪ 1  and noting that the 𝜕𝜕𝑥𝑥 operator with an eigenvalue 
𝑘𝑘 = 2𝜋𝜋

𝜆𝜆
 is also of order 𝛿𝛿, for compatible time-scales 𝜕𝜕𝑡𝑡~𝛿𝛿 thus we see that the y-derivative of 𝜑𝜑 

is 𝜑𝜑𝑦𝑦~𝛿𝛿𝜑𝜑𝑥𝑥 (more details about the scales could be found in [4]). The first equation in (2) gives the 
following generalisation of the Bernoulli equation: 

𝜑𝜑𝑡𝑡 +
|𝛻𝛻𝜑𝜑|2

2
+
𝑝𝑝
𝜌𝜌

+ 𝑔𝑔𝑔𝑔 + 𝑓𝑓2𝜕𝜕𝑡𝑡−1𝜑𝜑 = 0. 

Therefore in the nonlinear contribution |∇𝜑𝜑|2 = 𝜑𝜑𝑥𝑥2 + 𝜑𝜑𝑦𝑦2 + 𝜑𝜑𝑧𝑧2 the first term is ~𝛿𝛿4 already 
small and the second is  ~𝛿𝛿6 (much smaller) and could be neglected in comparison to 𝜑𝜑𝑥𝑥2 giving 
 |∇𝜑𝜑|2 ≈ 𝜑𝜑𝑥𝑥2 + 𝜑𝜑𝑧𝑧2 or 

𝜑𝜑𝑡𝑡 + 𝛻𝛻𝑥𝑥2+𝛻𝛻𝑧𝑧2

2
+ 𝑝𝑝(𝑥𝑥,𝑧𝑧)

𝜌𝜌
+ 𝑔𝑔𝑔𝑔 + 𝑓𝑓2𝜕𝜕𝑡𝑡−1𝜑𝜑 = 0. (3) 

We can proceed now with this effectively (2+1)-dimensional equation for the x and z dependent 
variables, considering y fixed, since there are no y-derivatives. 

 
(Nearly) Hamiltonian representation of the internal wave dynamics 
The propagation of the internal wave is assumed to be in the positive x-direction which is 
considered to be eastward. At z =  𝜂𝜂 (x, t) we have p(x, 𝜂𝜂, t) = p1(x, 𝜂𝜂, t) and therefore Eq. (3) gives 
the Bernoulli condition 

𝜌𝜌 �(𝜑𝜑𝑡𝑡)𝑐𝑐 +
�𝛻𝛻𝑥𝑥2+𝛻𝛻𝑧𝑧2�𝑐𝑐

2
+ 𝑔𝑔𝜂𝜂 + 𝑓𝑓2(𝜕𝜕𝑡𝑡−1𝜑𝜑)𝑐𝑐�=𝜌𝜌1 ��𝜑𝜑1,𝑡𝑡�𝑐𝑐 +

�𝛻𝛻1,𝑥𝑥
2 +𝛻𝛻1,𝑧𝑧

2 �𝑐𝑐
2

+ 𝑔𝑔𝜂𝜂 + 𝑓𝑓2(𝜕𝜕𝑡𝑡−1𝜑𝜑1)𝑐𝑐� 
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The last equation suggests the introduction of the variable 𝜉𝜉(𝑥𝑥, 𝑡𝑡) = (𝜌𝜌𝜑𝜑 − 𝜌𝜌1𝜑𝜑1)𝑐𝑐. Indeed, 
following [6, 4] this equation can be written in the nearly Hamiltonian form 

𝜉𝜉𝑡𝑡 = −𝛿𝛿𝐻𝐻0
𝛿𝛿𝛿𝛿

− (𝛿𝛿2)𝑓𝑓2(𝜕𝜕𝑡𝑡−1(𝜌𝜌𝜑𝜑 − 𝜌𝜌1𝜑𝜑1))𝑐𝑐 (4) 

for the Hamiltonian (expansion with respect to the scale parameter δ, following the leading 
order; 𝐷𝐷 = −𝑖𝑖𝜕𝜕𝑥𝑥~ δ, 𝜂𝜂~𝛿𝛿2) 

𝐻𝐻0(𝜉𝜉, 𝜂𝜂) = 1
2 ∫ 𝜉𝜉𝐷𝐷(𝛼𝛼1 + 𝛿𝛿2(𝛼𝛼3𝜂𝜂 − 𝛼𝛼2𝐷𝐷2))𝐷𝐷𝜉𝜉𝐷𝐷𝑥𝑥 + 1

2
𝑔𝑔(𝜌𝜌 − 𝜌𝜌1)∫ 𝜂𝜂2𝐷𝐷𝑥𝑥ℝℝ  (5) 

where 

𝛼𝛼1 = ℎℎ1
𝜌𝜌1ℎ+𝜌𝜌ℎ1

, 𝛼𝛼2 = ℎ2ℎ12(𝜌𝜌ℎ+𝜌𝜌1ℎ1)
3(𝜌𝜌1ℎ+𝜌𝜌ℎ1)2 ,        𝛼𝛼3 = 𝜌𝜌ℎ12−𝜌𝜌1ℎ2

(𝜌𝜌1ℎ+𝜌𝜌ℎ1)2. (6) 

The kinematic boundary condition on the interface leads to the second equation, 

𝜂𝜂𝑡𝑡=
𝛿𝛿𝐻𝐻0
𝛿𝛿𝛿𝛿

 (7) 

so that Eq. (4) and Eq. (7) represent the nearly Hamiltonian formulation of the internal wave 
dynamics in the long-wave -small amplitude approximation.  

 
Boussinesq and KdV type approximations. Ostrovsky equation 
Introducing the variable 𝑓𝑓� = 𝜉𝜉𝑥𝑥 one can verify by a simple computation that  
𝜕𝜕𝑥𝑥(𝜕𝜕𝑡𝑡−1(𝜌𝜌𝜑𝜑 − 𝜌𝜌1𝜑𝜑1))𝑐𝑐 =  𝜕𝜕𝑡𝑡−1𝑓𝑓� + smaller order terms. Then the equations (4) and (7) in terms of 
𝜂𝜂 and 𝑓𝑓� = 𝜉𝜉𝑥𝑥 are 

𝜂𝜂𝑡𝑡 + 𝛼𝛼1𝑓𝑓�𝑥𝑥 + 𝛿𝛿2𝛼𝛼2𝑓𝑓�𝑥𝑥𝑥𝑥𝑥𝑥 + 𝛿𝛿2𝛼𝛼3(𝜂𝜂𝑓𝑓�)𝑥𝑥 = 0, (8) 

𝑓𝑓�𝑡𝑡 + 𝑔𝑔(𝜌𝜌 − 𝜌𝜌1)𝜂𝜂𝑥𝑥 + 𝛿𝛿2𝛼𝛼3𝑓𝑓�𝑓𝑓�𝑥𝑥 + 𝛿𝛿2𝑓𝑓2( 𝜕𝜕𝑡𝑡−1𝑓𝑓�) = 0.  (9) 

In leading order  𝜂𝜂𝑡𝑡 + 𝛼𝛼1𝑓𝑓�𝑥𝑥 = 0,  𝑓𝑓�𝑡𝑡 + 𝑔𝑔(𝜌𝜌 − 𝜌𝜌1)𝜂𝜂𝑥𝑥= 0 or 
  𝜂𝜂𝑡𝑡𝑡𝑡 = −𝛼𝛼1𝑓𝑓�𝑥𝑥𝑡𝑡 = 𝑔𝑔𝛼𝛼1(𝜌𝜌 − 𝜌𝜌1)𝜂𝜂𝑥𝑥𝑥𝑥,   𝜂𝜂𝑡𝑡𝑡𝑡 − 𝑔𝑔𝛼𝛼1(𝜌𝜌 − 𝜌𝜌1)𝜂𝜂𝑥𝑥𝑥𝑥 =0, which is the wave 

equation for η giving the wave speed 

𝑐𝑐0 = ±�𝑔𝑔𝛼𝛼1(𝜌𝜌 − 𝜌𝜌1). 

For an observer, moving with the flow, i.e. there are left- (minus sign) and right-running (+ 
sign) waves. Moreover, in the leading approximation, for linear waves, the functions depend on 
the characteristic variable 𝑥𝑥 − 𝑐𝑐0𝑡𝑡, therefore 𝑓𝑓� = 𝑐𝑐0

𝛼𝛼1
𝜂𝜂 . In the next order approximations with 

respect to the scale parameter δ obviously   

𝑓𝑓� = 𝑐𝑐0
𝛼𝛼1
𝜂𝜂 + 𝛿𝛿2(⋯ ). (10) 
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however we will not need this explicitly, see for example [10]. Differentiating Eq. (8) with 
respect to t 

𝜂𝜂𝑡𝑡𝑡𝑡 + 𝛼𝛼1𝑓𝑓�𝑡𝑡𝑥𝑥 + 𝛿𝛿2𝛼𝛼2𝑓𝑓�𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥 + 𝛿𝛿2𝛼𝛼3(𝜂𝜂𝑡𝑡𝑓𝑓� + 𝜂𝜂𝑓𝑓�𝑡𝑡)𝑥𝑥 = 0, 

and substituting in it 𝑓𝑓�𝑡𝑡  from Eq. (9), 𝑓𝑓�  from Eq. (10) and 𝜂𝜂𝑡𝑡 = −𝛼𝛼1𝑓𝑓�𝑥𝑥 + 𝛿𝛿2(… )  where 
necessary, neglecting 𝛿𝛿4 terms, we obtain the following generalised Boussinesq equation for 𝜂𝜂: 

𝜂𝜂𝑡𝑡𝑡𝑡 − 𝑐𝑐02𝜂𝜂𝑥𝑥𝑥𝑥 − 𝛿𝛿2 3𝛼𝛼3𝑐𝑐0
2

2𝛼𝛼1
(𝜂𝜂2)𝑥𝑥𝑥𝑥 − 𝛿𝛿2 𝛼𝛼2𝑐𝑐0

2

𝛼𝛼1
𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝛿𝛿2𝑓𝑓2𝜂𝜂 = 0. (11) 

The dispersion law of this equation is  𝜔𝜔�2(𝑘𝑘) = 𝑐𝑐02𝑘𝑘2 − 𝛿𝛿2 𝛼𝛼2𝑐𝑐0
2

𝛼𝛼1
 𝑘𝑘4 + 𝛿𝛿2𝑓𝑓2 or approximately 

𝜔𝜔�(𝑘𝑘) = 𝑐𝑐0𝑘𝑘 − 𝛿𝛿2 𝛼𝛼2𝑐𝑐0
2

2𝛼𝛼1
 𝑘𝑘3 + 𝛿𝛿2 𝑓𝑓2

2𝑘𝑘𝑐𝑐0
. (12) 

Furthermore, a generalised KdV type equation of the form 

𝜂𝜂𝑡𝑡 + 𝑐𝑐0𝜂𝜂𝑥𝑥 + 𝛿𝛿2𝑎𝑎𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥 + 𝛿𝛿2𝑏𝑏(𝜂𝜂2)𝑥𝑥 + 𝛿𝛿2𝑛𝑛 𝑓𝑓2𝜕𝜕𝑥𝑥−1𝜂𝜂 = 0 (13) 

for some constants a, b, n (yet unknown) could be obtained from Eq. (11). Indeed, 
differentiating the above equation with respect to t we have   

𝜂𝜂𝑡𝑡𝑡𝑡 + 𝑐𝑐0𝜂𝜂𝑥𝑥𝑡𝑡 + 𝛿𝛿2𝑎𝑎𝜂𝜂𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥 + 𝛿𝛿2𝑏𝑏(𝜂𝜂2)𝑥𝑥𝑡𝑡 + 𝛿𝛿2𝑛𝑛 𝑓𝑓2𝜕𝜕𝑥𝑥−1𝜂𝜂𝑡𝑡 = 0 (14) 

in which we substitute 𝜂𝜂𝑡𝑡 from Eq. (13) to obtain (neglecting 𝛿𝛿4 terms) 

𝜂𝜂𝑡𝑡𝑡𝑡 − 𝑐𝑐02𝜂𝜂𝑥𝑥𝑥𝑥 − 𝛿𝛿22𝑏𝑏𝑐𝑐0(𝜂𝜂2)𝑥𝑥𝑥𝑥 − 𝛿𝛿2𝑎𝑎𝑐𝑐0𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝛿𝛿22𝑛𝑛𝑐𝑐0𝑓𝑓2𝜂𝜂 = 0. 

The comparison with Eq. (11) gives 

𝑎𝑎 =
𝛼𝛼2𝑐𝑐0
2𝛼𝛼1

,          𝑏𝑏 =
3𝛼𝛼3𝑐𝑐0

4𝛼𝛼1
,       𝑛𝑛 = −

1
2𝑐𝑐0

. 

Then finally the KdV-type equation acquires the form 

𝜂𝜂𝑡𝑡 + 𝑐𝑐0𝜂𝜂𝑥𝑥 + 𝛿𝛿2 𝛼𝛼2𝑐𝑐0
2𝛼𝛼1

𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥 + 𝛿𝛿2 3𝛼𝛼3𝑐𝑐0
4𝛼𝛼1

(𝜂𝜂2)𝑥𝑥 = 𝛿𝛿2 𝑓𝑓2

2𝑐𝑐0
𝜕𝜕𝑥𝑥−1𝜂𝜂. 

This is also known as Ostrovsky equation [12]. Note that the dispersion law of the Ostrovsky 
equation is like in Eq. (12). 

For surface waves the derivation is analogous, only the Hamiltonian H0 is the KdV Hamiltonian 
for surface waves. The derivation directly from Euler's equations could be found in Leonov's paper 
[11]. The Ostrovsky equation itself is Hamiltonian and possesses three conservation laws, however 
it is not bi-Hamiltonian and it is not integrable by the Inverse Scattering Method [2]. Solutions 
from perturbations of the KdV solitons can be derived in principle, although this is technically 
difficult, see for example [8] and the references therein. Various other aspects of the equation have 
been studied extensively by now in numerous works, see for example [9, 13] and the references 
therein. 
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Abstract. With the depleting non-renewable fuel sources like coal and an ever-increasing demand 
for energy, we need to start looking into renewable energy sources. These are of paramount 
importance for a sustainable and green future. Wind Energy is one of the most important sources 
of renewable energy. But, setting up a wind farm requires considerable land area and land 
acquisitions are often faced with legal hurdles. This necessitates setting up offshore wind turbines. 
But, when we talk about offshore wind farms, we need to address the age-old phenomenon: 
“Turbulence”. Presently, we are trying to develop enhanced controllers for wind farms which will 
increase the efficiency of the wind farms. The effects of rapidly changing wake aerodynamics i.e. 
breakdown of strong tip and hub vortices mixed up with low intensity turbulence in the inflow of 
the rotor and counter-rotation of the wake i.e. determinate velocity component in wake turbulence 
field will affect the overall performance of the wind farm. This paper provides a brief review on 
Rapid Distortion Theory (RDT) to model the turbulence. 
Introduction 
Batchelor, in European Turbulence Conference, 1986 at Lyon predicted that there could be no 
global theory for turbulence (other than that turbulent flows are governed by Navier-Stokes 
equations) because all turbulent flows are governed by the initial and boundary conditions. 
Batchelor & Proudman [1] had given a description of how turbulence is distorted when it passes 
rapidly through a region where large-scale straining motions are induced.  

This review paper gives a brief description of the classification of the different types of 
problems of turbulence, a brief overview of the RDT and the errors associated with it. The 
application of the RDT to model the turbulence in case of offshore wind farms is also presented. 
Classification of Turbulence 
Hunt and Carruthers [4] in their paper “Rapid Distortion Theory and ‘problems’ of turbulence” 
have classified the turbulent flows based on their initial and boundary conditions. 
 
Class I: Closed domains and deterministic boundary conditions 
In this case, boundary surface B of the domain D consists of rigid stationary or moving surfaces. 
Turbulent motion could be induced due to the motion of the boundaries or due to the body forces. 
Example can be taken of a cylinder with a moving piston. 
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Class II: Open domains and statistical boundary conditions 
In this class of turbulent flows, some, if not all of, the bounding surfaces of the domain D lie 
within the fluid itself. Let E denote the region outside domain D. An example can be of the 
turbulence in the wake of the wind farm itself. This is further subdivided into:- 

i. No turbulence in E : In this class the flow enters D with characteristic mean velocity U0 
and the turbulence could be generated due to instabilities if Reynolds Number is high. 

ii. Turbulence in E  with significant mean flow from E to D. 
iii. Turbulence in E  without significant mean flow from E to D 

 
Class III: Initial conditions and changing boundary conditions 
In both Class I and II above, the nature of turbulence is dependent on the boundary B of the 
domain D but with the assumption that the boundary conditions persist for long enough or they 
do not change that rapidly to cause an ongoing time-dependent change at t = τ, τ being the 
instantaneous time at which we are interested in the nature of turbulence. This third classification 
considers the change in boundary conditions. 
Mathematical developments of RDT 
The linearization and the error analysis presented in this paper are from the works of Hunt and 
Carruthers [4]. The results of the same are studied and an effort will be made to implement the 
same in the case of wind farms. In the equations discussed, notations in bold indicate vector 
quantities. 
 
Linearization 
Reynolds suggested that the random velocity, pressure and vorticity fields u(x,t), p(x,t), ω(x,t) as 
functions of position vector x and time, t can be divided into components of ensemble mean and 
fluctuating component i.e. u = U + u’, p = ρ(P + p’), ω = Ω + ω’ where U, P, Ω are the ensemble 
means and u’, p’, ω’ are the fluctuating components.  Discussion in this paper is strictly confined 
to incompressible flows in the absence of body forces. The governing equations for velocity and 
vorticity (in Einstein notation) are 
 

𝜕𝜕𝑢𝑢′𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑈𝑈𝑗𝑗
𝜕𝜕𝑢𝑢′𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝑢𝑢′𝑗𝑗  𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

=  − 1
𝜌𝜌

 𝜕𝜕𝑝𝑝
′

𝜕𝜕𝑥𝑥𝑗𝑗
+  𝜈𝜈∇2u′𝑖𝑖  −  (NL)𝑢𝑢′𝑖𝑖 … (1) 

 

𝜕𝜕𝜔𝜔′𝑖𝑖
𝜕𝜕𝜕𝜕

 +  𝑈𝑈𝑗𝑗  𝜕𝜕𝜔𝜔′𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 + 𝑢𝑢′𝑘𝑘  𝜕𝜕𝛺𝛺𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

 −  𝜔𝜔′𝑘𝑘
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑛𝑛

 −  𝛺𝛺𝑛𝑛
𝜕𝜕𝑢𝑢′𝑖𝑖
𝜕𝜕𝑥𝑥𝑛𝑛

 =  𝜈𝜈∇2ω′𝑖𝑖  +  (NL)𝜔𝜔′𝑖𝑖. .. (2) 

 
where, ν = kinematic viscosity, 𝜕𝜕𝑢𝑢′𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄  =  0,𝜔𝜔′𝑖𝑖  =  𝜀𝜀𝑖𝑖𝑗𝑗𝑘𝑘 𝜕𝜕𝑢𝑢′𝑘𝑘 𝜕𝜕𝑥𝑥𝑗𝑗⁄  so that 𝜕𝜕𝜔𝜔′𝑘𝑘 𝜕𝜕𝑥𝑥𝑘𝑘⁄  =  0 
The nonlinear terms in the above equations are 

 

(NL)𝑢𝑢′𝑖𝑖  =  − �𝜕𝜕(𝑢𝑢′𝑘𝑘𝑢𝑢′𝑖𝑖)
𝜕𝜕𝑥𝑥𝑘𝑘

 −  𝜕𝜕(𝑢𝑢′𝑘𝑘𝑢𝑢′𝑖𝑖�������)
𝜕𝜕𝑥𝑥𝑘𝑘

� . .. (3) 
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(NL)𝜔𝜔′𝑖𝑖  =  −𝑢𝑢′𝑘𝑘
𝜕𝜕𝜔𝜔′

𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

 +  𝜔𝜔′
𝑗𝑗
𝜕𝜕𝑢𝑢′𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 +  𝑢𝑢
′𝑘𝑘𝜕𝜕𝜔𝜔′𝚤𝚤������������

𝜕𝜕𝑥𝑥𝑗𝑗
− 𝜔𝜔′𝚥𝚥𝜕𝜕𝑢𝑢′𝚤𝚤�����������

𝜕𝜕𝑥𝑥𝑗𝑗
. .. (4) 

To linearize the governing equations, the nonlinear terms (NL) are to be ignored. An effort is 
then required to be made to find a solution for the linearized form of the equations by applying 
suitable boundary conditions. However, ignoring the (NL) terms will result in errors which in turn 
needs to be analysed so that solution of the linearized equation is acceptable and reflects the nearly 
acceptable physical scenario of the problem, if not exact. 

While dealing with offshore wind-turbines, the mean velocity of the wind is significantly higher 
compared to its fluctuations. Apart from ignoring the (NL) terms, for air kinematic viscosity is of 
the order of 10-5 m2/s and we can infer that viscosity will not have much effect on the final result, 
so it will be negligible and can be ignored. Thus, we can view this problem as part of Class-
II(Type-ii) case of classification stated above. 
 
Error Analysis 
In order to estimate the error associated with the linearization, we begin with assuming a typical 

r.ms. velocity 𝑢𝑢′0  =  �1
3
𝑢𝑢𝚤𝚤𝑢𝑢𝚤𝚤������

1
2�    and integral scale Lx for the large energy containing scales of 

turbulence and for small eddies with velocity scale u(l) and length scale l. U0 and ∆U0  are the 
typical values of the mean velocity and the change in mean velocity respectively over a typical 
length scale in D. The two-point moment of velocity field, 𝑅𝑅𝑖𝑖𝑗𝑗(𝒓𝒓)  =  𝑢𝑢′𝚤𝚤(𝒙𝒙)𝑢𝑢′𝚥𝚥(𝒙𝒙,𝒓𝒓)������������������ or the two-
point structure function, ∆𝑅𝑅𝑖𝑖𝑖𝑖  =  (𝑢𝑢𝚤𝚤(𝒙𝒙) −  𝑢𝑢𝚤𝚤(𝒙𝒙,𝒓𝒓))2������������������������� (𝒓𝒓 is the vector defining distance between 
the two points) are primarily calculated from the linearized equations. If ω’ is used to calculate u’ 
and Rii, the conditions for linearization are different from using  𝜔𝜔′𝚤𝚤

2����� because of the requirement 
of specifying the scale of vorticity field contributing to the moment. 

Batchelor [5], using Biot-Savart integral showed that   ∆𝑅𝑅𝑖𝑖𝑖𝑖(𝒙𝒙,𝒓𝒓) can be expressed as an 
integral of 𝜔𝜔′𝑘𝑘(𝒓𝒓′)𝜔𝜔′𝑙𝑙(𝒓𝒓′′)�������������������, where 𝒓𝒓′ and 𝒓𝒓′′ are the displacement vectors corresponding to k and 
l respectively. For high Reynolds number it can be expressed in terms of rate of dissipation per 
unit mass, ε by the following relation 

∆𝑅𝑅𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑟𝑟) ~ ∫ 𝜀𝜀2/3 �̂�𝑟−4/3�̂�𝑟 𝑑𝑑�̂�𝑟𝑙𝑙
0  ~𝜀𝜀 2/3𝑙𝑙2/3. .. (5) 

where �̂�𝑟  =  |(𝒓𝒓′ −  𝒓𝒓′′)| , |𝒓𝒓|  =  𝑙𝑙,  |𝒓𝒓′ −  𝒓𝒓′′| < 𝐿𝐿𝑥𝑥 , 𝜔𝜔′𝑘𝑘(𝒓𝒓′)𝜔𝜔′𝑙𝑙(𝒓𝒓′′)������������������� ~ 𝜀𝜀2/3 �̂�𝑟−4/3  
It can be seen from eq. (5) that although the co-relation of vorticities is significant at small 

separations of �̂�𝑟 , the contribution from smaller-scale vorticity is comparable to that from length-
scales of order l. Thus, the contribution to the eddies could come from either vortex sheets 
separated by Lx or from smooth distributions of vorticities on a scale l or from both. 

The effect of non-linear terms (4) are to be estimated over the appropriate length scale (l) of the 
velocity field and the time period (TD) over which the distortion is applied. The second term of 
eq. (4) related to the stretching of the fluctuating vorticity by the fluctuating velocity is of the order 
𝜀𝜀1/3𝑙𝑙−2/3. Over the time period TD , the relative change in the linear and non-linear terms of the 
vorticity w.r.t. the initial vorticity ω0, is given by ∆ωLin/ω0 ~ (∆U/LD)TD , where ∆U is the change 
in mean velocity and ∆ωNL/ω0 ~ (u’(l)/l)TD , where LD is the length-scale of domain D. The 
criterion for ignoring the nonlinear vortex stretching term is therefore given by the following 
equation. 
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𝑢𝑢′(𝑙𝑙)

𝑙𝑙
~ 𝜀𝜀

1
3𝑙𝑙−

2
3  ≪  𝑚𝑚𝑚𝑚𝑥𝑥 �∆𝑈𝑈

𝐿𝐿D
, 1
𝑇𝑇D
�… (6) 

In terms of the characteristic velocity of the energy containing eddies u’0, the inertial range 
scaling u(l) ~ u’0(l/Lx)1/3, eq. (6) can be reframed as  

𝑢𝑢′0
𝐿𝐿𝑥𝑥
� 𝑙𝑙
𝐿𝐿𝑥𝑥
�
−2/3

 <<  𝑚𝑚𝑚𝑚𝑥𝑥 �∆𝑈𝑈
𝐿𝐿D

, 1
𝑇𝑇D
� (7) 

The total strain defined by 𝛽𝛽 = 𝑇𝑇D∆𝑈𝑈/𝐿𝐿D and the relative rate of strain defined by  

S  *= (∆U/𝐿𝐿D)𝑇𝑇𝐿𝐿 ,𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑇𝑇𝐿𝐿 = 𝐿𝐿𝑥𝑥
𝑢𝑢′0

… (8) 

are the two dimensionless quantities characterizing the energy containing eddies. It can be 
concluded that for weaker strain rates S   * ≤ 1, 

(β/S  *) ≪ 1, or 𝑇𝑇D ≪ 𝑇𝑇𝐿𝐿 (9) 

In case the strain rate is strong, S   * ≥ 1, then  

(β/S  *) ≫1 … (10) 

implying 𝑇𝑇D /𝑇𝑇𝐿𝐿is arbitrary. Satisfaction of eq. (7) implies that the effects of random straining 
with large time scales tend to be negligible. Thus, this condition is the essential criterion for the 
RDT to be valid in case of rapidly changing turbulent flows. Thus, the linearization can be justified 
only if the strain-rate is significantly large or the period of distortion is significantly short. 

The anisotropy caused by the mean strain can be under-estimated or over-estimated by 
linearization. Therefore, the criterion of eq. (7) which enables us to neglect the non-linear terms is 
applicable to velocity and vorticity only if modified to take into account the reduce straining in 
some direction and the nonlinear rotation. This modifies the equation to  

   
𝑢𝑢0
𝐿𝐿𝑥𝑥
� 𝑙𝑙
𝐿𝐿𝑥𝑥
�
−2/3

 <<  𝑚𝑚𝑚𝑚𝑥𝑥 �∆𝑈𝑈
𝐿𝐿D
𝜃𝜃(𝑇𝑇D), 1

𝑇𝑇D
�… (11) 

where, 𝜃𝜃(𝑇𝑇D) =   exp ((𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 − 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛)𝑇𝑇D) where 𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 & 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 are the moduli of the maximum 
and minimum values of principal strain of the mean flow field 𝜕𝜕𝑈𝑈𝑖𝑖 𝜕𝜕⁄ 𝑥𝑥𝑗𝑗. Thus, eq. (10) condition 
for changes to S   *θ ≥ 1. Batchelor [2] proved that for strong enough compressive strains, 
𝜕𝜕𝑈𝑈𝑖𝑖 𝜕𝜕⁄ 𝑥𝑥𝑗𝑗  𝛼𝛼 𝛿𝛿𝑖𝑖𝑗𝑗  and θ = 1, and if the criteria is satisfied, the non-linear terms can be neglected for 
all time. However, if for any non-isotropic strain the value of θ increases with time, the non-linear 
term can no more be neglected. 
Summary 
In the present project, we are focusing on the application of the RDT to model the turbulence for 
the wind farms. The linearization of Navier-Stokes equation using RDT and the errors associated 
are to be analysed in greater details in this context. Simply ignoring the non-linear terms is of no 
good if it leads to a great level of approximation errors. Choosing the relevant length scale and 
time scales of the vortices will play an important role in the approximation using RDT. 
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Abstract. Numerical modelling tools are commonly applied during the development and 
optimisation of ocean wave energy converters (WECs). Models are available for the hydrodynamic 
wave structure interaction, as well as the WEC sub–systems, such as the power take–off (PTO) 
model. Based on the implemented equations, different levels of fidelity are available for the 
numerical models. Specifically under controlled conditions, with enhance WEC motion, it is 
assumed that non-linearities are more prominent, re- quiring the use of high–fidelity modelling 
tools. Based on two different test cases for two different WECs, this paper highlights the 
importance of high–fidelity numerical modelling of WECs under controlled conditions. 
Introduction 
The growing recognition of human induced global warming has fuelled the research and 
development (R&D) of novel technologies to harness renewable energy resources. Amongst these 
resources, marine renewable energy, and specifically ocean wave energy, shows significant potential 
to contribute to the global energy supply [1]. To increase the efficiency and, thereby, the economical 
feasibility of WECs, devices should be equipped with energy maximising control systems 
(EMCSs) [2]. Since the objective of EMCSs is to drive the system towards resonance with the 
incoming wave field, WEC motion of a controlled device is enhanced (see Figure 1), and the power 
conversion is increased. 

During the design and optimisation of WECs, researchers and engineers rely on physical wave tank 
(PWT), as well as numerical wave tank (NWT) tests. Generally, by testing in a real physical 
environment, PWTs allow all the relevant details of the wave-structure interaction (WSI) to be 
captured. However, although still cheaper compared to open ocean trials, PWT experiments are 
associated with higher costs compared to NWT experiments [3]. The main cost drivers for PWT 
tests are instrumentation, construction of the prototype, test facilities, and staff. Additionally, the 
accuracy of PWT experiments potentially suffer from peculiarities of the test facility, such as 
reflections from the tank walls, friction in mechanical device components, measurement noise, and 
scaling effects. 

mailto:christian.windt.2017@mumail.ie
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Overcoming the drawbacks of high 
costs, measurement noise, mechanical 
friction, and, to a great extent, scaling 
effects, NWTs provide powerful tools 
for the analysis of WECs.   Depending 
on the implemented equations for the 
solution of the WSI problem, different 
levels of fidelity, at different levels of 
computational cost, can be achieved [4]. 
Hydrodynamic, lower-fidelity models, 
such as Boundary Element Method 
(BEM) - based NWTs, neglecting non-
linear effects, such as viscosity, are 
associated with minimal computational 
cost, and are valuable tools for 
parametric studies or exhaustive-search 
optimisation algorithms. However, due 
to the required linearisation of the 
hydrodynamic equations, lower-fidelity 
models are only valid when considering 
linear conditions, i.e. small amplitude 
waves and device motions.  Contrary, 
higher-fidelity NWTs, such as Computational Fluid Dynamics (CFD)-based numerical wave tanks 
(CNWTs), are able to capture all relevant hydrodynamic non-linearities by numerically solving 
the Navier-Stokes equations. Thus, CNWTs are valid over a wider range of test conditions, 
compared to lower-fidelity  models. 

Equally, when considering the sub–systems of a WEC device, such as the power–take off (PTO) 
or the mooring system, a range of numerical models with varying degree of fidelity are available 
and can be coupled with the hydrodynamic model [5]. Generally, the implementation of high–
fidelity models of the WEC sub–systems is desired when employing CNWTs, to prevent the 
lower–fidelity sub–system models from undermining the accuracy of the high–fidelity 
hydrodynamic model. 

The importance of high–fidelity modelling of the WSI, as well as the WEC sub–system, 
specifically under controlled conditions, will be investigated in the present paper. To that end, two 
different case studies are considered, analysing two different WECs: (1) the Wavestar device; (2) 
a generic heaving point absorber (HPA) type WEC (see Figure 2). In the first case study, 
considering the Wavestar device, the influence of different design and evaluation frameworks for 
EMCSs will be investigated, employing three different EMCSs of varying aggressiveness. In the 
second case study, considering the HPA-type WEC, the influence of the fidelity of the 
hydrodynamic model and the coupled PTO model is investigated. 

The remainder of the paper is organised as follows: Section 2 details the low– and high– fidelity 
numerical wave tanks employed in the two case studies. Furthermore Section 2 presents a 
description of the employed PTO models. The results of the first case study, assessing the 
evaluation framework of EMCSs, will be presented and discussed in Section 3. 

The second case study, investigating the influence of the fidelity of the hydrodynamic and PTO 
model, is discussed in Section 4. Finally, conclusions are drawn in Section 5. 

Figure 1: Operation space of uncontrolled and 
controlled WEC devices under regular wave excitation. 
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(a)         (b)  
Figure 2: The considered WECs: (a) the Wavestar device; (b) a generic heaving point absorber 

(HPA) type WEC 
 

Numerical of WECs 
BEM-based NWTs (BNWTs). Linear time-domain hydrodynamic models based on the BEM use, 
in general, Cummins equation [6], following: 

𝑀𝑀�̈�𝑥(𝑡𝑡) = −𝑠𝑠ℎ𝑥𝑥 +  ℱℯ𝓍𝓍𝓍𝓍(𝑡𝑡)  −   𝜇𝜇∞�̈�𝑥(𝑡𝑡)  −  ∫ 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡 − 𝜏𝜏)�̇�𝑥(𝜏𝜏)𝑑𝑑𝜏𝜏∞
−∞ + 𝑢𝑢(𝑡𝑡),  (1) 

   where x, �̇�𝑥  and �̈�𝑥 are the displacement, velocity and acceleration of the WEC, respectively. 
M is the mass of the WEC, 𝑠𝑠ℎ the hydrostatic stiffness, ℱℯ𝓍𝓍𝓍𝓍(𝑡𝑡) the excitation force, 𝜇𝜇∞  the added-
mass at infinite frequency, ζ(t) the radiation impulse response function (IRF), and 𝑢𝑢(𝑡𝑡) the control 
law (PTO force). 

The linear hydrodynamic model can be extended to include non–linear effects, such as nonlinear 
Froude–Krylov (FK) forces or viscous effects. Non–linear FK forces can be included using, e.g. the 
computationally efficient algebraic solution as presented in [7]. Viscous effects can be incorporated 
by using a Morison-like equation [8], 

𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = −1
2
ρ𝐶𝐶𝑟𝑟𝐴𝐴𝑟𝑟(𝑡𝑡)|𝑧𝑧�̇�𝑟 − η̇|(𝑧𝑧�̇�𝑟 − η̇), (2) 

where ρ is the density of water, 𝐶𝐶𝑟𝑟 the drag coefficient, 𝐴𝐴𝑟𝑟 the instantaneous cross-sectional 
area of the device, and �̇�𝜂  the velocity of the undisturbed water particles. 

CNWT. The CNWT simulations are performed using the open source CFD toolbox Open-FOAM. 
In OpenFOAM, the incompressible Reynolds Averaged Navier-Stokes (RANS) equations (3) and 
(4) are solved using the finite volume method. 

∇ ⋅  𝜌𝜌𝑼𝑼 =  𝟎𝟎  (3) 

∂(ρ𝑈𝑈)
∂𝑡𝑡

+ ∇ ⋅ (ρ𝑈𝑈𝑈𝑈) = −∇𝑝𝑝 + ∇ ⋅ 𝑇𝑇 + ρ𝑓𝑓𝑏𝑏  (4) 

Equation (3) is the continuity equation, describing the conservation of mass, and equation (4) 
is the momentum equation. describing the conservation of momentum. In equations (3) and (4), 𝑼𝑼 
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denotes the fluid velocity, 𝑝𝑝 the fluid pressure, ρ the fluid density, T the stress tensor, and 𝒇𝒇𝒃𝒃 
external forces such as gravity or PTO forces. 
 To account for the two phase flow, the volume of fluid method, proposed in [9], is used, following: 

∂α
∂𝑡𝑡

+ ∇ ⋅ (𝑢𝑢α) + ∇ ⋅ [𝑢𝑢𝑟𝑟α(1 − α)] = 0  (5) 

Φ = αΦwater + (1 − α)Φair  ,  (6) 

where α denotes the volume fraction of water, 𝒖𝒖𝒓𝒓(t) is the relative velocity between the liquid 
and gaseous phases [10], and Φ is a specific fluid quantity, such as density. The free surface elevation 
is monitored by extracting the iso-surface of the volume fraction α = 0.5. 

PTO. As for the hydrodynamic model, different levels of fidelity are available for the modelling 
of the PTO system of a WEC. One of the simplest models describes the PTO as a spring damper 
system, following: 

𝐹𝐹PTO(𝑡𝑡) = 𝐾𝐾𝑥𝑥(𝑡𝑡) + 𝐵𝐵�̇�𝑥(𝑡𝑡)  (7) 

where 𝐵𝐵 is a damping coefficient and �̇�𝑥(𝑡𝑡) the linear velocity of the hydraulic PTO cylinder, 𝐾𝐾 is a 
spring stiffness, and 𝑥𝑥(𝑡𝑡) the linear motion of the PTO. The damping and stiffness coefficient either 
represent the mechanical characteristics of, say, a hydraulic cylinder, or 𝐵𝐵 and 𝐾𝐾 are representing the 
EMCSs and are optimised for maximum energy absorption. Higher–fidelity PTO models are 
available, including e.g. a hydraulic transmission system and an electrical generator [11]. The 
mathematical model for the hydraulic cylinder may include end-stop constraints, friction losses, and 
compressibility and inertia effects, providing the final PTO force, following: 

𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐴𝐴𝑝𝑝Δ𝑝𝑝 + 𝐹𝐹𝑓𝑓𝑟𝑟𝑣𝑣𝑣𝑣 + 𝐹𝐹𝐼𝐼   (8) 

where 𝐴𝐴𝑝𝑝 is the piston area, Δ𝑝𝑝 the pressure difference between the different cylinder chambers, 
𝐹𝐹𝑓𝑓𝑟𝑟𝑣𝑣𝑣𝑣 the friction force and 𝐹𝐹𝐼𝐼 the inertia force. For a detailed description of the individual effects, 
influencing the PTO force, the interested reader is referred to [11]. 
Case study 1: Assessment of the evaluation framework for EMCSs 
In classical control applications, the mathematical models, used for the controller design, are often 
linearised around a desired operational point, according to the process under analysis. The controller 
is subsequently synthesised to drive the system towards this point and, thus, in the neighbourhood of 
this operational point, the linearising assumption is obeyed. The large amplitude motions, induced 
by a reactive WEC controller, may result in viscous drag and other non-linear hydrodynamic effects. 
Thus, contrary to the aforementioned classical control applications, the energy-maximising 
operating conditions do not comply with the linear assumption in the control design model.  

This contradiction between the control objective and the underlying mathematical model raises 
the question if the common practice of designing a controller in a linear design environment can 
deliver optimal reactive controllers for the application in physical, non-linear operational 
conditions. 

In this case study, a CNWT and linear BNWT model1, as described in Section 2, are employed 
to investigate the influence of different numerical evaluation frameworks on the performance 

 
1 Note that, for this case study, any non-linearities, such as non-linear FK forces or viscous drag effects, are neglected. 
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evaluation of EMCSs for the Wavestar device (see Figure 2a). The performance of the EMCSs will 
be evaluated by comparing the dynamics of the WEC subject to three different EMCSs: (1) moment-
based energy-maximising control [12]; (2) reactive output feedback control; (3) resistive output 
feedback control. 

The three EMCSs will drive the WEC away from the linear assumption in the hydrodynamic 
model, dependent on the aggressiveness of the controller, with the resistive controller being the least 
aggressive and the moment-based control the most aggressive. 

EMCSs. The main objective of a wave energy device is to harvest energy from the incoming 
wave field. Therefore, the optimal control objective is to maximise the absorbed energy over a time 
interval  [t, t + T ],  while respecting the physical limitations of the device/PTO on  excursion  
𝑥𝑥(𝑡𝑡),  velocity  �̇�𝑥(𝑡𝑡),  and  PTO  force  𝑢𝑢(𝑡𝑡).   Consequently, the optimal control objective can be 
formulated as 

𝑢𝑢max  (𝑡𝑡) = arg max
𝑢𝑢(𝑡𝑡)

∫ 𝑢𝑢(𝜏𝜏)�̇�𝑥(𝜏𝜏)𝑑𝑑𝜏𝜏 𝑡𝑡+𝑃𝑃
𝑡𝑡  (9) 

The optimal control is a moment-based WEC formulation [12] which allows an efficient 
computation of the optimal control law u

max in real-time based on the solution of the following 
inequality constrained quadratic program: 

𝐿𝐿𝑢𝑢max  = arg max
𝐿𝐿𝑢𝑢

 − 1
2
𝐿𝐿𝑢𝑢Φφ

ℛ𝐿𝐿𝑢𝑢⊤ +  1
2
𝐿𝐿𝑒𝑒𝑒𝑒𝑣𝑣Φ𝜑𝜑

ℛ𝐿𝐿𝑢𝑢⊤  , (10) 

The reader is referred to [12] for the formal definition (and corresponding proofs) of the matrices 
involved in the QP problem of (10). 

Additionally to the moment-based controller, less aggressive EMCSs, i.e. reactive and resistive 
controllers, are considered herein. For the reactive control case, the PTO force follows 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾opt𝑥𝑥(𝑡𝑡) + 𝐵𝐵opt�̇�𝑥(𝑡𝑡)  (11) 

where 𝐵𝐵opt  is the optimal damping coefficient and 𝐾𝐾opt  is the optimal spring stiffness. The 
optimal PTO coefficients have been determined through exhaustive search optimisation using the 
BNWT model.  For the resistive control case, only the second term, 𝐵𝐵opt�̇�𝑥(𝑡𝑡), is considered. As in 
the case of reactive control, the optimal damping coefficient has been determined through 
exhaustive search optimisation using the BNWT model. 

Results. For each EMCSs, simulations were performed in the BNWT and CNWT, resulting in 
a total of six simulations. Extracting the PTO displacement, velocity, and the PTO force, the 
normalised root mean squared deviation (nRMSD), as defined in equation (12), can be calculated. 
𝑦𝑦BNWT denotes the results from the BNWT experiment, 𝑦𝑦CNWT results from the CNWT experiment, 
and N is the number of samples.  

nRMSD = �∑(𝑦𝑦CNWT−𝑦𝑦BNWT)2

𝑁𝑁
⋅ 1
max(𝑦𝑦BNWT)−min(𝑦𝑦BNWT) ⋅ 100%  (12) 

For a qualitative comparison between the three different EMCSs, Figure 3 shows the PTO 
displacement, extracted from the BNWT experiment. In Figure 3, a clear trend can be observed. 
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The moment-based and the reactive controller controller increases the PTO displacement, compared 
to the resistive controller. 

 

Figure 3: Time traces of the PTO displacement x(t) from the BNWT experiment 
 

The resulting nRMSD for the PTO displacement, velocity, and force are listed in Table 1. 
Overall smallest values of the nRMSD can be observed for the case of a resistively controlled 
device. For this control strategy, smallest deviations are indeed expected, since the device 
effectively acts as a wave follower, reducing the influence of non-linear hydrodynamic effects, 
such as non-linear Froude-Krylov forces or viscous drag effects. 

For the cases with reactive and moment-based control, the values for the nRMSD in all PTO 
quantities increase. In Table 1, it can be seen that the differences between the PTO quantities for 
the two different controllers are relatively small. This can be attributed to the fact that both state 
(displacement) and input (PTO force) constraints are inactive for this particular input wave, i.e. 
both controllers effectively reflect the unconstrained optimal energy-absorption conditions. That 
said, it is expected that also the differences between the BNWT and CNWT are similar. 

 
Table 1: nRMSD between the results for PTO cylinder displacement, velocity and PTO force 

from the BNWT and CNWT for the different EMCSs 

 
 
Case study 2: Coupled numerical wave tank and PTO models 
Based on a generic, reactively controlled, HPA-type WEC (see Figure 2b), this case study will 
investigate the influence of different levels of model fidelity of the hydrodynamic,  as  well  as  the 
PTO model. To  that end,  four different numerical models are considered: (1) a CNWT coupled 
with a high–fidelity wave-to-wire (W2W) model (CNWT+W2W); (2) a CNWT coupled with an 
idealised, linear spring–damper PTO model (CNWT+iPTO); (3) a linear BNWT coupled with an 
idealised, linear spring–damper PTO model (BNWT+iPTO); (4) a non-linear BNWT with a drag 
coefficient of  Cd = 1 coupled with an idealised, linear spring–damper PTO model  
(nlBNWTCd = 1+W2W). 

Results. The time–average absorbed and generated power values from the numerical models 
(2)–(4) are compared against the values from the CNWT+W2W. Absorbed power refers to the 
mechanical power directly absorbed from ocean waves, while generated power refers to the final 
electric power output. Since the CNWT+W2W accounts for all relevant hydrodynamic non-
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|
 
 

linearities, as well as the occurring non-linearities in the PTO drivetrain, this model is considered as 
the benchmark in this case study. 

For a quantitative comparison, Table 2 shows that the relative deviation, 𝜀𝜀 , between the 
CNWT+W2W model and models (2)–(4) in absorbed power. Considering only the time– average, 
absorber power, relatively small differences (𝜀𝜀 < 8%) can be observed between models (1), (2), and 
(4), indicting a sufficient accuracy of the non–linear BNWT with a drag coefficient of Cd = 1. 
Larger deviations can be observed between the linear BNWT, model (3), and the benchmark, model 
(1). This indicates that a linear hydrodynamic model is not able to capture all relevant hydrodynamic 
effects. 

Considering the generated power for the comparison between the numerical models, the influence of 
the non–linear W2W model becomes visible. For the two numerical models including an idealised, 
linear, spring-damper type PTO model (i.e. model (2) and (3)), relative differences to the 
benchmark model (1) of up to 97.52% are calculated. For the two W2W models only a difference 
of 𝜀𝜀 < 3% can be observed, which is consistent with the findings for the absorbed power. 

 
Table 2: Time-averaged absorbed and generated power obtained from the CNWT+W2W model and 

the percentage difference (𝜀𝜀) to the other considered models. 

 

Conclusions 
In this paper, two different case studies are presented, highlighting the importance of (consistent) high–
fidelity modelling of WECs under controlled conditions. From the presented results, two main 
conclusions can be drawn: 

1. Considering aggressive EMCSs for WEC control, driving the system further away from the 
assumptions in the linear hydrodynamic model, high–fidelity hydrodynamic models have to be 
employed for the assessment of the performance of the EMCSs. Omitting high–fidelity 
hydrodynamic modelling in the evaluation stage of the control design can lead to an over–
prediction of the WEC performance. 

2. The holistic performance of a WEC can only be evaluated in high–fidelity by means of a 
comprehensive W2W simulation platform, where both high–fidelity hydrodynamic and PTO 
models are coupled. Minor inaccuracies in either of these major stages of the W2W model can 
result in significant inaccuracy in generated power estimation. 
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Abstract. Pendulum absorbers are installation in offshore wind turbines to mitigate excessive 
vibration amplitudes from wind and wave loading. The pendulum damper is placed inside the 
tower and attached to the structure at two distinct points: The tower top, where the pendulum arm 
is fixated, and at the position of the pendulum mass, which is connected to the tower wall by the 
damper. The present paper derives a modal calibration principle, which consistently accounts for 
different points of attachment for the absorber stiffness and damping. 
Introduction 
Offshore wind turbines are among the most popular and effective renewable energy sources 
available today. In local areas with large water depth, such as in Norway, the classic foundation 
types are infeasible and thus floating platforms seem to be the most viable alternative. Absorber 
devices, such as a pendulum-type vibration absorber, may therefore be installed to compensate for 
the increased flexibility. The damping of offshore wind turbines is considered in greater detail in 
references [1-4]. 

Vibration absorbers are calibrated with respect to a single targeted vibration mode, with a well- 
defined natural frequency and mode shape [1, 5-7]. A modal system reduction then results in a 
two-degree-of-freedom (2-dof) model with a single mode coupled with the single-mass absorber. 
For the pendulum absorber the apparent stiffness connects the absorber mass to the tower-top, 
while the dashpot transfers the absorber force to the tower wall. This non-collocation implies a 
modelling error in the modal reduction, that may be taken into account be redefining the 
‘undamped’ structure as the compound system with the absorber dashpot fully locked. When using 
the mode shape for this augmented undamped structural model, the scalar structural equation 
becomes less sensitive to any feedback from other vibration modes [8]. Furthermore, it retains the 
dynamic model associated with vanishing absorber damping as a case that can be used to calibrate 
for residual mode correction coefficients, which include the modal interaction with other vibration 
modes [9]. This correction is however not considered in the present analysis, which simply 
truncates any modal series representation to its single dominant term. The proposed calibration 
formulae in the present paper can be used in practice to improve the performance of pendulum 
dampers, as well as more advanced absorbers with flexible appendages. 
The structural model 
Assume a build-up FE model of the offshore wind turbine (owt) structure in Fig.1(a), with the 
pendulum-type vibration absorber attached inside the tower. When the pendulum behavior is 
linearized, the equation of motion can be written as 
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  (1) 

with M, C and K representing the model mass matrix, damping matrix and stiffness matrix, 
respectively, while the vector q contains the general dofs of the combined structure-absorber 
dynamic model. 

 

Figure 1: (a) Wind turbine with tower pendulum absorber, (b) close-up of pendulum with 
damper and (c) equivalent linearized model with damper force fa at dof j and apparent spring 

from pendulum arm at an upper dof k. 
 

The system is split by dividing the dofs into those associated with the structure and the 
supplemental dofs representing the absorber. It should be noted that common dofs are included in 
the structure. Hereby, the displacement vector can be decomposed as 

  (2) 

whereby the system matrices are correspondingly split as follows, 

 (3) 

with subscripts s and a referring to structure and absorber, respectively. The non-identical 
connectivity vectors b and d are zero vectors with a single unit value at dof k and j, respectively. 
Classic tuning method 
The common tuning principle for vibration absorbers follows from the analysis of the so-called 
tuned mass damper (TMD) [5, 6], which corresponds to the pendulum damper in Fig. 1(c) with 
j=k. The dynamics of the structure are represented by the vibration mode 𝐮𝐮�0 governed by 
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    (4) 

where ω0 is the corresponding natural frequency of the virgin host structure. The calibration 
formulae for the classic TMD are 

 (5) 

in which the modal mass ratio 𝜇𝜇0 = 𝑚𝑚𝑎𝑎/𝑚𝑚0 determines the absorber mass 𝑚𝑚𝑎𝑎   relative to the 
modal mass 𝑚𝑚0   ,  the corresponding modal stiffness  ratio  𝜅𝜅0 = 𝑘𝑘𝑎𝑎/𝑘𝑘0  defines the absorber 
stiffness 𝑘𝑘𝑎𝑎 relative to the modal stiffness 𝑘𝑘0, while the damper ratio 𝛽𝛽0 = 𝑐𝑐𝑎𝑎/�𝑘𝑘0𝑚𝑚0 represents 
the absorber viscous coefficient relative to the geometric mean of the modal mass and stiffness. 

The modal mass m0 and stiffness k0 are not uniquely defined, as the absorber mass is attached 
at either dof j or k via the dashpot or spring, respectively. Figure 2 shows the frequency response 
curves for the top tower deflection utop in (a) and the absolute absorber motion ua in (b). The mode 
shape is normalized to unity at the top dof k for the red curve in Fig. 2, while the magenta curve 
represents the TMD tuning when the mode shape is normalized relative to the lower dof j, at which 
the absorber damper is connected. 

Figure 2: (a) Frequency amplitude curve for top tower motion (a) and for pendulum mass 
deflection (b). 

 
Since the absorber mass ma is constant, the modal mass ratio is µ0 = 0.0154 (red curve) for a top 

tower attachment at dof k, while at dof j it reduces to almost half µ0 = 0.008 (magenta curve) 
because of the reduced deflection at the lower position. It is seen from Fig. 2 that the assumed top 
tower attachment (red curves) leads to an inclined response frequency curve in (a) with clear peak 
and an almost flat and minimized pendulum deflection amplitude in (b). With respect to the lower 
attachment dof j (magenta curves) the response curve in (a) is almost equally balanced but has 
clearly too little damping, while its pendulum amplitude curve in (b) has a significant overshoot. 
The blue curves represent the proposed calibration described next, which seems to provide the 
optimal compromise between response mitigation and limited pendulum amplitudes. 
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Consistent modal decomposition 
As shown in Fig. 1 the pendulum absorber is attached to the structure at two points (dofs j and k). 
In the present approach, the relative absorber motion is defined as the displacement relative to 
fully restraining the damper deformation, and thus rigidly linking the pendulum mass in Fig. 1 to 
the tower wall. The transformation that secures the correct relative absorber motion is 

                        (6) 

Elimination of the absolute absorber displacement ua by the relative absorber motion v in (6) 
gives the modified equations of motion 

 (7). 

where ∆𝐝𝐝𝐝𝐝 = 𝐝𝐝 − 𝐛𝐛 represents the difference in the connectivity vectors, that vanishes for the 
classic TMD (∆𝐝𝐝 = 𝟎𝟎). 

This eigenvalue problem for this alternative representation includes the absorber mass as 

                               (8) 

with ωs being the natural frequency for the structure with the augmented mass matrix. An 
improved representation could be obtained by also including the stiffness term in (7a), which 
however contains the – to be determined – absorber stiffness ka. The structural displacement is 
now expressed by the expansion 

                          (9) 

with pj as the modal coordinate, N being the number of terms included and υj representing the 
modal displacement at dof j where the dashpot in Fig. 1 is attached. Substitution of (9) into (7) 
followed by pre-multiplication with 𝒖𝒖�𝑠𝑠𝑇𝑇/𝜈𝜈𝑠𝑠 gives the following coupled modal equations for the 
targeted mode shape j=s, 

 (10) 

In these modal equations, the change in modal connectivity is defined as Δ𝜈𝜈𝑠𝑠 = Δ𝐝𝐝𝑇𝑇𝐮𝐮�𝑠𝑠, while 
the interaction with other vibration modes is simply neglected in the supplemental (third) stiffness 
term in (10a) and the (two last) coupling terms in (10b). 

The modal truncation creates the difference between the various modelling methods, since as 
little dynamics as possible should be neglected when truncating the series terms. In the present 
representation (6) relative to the damper deflection, the truncation is considered robust as it 
contains the limiting cases with vanishing and infinite absorber damping, whereby the absorber 
mass is included in the mode shapes by the eigenvalue problem (7). The representation in (6) thus 
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0 

implies that the damping notoriously only appears in the absorber equation (10b), whereby it must 
not be omitted in the structural equation (10a). 
Absorber calibration 
The modal equations in (10) are expressed in the frequency domain with angular frequency ω, 
whereby variable ps and v in the following denote the associated steady-state amplitudes. The 
modal equations can then be expressed as 

                              (11) 

in which the non-dimensional frequency is defined as 𝜉𝜉 = 𝜔𝜔⁄𝜔𝜔𝑠𝑠, while the mass, stiffness and 
damper ratios 

 (12) 

Are defined relative to the modal mass and stiffness 

 (13) 

The difference in modal deflection is in (11) represented by the relative increment ∆𝛾𝛾 = ∆𝜈𝜈𝑠𝑠⁄𝜈𝜈𝑠𝑠. 
The characteristic equation follows from (11) as 

      (14) 

The desired calibration with equal damping in the two modes associated with the targeted 
vibration form is in [6, 8, 9] obtained by comparison with the generic quartic polynomial 

                (15) 

Comparison of the last parentheses in (14) and (15) defines the reference frequency ratio  
as   𝜉𝜉2 =1 + 𝜅𝜅∆𝛾𝛾2 ≈ 1, whereby comparison of the constant terms defines the stiffness ratio 

 (16) 

which corresponds to the result in [9] for a classic TMD. The attainable damping is 
subsequently determined by the parameter 

 (17) 

For the classic TMD with ∆𝛾𝛾 = 0, the parenthesis in (17) becomes unity, whereby the correction 
for finite values of ∆𝛾𝛾 appears because of the double attachment to dofs j and k in Fig. 1(c). The 
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explicit solution in (17) is simplified because of the coordinate shift in (6), whereby ma is contained 
in the eigenvalue problem (7). 

By comparison of the common coefficient to the odd-power terms in the characteristic equations 
(14) and (15), the damper ratio is finally obtained as 

                       (18) 

in which the correction coefficient from (17) is again recognized. This concludes the pendulum 
absorber tuning, which provides the blue curves in Fig. 2, comprising a suitable compromise 
between a flat response curve in (a) without any overshoot in (b). It should be noted that the classic 
TMD stiffness calibration in (5a) gives almost the same mitigation properties, when (5b) is 
replaced by the corrected damper ratio in (18). 
The offshore wind turbine 
This section provides the main information about the numerical offshore wind turbine model used 
to generate the results in Fig. 2. The geometry is shown in Fig. 3 and overall data is provided in 
Table 1. The top node mass includes the transverse and rotational inertia from the Rotor Nacelle 
Assembly (MRNA = 450∙103 kg and JRNA = 120∙106 kgm2). The soil foundation is modelled by a 
Winkler spring layer with distributed stiffness ks = 200∙106 (N/m)/m along the bottom hsoil = 40m, 
while water level is at x = hsea = 68m (corresponding to a water depth of 28m). 
 

 

Figure 3: (a) Offshore wind turbine (owt) with data for section (1) to (6) provided in Table 1. 
The beam element model for the owt is shown in (b), with translation and rotational inerti from 

the Root Nacelle Assembly (RNA) added to the two top dofs. The model is supported by a Winkler 
foundation with stiffness ks. 
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The owt (monopole + tower) model is discretized by 20 plane beam elements with two nodal 
dofs (transverse displacement and rotation). The material is steel and as geometric stiffness is 
neglected, the fundamental natural frequency ω0 = 1.50 rad/s without the pendulum absorber is 
slightly larger than in practice. A pendulum mass of ma = 10 ton is assumed, which corresponds to 
a mass ratio of µ0=1.54% for the fundamental mode shape with respect to the top transverse 
displacement. As the length of the pendulum is approximately 22m, it is assumed in this example 
to simply span the top three beam elements, with attachment dofs in Fig. 1(c) given as j = 39 and 
k = 45. In reality, the span length should of course be re-adjusted according to the obtained absorber 
stiffness ka. The harmonic load fw – used to generate the frequency curves of Fig. 2 – is placed 
locally at sea level x = hsea, as shown in Fig. 3(b). 
 

Table 1: Section properties for offshore wind turbine model in Fig. 3. 

Section Height [m] Outer diameter [mm] Wall thickness [mm] 
  Monopile  

(1) Bottom section 55 8200 75 
(2) Conical section 13 8200 → 6500 85 
(3) Top section 10 6500 90 
(4) Transition piece 19 6500 92 

  Tower  
(5) Bottom section 57 6500 55 
(6) Conical section 35 6500 → 4200 30 

 
The calibration based on the proposed modal representation gives a mass ratio µ = 0.79%, thus 

slightly smaller than µ0 = 0.80% for the TMD calibration based on a TMD mass attachment at the 
lower dof j = 39. The difference occurs because of the addition of the pendulum mass ma to the 
mass matrix in (8). The pendulum stiffness ka = 22.1 kN/m is slightly smaller than the value 22.1 
kN/m obtained for a TMD placed locally at the top dof k=45. This change in stiffness creates the 
visible inclination of the red curve in Fig. 2(a) and its corresponding overshoot in Fig. 2(b). The 
actual absorber damping coefficient is found to be ca = 2.59 kNs/m, which is somewhat larger than 
the simplified TMD solution of 1.87 kNs/m, associated with the placement at dof j = 39. The 
present calibration method therefore consistently incorporates that the pendulum absorber acts on 
the tower at two different positions, whereby it basically determines an absorber stiffness 
associated with the top deflection and a damper value that is proportional to the deflection at 
damper position. It should be emphasized that the classic TMD tuning procedure is incapable of 
accounting for this effect as it notoriously assumes a single point of attachment of the classic TMD. 
Summary 
A consistent absorber calibration procedure is devised for an absorber with two different points of 
attachment. The calibration procedure is illustrated for a simple offshore wind turbine model with 
a pendulum-type absorber attached to the top tower position and with the dashpot acting 
horizontally between tower wall and pendulum mass. The proposed calibration formulae are seen 
to provide a good compromise between effective response mitigation and limited pendulum 
vibration amplitudes. The concept can be generalized to flexible absorbers with no common or 
even with distributed points of attachment to the host structure. 
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Abstract. Early fault detection in wind turbines is key to reduce both costs and uncertainty in the 
generation of energy and operation of these structures. The isolation of many wind farms, 
especially those offshore, makes scheduled maintenance very costly and on many occasions 
inefficient. In addition, the downtime of these structures is typically long and a predictive solution 
is much needed to 1) help prepare for the maintenance procedure beforehand, for instance to avoid 
delays when waiting for the required resources and components for maintenance to be available 
and, 2) avoid the possibility of more destructive system failures. Predicting failures in such 
complex systems requires modeling of multiple components in isolation and as a whole. Physics-
based and data-based models are used for this purpose, which have been proven useful in this 
regard. Specifically, Machine Learning algorithms are proven to be a valuable resource in a wide 
range of problems in this industry, however a solution capable of accurately predicting the range 
of faults of a particular type of wind turbine is still a challenge. In this paper, we will introduce the 
capabilities of machine learning for wind turbine fault prediction, as well as a technique to predict 
different types of faults. We will compare the performance of two well established machine 
learning algorithms (namely K-Nearest Neighbour and Random Forest classifiers) on real wind 
turbine data which have produced great levels of prediction accuracy. We also propose data 
augmentation methods to help enhance the training of ML models when wind turbine data is scarce 
by merging data from turbines of the same type.  

Introduction 
According to WindEurope [1], wind energy accounts for the second largest source of power for 
the European Union (EU), with a 18.8% of its capacity, after natural gas. Ireland accounts for the 
3.5% of the EU's cumulative capacity, that covers a 28% of the energy demand of the country. In 
this context, it is paramount to remark that the maintenance cost of a wind turbine can range from 
a fifth [2] to a third [3] part of the levelized cost of energy. Being wind energy a mature but rising 
technology, solving this issue is a top priority in order to contribute to its rapid, sustainable and 
cost-efficient adoption. Thus, the area of predictive maintenance for these structures has become 
fundamental and different approaches aim for the goal of reducing downtime, lessen the damage 
and prolonging wind turbine lifetime. 

While physics-based modeling systems exists, our purpose is to approach the problem through 
the application of several Machine Learning (ML) algorithms on the data collected by the 
Condition Monitoring System (CMS) through the SCADA system from several wind turbines. For 
this work, we have obtained data from a set of onshore Siemens SWT-2.3-101 wind turbines. The 
goal is, using historical data of previous registered faults, predicting the failure of different parts 



Floating Offshore Energy Devices  Materials Research Forum LLC 
Materials Research Proceedings 20 (2022) 47-57  https://doi.org/10.21741/9781644901731-7 

 

 

 48 

of the turbine giving a general forecast of downtime with an anticipation of at least 24 hours as to 
have maintenance scheduled in a reliable manner. 

The paper will explain the steps involved in data preparation, faults and features analysis, the 
rationale to establish the minimum time to predict a fault and the overall modeling setting to train 
and test the system. It will also include a statistical analysis to validate the combination of datasets 
from turbines of the same type as a data augmentation technique. After training and testing models 
using a variety of machine learning algorithms, including neural networks, the two most promising 
machine learning methods will be presented and compared. The first algorithm is the K-Nearest 
Neighbour classifier (KNN) [4], while the second algorithm is the Random Forest classifier [5], 
which is an ensemble of decision trees. A range of metrics (precision, recall, f1-score and support) 
will be presented to quantify and explain the accuracy and capabilities of the proposed predictive 
models applied to wind turbines and their impact. 

The paper is structured as follows: next section presents the state of the art in the area of wind 
turbine fault prediction using machine learning. Subsequently, the methodology of our approach 
is explained, where the analysis of the wind turbine data is presented, including faults and features, 
and the machine learning classifiers introduced together with the methodology of their application 
to the data model created. Results are then provided and discussed in terms of different prediction 
accuracy metrics for both the modelling using a dataset from one turbine and augmenting the 
dataset by combining datasets from two turbines of the same type. Finally, our conclusions and 
future research avenues are highlighted. 
State of the Art 
Wind turbines are composed of different rotating parts that undergo an intensive performance 
through its lifetime. Condition Monitoring Systems (CMSs) are common in the current industry 
and use a collection of sensors that monitor the state of the different parts of the turbine in real 
time. A wide range of sensors are used to measure: vibrations, oil levels and temperature, 
thermographic analysis, crack detection, strain, acoustic analysis, electrical conditions, signal and 
performance monitoring [6]. These measurements are combined by CMSs for the monitoring of 
specific subsystems of the wind turbine. 

There are approaches in the literature which focus on modelling the operation of wind turbine 
components using physics models while enhancing these models with data from the wind turbine 
collected through CMSs to create a hybrid approach. However, the challenge in this paper is to 
only exploit data (both from the operations of the wind turbine and auxiliary data) to model the 
behavior of similar aspects of wind turbines so models can be transfered to cover a larger range of 
wind turbine types.  

Focusing on exploiting these data using ML algorithms, the fault detection problem can be 
tackled with two different strategies: i) studying the normal regime of performance and detecting 
anomalies and ii) analyzing the time periods prior to a fault to build models that can anticipate 
faulty behavior. 

With respect to anomaly detection, modelling the normal performance of a wind turbine has the 
advantage of using most of the CMS data collected, since turbine datasets are greatly imbalanced 
towards the normal regime. We could qualify these approaches as semi-supervised algorithms, 
considering that faults and their adjacent data in time are purposely removed before training the 
models. An elegant solution that follows this strategy is using autoencoders. An autoencoder is a 
deep Neural Network (NN) built symmetrically to filter the relevant features of data and learn the 
relationships of the different variables under certain conditions. In other words, the NN learns how 
the wind turbine works in essence, by filtering out noise. Autoencoders have obtained good results 
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in early detection of faults and allowed for the discrimination of the mechanical parts implied in 
the fault state [7]. The literature contains different approaches for anomaly detection too. For 
example, other types of NN architectures can be trained with data from the normal regime of a 
wind turbine and learn to predict the expected power output at any given moment which, compared 
against the real output, is able to pinpoint defective behavior. This behavior is then traced to the 
parts through a Principal Component Analysis (PCA), which is a used to reduce the dimensionality 
of a dataset [8]. Classification methods are also used where the normal behavior periods are 
constrained to be far away from a fault and have been proven to be an adequate mechanism to 
select which SCADA features should be considered for fault detection [9]. 

In relation to the analysis of historical faults, we can find a wide range of techniques too. The 
different classifiers described in the literature are examples of supervised training, which means 
that every data entry is labeled. Other approaches which do not use analytics of the SCADA data, 
employ visual inspection of the turbine through a drone and apply Convolutional Neural Networks 
(CNNs) to process the images and detect common external damages such as erosion or missing 
teeth in the vortex generator [10]. The image datasets, like the SCADA data, have in common that 
they are highly imbalanced, which requires specific architectures for the CNNs [11]. Moving back 
to turbine sensor data, multiclass classification has been attempted on simulations of turbine data 
through Support Vector Machines (SVMs), succeeding in the isolation of different faults [12]. 
SVMs have been very popular for fault detection in previous years, however decision trees plus 
boosting techniques have gained relevance recently. Random Forest and XGBoost classifiers have 
been used to study the relevance of features and detect faults in other wind turbine models [13]. 
Signal analysis on the currents of the Double-Fed Inductor Generator (DFIG) have also been 
performed. The current of the DFIG would experience interference due to the vibrations of a faulty 
gearbox, and thus, autoencoders and NN classifiers are able to predict impending faults when 
applied to this signal [14]. 

This paper focusses on modelling real SCADA data from wind turbines of the same type via 
the application of a large number of ML classifiers and the use of a novel data augmentation 
technique. 
Methodology 
The work presented in this paper explored a large range of ML algorithms on real data from a wind 
turbine and identified two algorithms providing the best predictive performance (K-NN and 
Random Forest). However, one of the main problems when dealing with this type of data is that 
training one model for each wind turbine is not generalizable and is limited by the size of the 
dataset and the scarcity of faulty data. To tackle such problem, we propose a novel system to 
combine datasets coming from turbines of the same type. We analyse the similarities of the datasets 
through PCA and calculate the statistical distance between both datasets and then use Optimal 
Transport (OT) [15] to transform the probability distribution of one dataset into another, such that 
we can augment the data by combine both datasets.  
 
Data description. We have obtained data from two Siemens SWT-2.3-101 turbines (namely 
Turbine 1 and 2) over the same period and belonging to the same wind farm. These data are 
collected every ten minutes and comprise almost five years of SCADA aggregated recording. We 
have selected the features presented in Table 1 for training our models, as they present the most 
useful information recorded. As a remark, only nine of these features are free from strong 
correlations. However, we consider interesting to include them all as these correlations may 
experience certain deviations in the proximity of faults. 
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Table 1. Features from our dataset used for modelling. 

Feature Type Feature Type 
Wind Speed [m/s] Mechanical Blade Angle (Pitch Pos.) C [⁰] Mechanical 
Nacelle Position [⁰] Mechanical Blade Pressure (Hydraulic) 

[bar] 
Mechanical 

Rear Bearing Temp. [⁰] Mechanical Power [kW] Power and 
Electricity 

Ambient Temp. [⁰] Mechanical Voltage L1 [V] Power and 
Electricity 

High Speed Bearing Temp. 
[⁰] 

Mechanical Voltage L2 [V] Power and 
Electricity 

Gear Bearing 1 Temp. [⁰] Mechanical Voltage L3 [V] Power and 
Electricity 

Gear Bearing 2 Temp. [⁰] Mechanical Current L1 [A] Power and 
Electricity 

Rotor Speed [RPM] Mechanical Current L2 [A] Power and 
Electricity 

Generator [RPM] Mechanical Current L3 [A] Power and 
Electricity 

Blade Angle (Pitch Pos.) 
[⁰] 

Mechanical WTOperation State Status Flag 

Blade Angle (Pitch Pos.) A 
[⁰] 

Mechanical Errorcode Status Flag 

Blade Angle (Pitch Pos.) B 
[⁰] 

Mechanical WpsStatus Status Flag 

 
The data are cleaned of null values and labelled before training ML models. Since we want to 

detect fault events with anticipation to schedule an emergency maintenance, the criteria used for 
labelling is to consider as “prefault” any data prior to a recorded fault that causes downtime. As a 
commitment between the balance of data labels and the necessity of the industry to schedule the 
maintenance in advance, we have decided to consider “prefault” data all the entries belonging to a 
period 36 hours before the fault event. We will find downtime periods that are induced due to 
human intervention or automatic stops, such as scheduled maintenance. We use data from four 
days (empirical threshold) before any of these faults happen to fit a scaler in the case of K-Nearest 
Neighbors model training. This choice of threshold is taken to isolate the data representing the 
normal regime of operation of the turbine as much as possible, forcing the scaler to work within 
the normal operation range for any of its features. Using points that include faulty behavior, as 
they tend to be extremal (a fault event can generate outliers that we do not want to remove but we 
need to avoid transforming data with them), could make us lose granularity in the data due to 
normalizing with a value that is too high. Principal Component Analysis has been applied to these 
normalized datasets with the purpose of visualizing and understanding the impact of each feature 
in its behavior. An interesting conclusion obtained by the combination of normalization and PCA 
is that both turbines work in similar intervals for every feature and thus, knowing that their 
behavior is equivalent, we can devise a data augmentation strategy to combine their records. 

A large range of different fault types has been found in our datasets. We have 953 penalizing 
downtime events for the first turbine which, as expected, do not exhibit similar behavior and, in 
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many cases, it is much less than 24 hours. Approximately 10% of these events are human induced 
stops. However, since they are not only originated by a scheduled maintenance but also from 
reactive condition monitoring decisions, we will include them in our model assuming the 
associated error. Similarly, the second turbine presents 981 downtime events where approximately 
8.5% of them are due to human intervention. 

This is one of the reasons why we are choosing to take a supervised classification approach and 
not a time series analysis based on error code segregation, since the latter will have to be performed 
with the disadvantage of errors clearly misrepresented in the dataset compared to those that appear 
frequently and, thus, without enough data to train a model properly. 

 
Data Augmentation via Optimal Transport. As we stated before, the two wind turbines have a 
nearly identical representation in the feature space after performing PCA on them. We present the 
analysis on the data extraction of what we have defined as normal behavior. Figure 1 shows the 
PCA reduction to two dimensions of both turbines, presenting a striking similarity. 
 

 
Figure 1. Two principal dimensions of the datasets belonging to the two turbines after applying 

PCA to the data characterizing normal behavior of the wind turbines. 
 
Nevertheless, the combination of the datasets must be optimized to evaluate their statistical 

distance and to transfer one distribution closer to the other. We have computed the Earth's Mover 
Distance (EMD), equivalent to the Wasserstein's Distance for the two distributions, on each of the 
features we are going to train, to minimize it for these two datasets. The Wasserstein distance 
between distributions is defined by: 

𝑊𝑊𝑝𝑝(𝑎𝑎, 𝑏𝑏) = � min
𝛾𝛾𝛾𝛾ℝ+𝑚𝑚×𝑛𝑛

∑ 𝛾𝛾𝑖𝑖,𝑗𝑗�𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑗𝑗�𝑝𝑝𝑖𝑖,𝑗𝑗 �
1
𝑝𝑝

such that 𝛾𝛾1 = 𝑎𝑎;  𝛾𝛾𝑇𝑇1 = 𝑏𝑏;  𝛾𝛾 ≥ 0 (1) 

We have used the Python Optimal Transport library [16] for this purpose. The original value 
for the squared Euclidean average of every feature is EMD = 0.001639. This has been computed 
by scaling every turbine dataset independently. We take every feature column of the dataset and 
cut it in bins (with a maximum number of bins of 20), comparing feature by feature the data of the 
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turbines. The centers of the bins are used to compute the distance matrix with squared Euclidean 
distance metric, whereas we compute the EMD with the relative frequency of samples in each bin. 

The approach for achieving optimal transport of the data consists of declaring the mean and the 
variance of each feature distribution in the scaler for the second turbine as hyperparameters and 
then optimize their value in order to minimize this distance. The StandardScaler class [17] is used 
as defined in Eq. 2. The final value after this process, where the second dataset is scaled before 
merging their data, gives a EMD = 0.001567. This value is close to the previously unoptimized 
EMD value and shows that both datasets are statistically close and can be transported and 
combined to augment the dataset for ML modelling.  

𝑧𝑧 = 𝑥𝑥−𝜇𝜇
𝜎𝜎

      such that  𝑥𝑥 = sample;  𝜇𝜇 = mean;  𝜎𝜎 =  standard deviation (2) 

After this optimized data transfer, we split our new dataset respecting the time series nature of 
each dataset and then the training, validation and tests sets that will be computed separately are 
merged for building the final model. 

 
Classification Models. The data is labeled according to the three following classes: Normal, 
Prefault and Fault. The idea is that, after training our model, new SCADA observations will be 
classified according to one of them and will be used to make accurate predictions of an undefined 
fault. A set of ML algorithms has been tested, however only two are presented which exhibit the 
best accuracy. 

The first ML algorithm is the K-Nearest Neighbors (KNN) classifier. This algorithm has a 
straightforward training method. It generates a space with a dimensionality equal to the number of 
features used for training. Training consists of mapping every data point into this space. Prediction 
is performed by locating the new point in this space and then retrieving the label of its K closest 
points according to a determined geometrical distance and a weight assigned through a function 
that normally will depend on this distance. This algorithm and its parameters (number of 
neighbors, distance metric, leaf size, power parameter for the metric and weights) are easy to 
understand but it was traditionally qualified as resource-consuming, which is no longer a problem 
with current computers. For the correct performance of this estimator, we will scale the data using 
Scikit-Learn's StandardScaler, fitting the normal regime of the turbines as previously explained. 
We will compare the performance on each individual turbine and after the datasets belonging to 
different turbines are merged following the optimal transport strategy previously outlined, with the 
intent of building a global model for this type of turbine. 

The second ML algorithm is the Random Forest classifier. The Random Forest algorithm is an 
ensemble of decision trees that selects the best candidate after a majority voting process. A decision 
tree is an algorithm that splits data into subsets according to decision nodes that are based in the 
values of different features. A decision tree will grow, node by node, branching as its being trained 
with data to reproduce the expected output, a category or a continuous variable depending on the 
nature of the problem, i.e., classification or regression. The number of hyperparameters that define 
the algorithm's behavior is larger than for the KNN model, since its depth (the quantity of features 
that form the pool where one is chosen for a tree node) and the way the decision is taken 
(symmetrically or not with respect to the interval of the data), amongst others, can be determined. 
The Random Forest will be built by a determined number of decision trees and, as an ensemble, it 
will perform better than a single estimator with a considerable improvement when the dataset 
becomes larger [18]. Once the model is trained, predictions will be based on a majority vote system 
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for the individual estimators. This estimator does not require any normalization as it makes the 
decisions based on a set value or category. However, we will provide the data scaled in the case 
where we merge the datasets. 

In order to find the best training hyperparameters for these two models, we will perform a 
random search using RandomSearchCV from scikit-learn and use the KNN and Random Forest 
functions in this library, with the use of a validation set. Training, validation and test sets are fairly 
balanced with regards to their labels for both turbines (the merged dataset will be balanced as a 
consequence). For the random search hyperparameter values are sampled from different 
distributions according to them being continuous, discrete numeric or categorical variables to find 
those that fit best the dataset. The metrics defining the performance of our model will be computed 
on the validation set. We will present our results by the application of the trained model to the test 
set, which gives the final metrics defining the performance of the model. 
Results 
As our purpose is to evaluate our proposed data augmentation strategy, we will present the results 
of applying these classifiers first to the dataset of each turbine and then to the augmented dataset 
that combines data from both turbines. 

The hyperparameter optimization on both classifiers is performed using “f1-score” as the 
metric. This choice is motivated by the intent of making the model focus on maximizing the 
harmonic average of “precision” and “recall”. “Precision” is defined as the ratio of the correct 
predictions over all the predictions of a label and “Recall” is the ratio of correct predictions over 
all occurrences of a label.  
 
Experiments with Turbine 1 Data. The random search applied to find the best hyperparameters for 
fitting the KNN classifier produces the following setting: i) four neighbors, ii) p = 1, which means 
the Manhattan distance is being used (this is, as if the space was gridded and the distances were 
computed by counting the sides of the squares), iii) weighted according to the distance and iv) leaf 
size = 8, which is useful for tree building depending on the algorithm (which we have set as 
automatic). Using these parameters, our pre-fault detection, considering as pre-fault all the data 
belonging to the last 36h before a fault causes downtime, produces the accuracy results given in 
Table 2. In the table we can see that using this model the results for the test set in terms of recall 
and precision indicate that: we can predict 41% of the faults (i.e., Prefaults) and that 94% of the 
time when our predictor indicates there is a fault within the next 24 hours, the predictor will be 
correct. 

 
Table 2. KNN metrics for the Turbine 1 in the test set. 

Label / Average Precision Recall F1-score Support 
 Normal-0 0.64 0.97 0.77 29687 
Prefault-1 0.94 0.41 0.57 27625 

Fault-2 0.88 0.73 0.80 239 
Accuracy 

(micro) 
  0.70 57551 

Macro 0.82 0.71 0.72 57551 
Weighted 0.78 0.70 0.68 57551 
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Moving now to the Random Forest classifier, the best model we find after the random search is 
characterized by the following hyperparameters: i) bootstrap = True, this means that a part of the 
dataset is used for building each tree, ii) max_depth = 40, this defines how long the tree can extend, 
iii) max_features = auto, the number of features checked before doing any split, iv) 
min_samples_leaf = 3, minimum number of samples required to be in a leaf node, v) 
min_samples_split = 9, which defines the number of samples required to split internal nodes, and 
vi) number of estimators = 409, which represents the number of trees forming the ensemble. The 
metrics on the test set of the Turbine 1 are shown in Table 3. As we can see, our metric of interest 
has a slightly superior precision (96%) and a slightly inferior recall (43%), showing no 
considerable improvement from the KNN result. 

 
Table 3. Random Forest classifier metrics for the Turbine 1 in the test set. 

Label / Average Precision Recall F1-score Support 
Normal-0 0.60 0.99 0.75 29687 
Prefault-1 0.96 0.43 0.48 27625 

Fault-2 0.97 0.72 0.82 239 
Accuracy 

(micro) 
  0.66 57551 

Macro 0.84 0.67 0.68 57551 
Weighted 0.78 0.66 0.62 57551 

 
Experiments with Turbine 2 Data. As we did with the Turbine 1 dataset, we will begin by 
presenting the best KNN model found by the random search hyperparameter optimization. Its 
hyperparameters are: i) three neighbors, ii) p = 1 (Manhattan distance), iii) weighted according to 
the distance and iv) leaf size = 27. The performance results of this model in the test set are 
presented in Table 4. The results are comparable to those of Turbine 1. The label of interest, which 
is Prefault, has a detection precision of 92% and the model can recall a 44% of the Prefaults. 
 

Table 4. KNN metrics for the Turbine 2 in the test set. 
Label / Average Precision Recall F1-score Support 

Normal-0 0.68 0.97 0.80 29775 
Prefault-1 0.92 0.44 0.60 24999 

Fault-2 0.84 0.78 0.81 246 
Accuracy 

(micro) 
  0.73 55020 

Macro 0.81 0.73 0.74 55020 
Weighted 0.79 0.73 0.71 55020 

 
Regarding the Random Forest classifier, the best model yields the metrics presented in Table 5. 

The hyperparameters that optimize the f1-score are: i) bootstrap = False, now we are using the 
whole dataset for building trees, ii) max_depth = 26, iii) max_features = log2, this is a common 
way of deciding the number of features to include before splitting, iv) min_samples_leaf = 4, v) 
min_samples_split = 10 and vi) number of estimators = 303. For this turbine, Random Forest 
penalizes the recall over the precision, which makes the KNN model a more balanced choice for 
forecasting faults. 
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Table 5. Random Forest classifier metrics for the Turbine 2 in the test set. 
Label / Average Precision Recall F1-score Support 

Normal-0 0.63 0.99 0.77 29775 
Prefault-1 0.96 0.35 0.52 24999 

Fault-2 0.93 0.67 0.78 246 
Accuracy 

(micro) 
  0.69 55020 

Macro 0.84 0.67 0.69 55020 
Weighted 0.79 0.69 0.65 55020 

 
Experiments with Combination of Turbine 1 and 2 Data. Following the strategy outlined in the 
“Data Augmentation via Optimal Transport” subsection, we augment our dataset by combining 
data from both wind turbines. Once we have this larger dataset, we run another random search for 
each of the classifier models. 

Table 6 shows the best KNN model after the hyperparameters are optimized. These 
hyperparameter values are: i) four neighbors, ii) p = 1 (Manhattan distance), iii) weighted 
according to the distance and iv) leaf size = 14. 

 
Table 6. KNN metrics for the combined dataset in the test set. 

Label / Average Precision Recall F1-score Support 
Normal-0 0.67 0.97 0.79 59462 
Prefault-1 0.93 0.45 0.61 52624 

Fault-2 0.83 0.72 0.77 485 
Accuracy 

(micro) 
  0.73 112571 

Macro 0.81 0.71 0.73 112571 
Weighted 0.79 0.73 0.71 112571 

 
As we stated before, KNN is a simple classification algorithm. Thus, even though we do not 

expect that the results massively improve, we can observe that the recall on the Prefault labelled 
data has increased as compared to modelling the turbines separately, thus improving the f1-score. 
Therefore, our data augmentation strategy yields favorable results. 

Moving now to the Random Forest classifier, the optimal hyperparameters that our random 
search exploration of the hyperparameter space produced are: i) bootstrap = True., ii) max_depth 
= 60, iii) max_features = auto, iv) min_samples_leaf = 6, v) min_samples_split = 13 and vi) 
number of estimators = 96. The metrics are presented in Table 7. These results show the same 
trend that the Turbine 2 had when trained independently. The model tends to improve the precision 
over a more balanced approach with recall. 

These results show the potential benefit of combining datasets for the same type of turbine 
through the proposed approach, especially when we combined more than two datasets; this is 
future work. Note that the application of the ML classifiers has not considered the time series 
nature of the data and the proximity of observations (every 10 minutes). Different dataset splitting 
strategies are being investigated along with regression algorithms using a combination of deep 
learning techniques which will be presented in future works. 
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Table 7. Random Forest metrics for the combined dataset in the test set. 
Label / Average Precision  Recall F1-score Support 

Normal-0 0.62  0.99 0.76 59462 
Prefault-1 0.96  0.34 0.51 52624 

Fault-2 0.93  0.76 0.84 485 
Accuracy 

(micro) 
   0.68 112571 

Macro 0.84  0.70 0.70 112571 
Weighted 0.78  0.68 0.64 112571 

 
Conclusions 
The main purpose of our publication has been accomplished. Data from wind turbines belonging 
to the same brand and model can potentially be combined with our proposed data augmentation 
strategy for more general model building. 

As we have used very simple Machine Learning models, the results will not excel in forecasting 
capabilities, but define a route for future work with a deeper exploration of the time series 
properties of the data and advanced data augmentation through transfer learning techniques such 
as Generative Adversarial Networks, which are closely related to the optimal transport approach 
proposed. 

Nevertheless, we have proven that after solving the optimal transport problem, the models do 
not lose predictability, which would be expected if the datasets had completely different 
projections in the feature space, but this predictability can be reinforced as the KNN model results 
show. 

Regarding future work, a positive path towards the creation of solid extensively trained models 
has been laid out that could represent the behavior of an ideal turbine with its common errors at 
the model (or associated to specific turbine models), even mixing different wind farms and periods 
if the optimal transport dataset transformation is handled properly. This would be useful as 
customers could use their aggregated data (sometimes insufficient) to build their own maintenance 
management algorithms. 
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Abstract. In the last few years, wind power forecasting has established itself as an essential tool 
in the energy industry due to the increase of wind power penetration in the electric grid. This paper 
presents a wind power forecasting method based on ensemble empirical mode decomposition 
(EEMD) and deep learning. EEMD is employed to decompose wind power time series data into 
several intrinsic mode functions and a residual component. Afterwards, every intrinsic mode 
function is trained by means of a CNN-LSTM architecture. Finally, wind power forecast is 
obtained by adding the prediction of every component. Compared to the benchmark model, the 
proposed approach provides more accurate predictions for several time horizons. Furthermore, 
prediction intervals are modelled using quantile regression. 
Introduction 
Wind energy provides an alternative source of electricity generation. Compared to traditional 
sources of energy, wind is a highly intermittent and volatile resource. Therefore, accurate wind 
power forecasts are fundamental for the proper operation of the grid [1], as well as maximizing 
results in the electricity market [2]. 

Many forecasting techniques have been proposed to forecast wind power generation [3]. They 
can be broadly divided into physical and statistical methods. The first approach makes use of 
meteorological information and the specific site conditions of the wind farm. Statistical models 
are usually built using historical data. Conventional statistical methods use time series modelling 
to predict future values of wind power output. For instance, [4] proposed a method based on 
wavelets and the improved time series method (ITSM) to forecast wind speed and wind power. An 
alternative statistical approach is to employ deep learning techniques as artificial neural networks 
(ANNs) [5, 6]. 

In addition, several models have been introduced to build prediction intervals (PIs). Quantile 
regression (QR) is a well-known technique characterized by its distribution-free approach [7]. 
Other non-parametric forecasting models are based on kernel density estimation [8, 9]. [10] 
employs the lower upper bound estimation (LUBE) method, based on a neural network with two 
outputs to build the endpoints of the PI. 

Section II introduces the proposed approach to compute deterministic wind power forecasts and 
PIs. Section III presents a case study with data from Ireland. Section IV draws conclusions from 
this paper. 
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Fig. 1. Flowchart of the proposed model. 
 

Methodology. 
Deterministic forecasts. Empirical mode decomposition (EMD) [11] is a technique suitable for 
processing non-linear and non-stationary time series by dividing a series into modes known  as 
intrinsic mode functions (IMFs). Nonetheless, EMD is susceptible to mode mixing. This issue can 
be overcome using EEMD [12], an enhanced version of EMD that adds different Gaussian white 
noise series of finite amplitude to the original signal. The various noise-added copies of the original 
signal are decomposed, and the mean value of the IMFs is taken as the result. This process helps 
to mitigate mode mixing. 

Once the signal has been decomposed and normalized for every IMF, each one is trained 
separately by means of a CNN-LSTM architecture (Convolutional neural network and Long short-
term memory). This neural network architecture allows to first extract features on input data with 
the CNN layer, while the LSTM layer [13] is a special recurrent neural network (RNN) structure 
that behaves as a memory cell and overcomes exploding and vanishing gradient problems that can 
occur with regular RNNs. 

After each IMF has been trained, the original signal is denormalized and reconstructed to 
provide deterministic forecasts (Fig. 1). 

In order to measure the performance of the proposed approach, the resulting point predictions 
are evaluated with the following metrics [14]: the normalized mean absolute error (NMAE), and 
the normalized root-mean-square error (NRMSE). 
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where N is the number of samples, pi is the forecast wind power, ri the actual wind power and 
Pinst  is the total power capacity installed. 

A CNN-LSTM architecture where wind power is not decomposed by EEDM is used as a 
benchmark to verify the accuracy of the model. 

 
Prediction intervals. Deterministic forecasts cannot estimate the uncertainty of a given prediction. 
Therefore, the use of probabilistic forecasts is essential to obtain better economic results in the 
day-ahead electricity market [15]. 

PIs can be modelled by QR. The main advantage of this approach is that assumptions of any 
specific distribution are not needed. This methodology has been discussed in [16-18]. To obtain 
the forecast quantiles, simple ANN structures (CNN-LSTM, CNN and LSTM respectively) will 
be trained using the quantile regression loss function. 

The reliability of the PI will be verified with an index termed as average coverage function 
(ACE) [19]: 

ACE = PICP – PINC. (3) 

where PINC is the PI nominal coverage and PICP is the PI coverage probability, which is 
defined by: 

 

where N is the number of samples and ci is a variable that indicates whether the measured value 
falls within the interval or not: 

 

where Lα is the prediction interval. The PI will be more reliable the closest the ACE is to zero. 

Case study 
Data. The proposed approach has been tested and benchmarked with data from Ireland, obtained 
from EirGrid [20]. The wind power generation data ranges from 30-03-2019 to 03-07- 2019. As 
only historical wind power generation data were available, wind power is the only variable used 
as a predictor to train the model. 

The dataset was divided into training, validation and testing sets to perform the study of the 
forecast model (Fig. 2). 80% percent of the data were employed to train the model. Considering 
the amount of data available, it is a reasonable proportion to train the model. The last five days of 
the dataset were used as a benchmark to compare the predictions with the actual values of wind 
power output. 
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Results. Errors for deterministic predictions for 1-h, 6-h and 24-h ahead forecasts for the proposed 
approach and the benchmark model are shown in Table 1. It can be seen that both NMAE and 
NRMSE are similar for the 1-h ahead forecasts. However, the EEDM-CNN-LSTM model clearly 
outperforms the benchmark model for longer forecast horizons. The increase of performance is 
notably high for the 24-h ahead forecast: the proposed approach obtains NMAE and NRMSE of 
7.034% and 9.161%, whereas the CNN-LSTM model produces NMAE and NRMSE of 16.78% 
and 19.547% respectively. 

 

 

Fig. 2. Wind power time series. 
 

Fig. 3 shows the prediction results for each horizon using both models. It is observed that the 
effect of decomposing the wind power into different sub-series using EEMD, and training each 
one separately, as it allows for the capture of the dynamics of the wind power output, such as 
spikes or sudden drops, in a more accurate way. On the other hand, the benchmark model can 
predict wind power fairly well 1-h ahead, but the accuracy of its forecasts decreases dramatically 
as the forecast horizon is increased. 

The forecast quantiles were built by training three different models: a combined CNN-LSTM 
model, a simple CNN architecture, and a LSTM model. 95% and 80% PIs were computed 1-h and 
6-h ahead. Table 2 shows the results of the different methods. Specifically, PICP and ACE have 
been used to evaluate the PIs. In terms of reliability, the CNN-LSTM model outperforms the other 
models in most of the scenarios. For instance, the 95% PIs constructed with the CNN- LSTM 
architecture for 1-h ahead forecasts produce a PICP of 91.25% in comparison to the PIs built by 
the CNN model (89.17%) and the LSTM model (83.75%). In this same scenario, the CNN-LSTM 
architecture has obtained a better ACE (-3.75%) than the ACE obtained by the  other models (-
5.83% and -11.25% for the CNN and LSTM models respectively). 

The 95% and 80% PIs for every model are shown in Fig. 4. It can be observed that satisfactory 
PIs can be constructed by QR for short-term horizons. 

Both proposed approaches to obtain deterministic predictions and PIs provide fairly  reasonable 
results. These results could be improved by including more predictors, such as wind speed or 
numerical weather prediction data, and by training the model with a larger quantity of data, as 
limited amount of data has a negative impact on the performance of ANN models. 
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Fig. 3. Comparison of actual wind power and deterministic forecasts (1-h, 6-h, and 24-h ahead). 
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Fig. 4. Prediction intervals for 1-h and 6-ahead forecasts. 
Table 1. Errors for deterministic forecasts. 

 

Table 2. Errors for prediction intervals. 

 
Conclusions 
This paper presents an algorithm that combines EEDM and deep learning to provide short-term 
wind power forecasts, and the construction of PIs by QR. A case study using wind power 
generation data from Ireland has demonstrated that the proposed approach outperforms the 
benchmark model, especially for longer forecast horizons. 

The model can improve in several ways. First, deep learning model benefits from having a 
larger quantity of data, and the data available in this case study were scarce. Therefore, increasing 
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their amount will result in better predictions. Secondly, only historical wind power data have been 
used as predictor. Multivariate models that include other variables such as wind speed or wind 
direction as predictors improve the final forecast as well. Finally, the whole installed power 
capacity was considered as a single wind farm, since data were not available on a wind farm level. 

Afterwards, PIs were constructed by using QR. Three different models were used to obtain  the 
forecast quantiles: a combined CNN-LSTM architecture, a CNN model, and a LSTM model. The 
reliability of the PIs was evaluated by using two indices: PICP and ACE. In most scenarios, the 
CNN-LSTM model provides the most reliable PIs. Further evaluation of the PIs can be done by 
assessing other parameters of the PI such as its sharpness [21]. As discussed for the deterministic 
model, forecast quantiles would benefit from larger amount of data and using other variables as 
predictors. 
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Abstract. The dynamics of a floating structure can be expressed in terms of Cummins’ equation, 
which is an integro-differential equation of the convolution class. In particular, this convolution 
operator accounts for radiation forces acting on the structure. Considering that the mere existence 
of this operator is highly inconvenient due to its excessive computational cost, it is commonly 
replaced by an approximating parametric model. Recently, the Finite Order Approximation by 
Moment-Matching (FOAMM) toolbox has been developed within the wave energy literature, 
allowing for an efficient parameterisation of this radiation force convolution term, in terms of a 
state-space representation. Unlike other parameterisation strategies, FOAMM is based on an 
interpolation approach, where the user can select a set of interpolation frequencies where the 
steady-state response of the obtained parametric representation exactly matches the behaviour of 
the target system. This paper illustrates the application of FOAMM to a UMaine semi-
submersible-like floating structure. 
Introduction 
With the rapid decrease of the easily accessible fossil fuels, the immediate shift to renewable 
energy systems is one of the most important challenges of the 21st century. For this reason, the 
installed power capacity of renewable energy plants has significantly increased in this century, 
more than doubling it between 2004 and 2016 [1]. Among the renewable energy sources, wind 
energy has one of the highest growth, producing 4.4% of the worldwide electric power usage in 
2017, and 11.6% electricity in the European Union [2]. In fact, onshore wind (and solar PV) will 
offer, in many places, a less expensive source of new electricity than the fossil-fuel alternative 
without financial assistance [3]. 

However, onshore wind has some disadvantages with respect to offshore wind farms. On the 
one hand, onshore wind farms have an impact on the landscape, since they usually require to be 
spread over more land than other conventional power stations, and need to be built in wild and 
rural areas, which can lead to habitat loss. On the contrary, offshore wind is steadier and stronger 
than onshore, with less visual impact. However, construction and maintenance costs are higher 
offshore. 

At the moment, most offshore wind turbines are installed in shallow water (about 30m deep), 
using bot tom-mounted substructures. Nevertheless, to harness the available offshore wind 
potential, wind farms have to be located in deeper water. To this end, and to reduce the costs related 
with the structure, floating support-platforms will have to be deployed to hold the turbines, for which 
several platform configurations can be found in the literature [4, 5]. 

At this stage of development, simulations that combine aerodynamic, hydrodynamic and 
mooring-system dynamic effect on floating wind turbines are crucial to address the possible failure 
conditions of such structures and, therefore, accurately modelling each of those dynamical effects 
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is of paramount importance. In particular, the equation to describe the motion of a floating body, 
i.e. the equation describing the hydrodynamic interactions between the floating structure and the 
waves (the so-called Cummins’ equation [6]), is an integro-differential equation, more precisely of 
the convolution class. The presence of this convolution operator represents a drawback for a 
number of reasons, including the fact that its numerical computation is highly inefficient, requiring 
considerable computational effort. To avoid such drawbacks, such a convolution operator can be 
approximated using a suitable parametric model (often given in terms of a state-space 
representation), for which several applications can be found, particularly within the wave energy 
literature. 

In 2018, the Centre for Ocean Energy Research (COER) presented an identification strategy to 
compute a parametric model of the radiation convolution term of Cummins’ equation [7], or the 
complete force-to-motion dynamics of a floating body. Such parameterisation strategy is based on 
recent advances in model order reduction by moment-matching, developed over several studies as, 
for example, [8]. The approach presented in [7] identifies a state-space model, whose frequency 
response exactly matches the frequency response of the target system at a set of user-selected 
frequencies. In fact, as a consequence of this interpolation feature, this moment-based strategy 
inherently preserves some of the relevant physical properties of the target floating body, such as 
internal stability and passivity. Motivated by the advantages behind moment-matching theory, 
reported in, for example, [7,9,10], a Matlab toolbox has been developed, to disseminate this 
moment-based identification strategy for wave  energy applications  [11]. 

The aim of the present paper is to introduce how FOAMM (Finite-Order Approximation by 
Moment-Matching) can be applied to compute parametric models of support platforms for offshore 
wind turbines, considerably reducing the computational effort related with time-domain simulation 
of floating structures. To illustrate the capabilities of such a toolbox, the UMaine semi-submersible-
like floating structure [4,12] has been chosen as an application study, since its rigidly-connected 
multibodies represent a geometrically complex device, with frequency-response as shown in Section. 

The remainder of this paper is organised as follows. Section 2 briefly introduces the equation of 
motion of a floating body, while the theory behind FOAMM is recalled in Section 3. Finally, an 
application case involving the UMaine structure is addressed in Section 3, whilst conclusions are 
encompassed in Section 4. 
Equation of motion 
Without any loss of generality, a single Degree of Freedom (DoF) support-platform is considered 
in this study. Recall that the motion of a 1-DoF support-platform can be expressed, in the time-
domain, according to Newton’s second law, obtaining the following linear hydrodynamic 
formulation [5]: 

𝑚𝑚�̈�𝑥(𝑡𝑡) = ℱ𝓇𝓇(𝑡𝑡) + ℱ𝒽𝒽(𝑡𝑡) + ℱℯ(𝑡𝑡) + ℱ𝓂𝓂(𝑡𝑡), (1) 

where  𝑚𝑚  is  the mass  of  the  structure  (platform  and  turbine),  �̈�𝑥(𝑡𝑡)  the acceleration of the 
body, ℱℯ(𝑡𝑡) the wave excitation force, ℱ𝓇𝓇(𝑡𝑡) the radiation force, ℱ𝒽𝒽(𝑡𝑡) the hydrostatic restoring 
force, and ℱ𝓂𝓂(𝑡𝑡) the force exerted by the mooring system. The linearised hydrostatic force is given 
by ℱ𝒽𝒽(𝑡𝑡) = −𝑠𝑠ℎ𝑥𝑥(𝑡𝑡), where 𝑠𝑠ℎ denotes the hydrostatic stiffness. The mooring force is defined as  
ℱ𝓂𝓂(𝑡𝑡) = −𝑏𝑏𝑚𝑚�̇�𝑥(𝑡𝑡) − 𝑠𝑠𝑚𝑚𝑥𝑥(𝑡𝑡)  [5], where 𝑏𝑏𝑚𝑚   and  𝑠𝑠𝑚𝑚   denote  the damping and stiffness of the 
mooring system, respectively. From linear potential theory, ℱ𝓇𝓇(𝑡𝑡) can be modelled using Cummins’ 
equation [6] as, 
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❘

 

ℱ𝓇𝓇(𝑡𝑡) = −μ∞�̈�𝑥(𝑡𝑡) − ∫ 𝑘𝑘(τ)�̇�𝑥(𝑡𝑡 − τ)𝑑𝑑τ,ℝ+  (2) 

where µ∞ = limω→+∞ A(ω) > 0 denotes the radiation added-mass at infinite frequency, and k(t) 
∈ L2(ℝ) is the radiation impulse response function. Eq. (1) can be rewritten as: 

(𝑚𝑚 + μ∞)�̈�𝑥(𝑡𝑡) + 𝑘𝑘(𝑡𝑡) ∗ �̇�𝑥(𝑡𝑡) + 𝑠𝑠ℎ𝑥𝑥(𝑡𝑡) = ℱℯ(𝑡𝑡) + ℱ𝓂𝓂(𝑡𝑡), (3)  

where the symbol ∗ represents the convolution operator. 
Since this paper is focused on the approximation of the radiation convolution term, and 

FOAMM identifies a parametric form using raw frequency-domain data, it is convenient to define the 
frequency-domain equivalent of the radiation convolution term, which can be obtained through 
Ogilvie’s relations [15] as: 

𝐵𝐵(ω) = ∫ 𝑘𝑘(𝑡𝑡)ℝ+ cos(ω𝑡𝑡) 𝑑𝑑𝑡𝑡,  𝐴𝐴(ω) = μ∞ − 1
ω∫ 𝑘𝑘(𝑡𝑡)ℝ+ sin(ω𝑡𝑡) 𝑑𝑑𝑡𝑡      (4)  

where the coefficients B(ω) and A(ω) represent the radiation damping and added-mass of the 
device, respectively. This set of hydrodynamic coefficients and can be efficiently obtained using 
any of the state-of-the-art Boundary Element Method (BEM) solvers (see [16]). The impulse 
response function  

k : ℝ+  
→  ℝ can be written as a mapping involving the radiation damping coefficient as: 

𝑘𝑘(𝑡𝑡) = 2
π ∫ 𝐵𝐵(ω)ℝ+ cos(ω𝑡𝑡)𝑑𝑑𝑑𝑑. (5) 

with frequency-domain equivalent given by 

K(ω) = B(ω) + jω [A(ω) − µ∞] . (6) 

Moment-matching-based parameterization 
To keep this paper reasonably self-contained, this section provides a brief summary of the theory 
behind FOAMM. The interested reader is referred to [7] for an extensive discussion on the specific 
underlying mathematical principles. 

The radiation impulse response mapping defines a linear-time invariant system completely 
characterised by k(t), where its input is the body velocity, i.e. �̇�𝑥(𝑡𝑡).  To be precise, the radiation 
subsystem Σk is given 

Σ𝑘𝑘:𝜃𝜃𝑘𝑘(𝑡𝑡) = 𝑘𝑘(𝑡𝑡) ∗ �̇�𝑥(𝑡𝑡),  (7) 

where θK (t) ∈ ℝ is the output (radiation force) of system Σk. 
To obtain a parametric description of (7), the velocity of the floating structure ẋ(t) is expressed as an 

autonomous signal generator  as, 

𝒢𝒢�̇�𝓍: �ξ�̇̇�𝑥(𝑡𝑡) = 𝑆𝑆ξ�̇�𝑥(𝑡𝑡),  �̇�𝑥(𝑡𝑡) = 𝐿𝐿�̇�𝑥ξ�̇�𝑥(𝑡𝑡)  (8) 

where the matrix S is defined [7] as 
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Y 

𝑆𝑆 = ⨁ �
0 𝑑𝑑p

−𝑑𝑑p 0 �𝛽𝛽
𝑝𝑝=1  (9) 

where the symbol ⊕ denotes the direct sum of matrices of β matrices, and ν = 2β, with β the 
number of interpolation frequencies. Note that each 𝑑𝑑𝑝𝑝 ∈ ℱ, with ℱ = {𝑑𝑑𝑖𝑖}𝑖𝑖=1

𝛽𝛽 ⊂ ℝ+ represents a 
desired interpolation point for the moment-matching-based parameterisation process, i.e. a frequency 
where the transfer function of the parametric model matches the transfer function of the target system. 

 Following [7], the so-called moment-domain equivalent of the output of system Σk in (7) can 
be straightforwardly computed as 

𝒴𝒴𝑘𝑘 = 𝐿𝐿�̇�𝑥ℛ𝓀𝓀, (10) 

where the matrix ℛ𝓀𝓀 is defined by 

ℛ𝓀𝓀 = ⨁ �
ℜ{𝐾𝐾�𝑗𝑗ω𝑝𝑝�} ℑ{𝐾𝐾�𝑗𝑗ω𝑝𝑝�}
−ℑ{𝐾𝐾�𝑗𝑗ω𝑝𝑝�} ℜ{𝐾𝐾�𝑗𝑗ω𝑝𝑝�}

�𝑓𝑓
𝑝𝑝=1   (11) 

Finally,  the parametric (state-space)  description 

Σ𝑘𝑘ℱ� : �Θ�̇�𝑘(𝑡𝑡) = 𝐹𝐹𝑘𝑘Θ𝑘𝑘(𝑡𝑡) + 𝐺𝐺𝑘𝑘�̇�𝑥(𝑡𝑡), θ𝑘𝑘�(𝑡𝑡) = 𝑄𝑄𝑘𝑘Θ𝑘𝑘(𝑡𝑡) (12) 

is a system that interpolates the target frequency response K(jω) at the set ℱ , i.e. it has the 
exact same frequency response of the radiation subsystem Σk at the frequencies defined in the set 
ℱ , if QkPk = 𝒴𝒴𝑘𝑘, where Pk is the unique solution of the Sylvester equation 

𝐹𝐹𝑘𝑘P𝑘𝑘  + 𝐺𝐺𝑘𝑘𝐿𝐿�̇�𝑥  = Pk 𝑆𝑆, (13) 

and 𝒴𝒴𝑘𝑘  is computed from equation (10). The reader is referred to [7] for the theory behind the 
explicit computation of the matrices Fk, Gk, Qk in (12) fulfilling condition (13). 

Application example 
The selected support-platform is a UMaine semi-submersible-like floating structure, constrained to 
move in pitch. This structure is designed to support the multi-megawatt turbine NREL offshore 5-
MW baseline wind turbine [17]. In this study, this structure  is selected due to its complex geometry 
(illustrated in Figure 1). In other words, the radiation convolution frequency-response for this 
device is more geometrically complex than for other floating bodies analysed before, such as, for 
example, in [7,11,9]. More information about the specifications of the Umaine structure is provided 
in  1. 

 
Figure 1: Low-order mesh of the UMaine semi submersible-like structure analysed in this  study.  
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Table 1: Specifications of the structure. 
 

 
Column spacing 50m 
Main column diameter 6.5m 
Side columns diameter 12 and 24m 
Draft 20m 
Mass (with ballast) 13.5·106 
Center of mass (z) -13.74  from SWL 

 
 

Figure 2 shows the radiation damping and added-mass in the top and bottom left-hand side figures, 
respectively, along with the frequency-response of the convolution operator, K(jω), in the right-hand-
side of the figure (both magnitude and phase) computed as shown in 6. 
 

 
 
Figure 2: Hydrodynamic coefficients for the pitch motion of the UMaine semi-submersible like device 
analysed in this Study. The radiation damping and added-mass are represented in the left-hand-side 

of the figure, while the radiation force frequency-response is illustrated on the right-hand-side. 
 

To compute the parametric model of the radiation convolution term shown in Figure 2, the software 
FOAMM needs to be downloaded first, which can be done for free from 
http://www.eeng.nuim.ie/coer/downloads/. Finally, as reported in [11], it is necessary to install the 
correct Matlab runtime version, which is readily provided with FOAMM. The interested reader is 
referred to [11] for more information on the different options and modes available on this toolbox. 

The first choice for the user is the frequency range over which the parameterisation is carried out. 
As explained in [7], such a frequency range highly depends on the application, and it is usually 
conditioned by the typical sea-state characterising the location of the structure. Since this is not 
relevant for the current study, the frequency range is selected as ωl = 0.3 [rad/s] and ωu = 3 [rad/s]. 

http://www.eeng.nuim.ie/coer/downloads/
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For the selection of the interpolation frequencies, three different methods are available in FOAMM 
[11]. This study utilises the so-called manual identification method, where the user selects the set of 
interpolation frequencies. This presents several advantages since, by selecting the interpolation 
frequencies in a sensible manner (dynamically speaking), the accuracy of the parametric model can 
be considerably improved. Due to the complexity of the UMaine frequency-response, 7 frequencies 
(parametric model with order 14) are required to obtain an accept approximation, with a Mean 
Absolute Percentage Error (MAPE) of ≈ 0.08 %. 
 

 
Figure 3: Frequency-response of the parametric model obtained with FOAMM for the radiation 
force subsystem (solid-red), along with the (target) frequency-response of the Umaine structure 

(dashed-black), the set of interpolation frequencies considered (green dots), and the best 
approximated model using subspace-methods (dotted-blue).  

  
To provide a comparison with well-established identification strategies, a parameterisation using 

subspace-methods (implemented in the Matlab function n4sid ) is considered. The most accurate 
model obtained with this method has a MAPE of 0.45 % of error. The frequency-response of the 
obtained parametric model obtained using FOAMM, along with the target frequency-domain data of 
the Umaine structure, the set of interpolation frequencies considered, and the best approximated 
model using subspace-methods, are shown in Figure 3. 
Conclusions 
This paper illustrates how to use the FOAMM toolbox to obtain a parametric model of the 
convolution term associated to radiation forces, for a complex-shape support- structure of a 
floating wind turbine. The chosen floating structure is the UMaine semi- submersible-like device 
which, due to its geometrical complexity, represents a challenge from a frequency-domain 
identification perspective. In fact, it is shown that, while no accurate approximation model could be 
obtained using well-established subspace-methods, FOAMM provides an accurate parametric 
description of the radiation force subsystem as a consequence of its interpolation features, which 
allows the user for the selection of the frequencies characterising the dynamics of the structure as 
interpolation points in the parameterisation process. 
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Abstract. The floating tidal energy is increasingly recognised to have the potential of delivering a 
step-change cost reduction to the tidal energy sector, by extracting energy from deeper water sites 
through energy conversion devices. To ensure the normal operation of a tidal energy convertor 
within its service life, the device should be designed properly and evaluated through a series of 
strength and durability testing. The Large Structures Research Group at NUI Galway is working 
closely with, renewable energy company, Orbital Marine Power and, blade manufacture, 
ÉireComposites Teo, to design and test the next generation of SR2000 tidal turbine blade, with 
aims to increase the turbine power production rate and to refine the design for low cost. This paper 
presents a brief description of the structural design and testing of a blade for the O2-2000 tidal 
turbine, one of the largest tidal turbines in the world. NUI Galway will utilise their in-house 
software, BladeComp, to find a blade laminates design that balances both blade strength and 
material cost. The structural performance of the designed blade will be assessed by conducting 
static and fatigue testing. To achieve this objective, a support frame to fix the blade is designed, a 
load application device is introduced and the methodology for design tidal loading conversion is 
proposed in order to complete the testing at NUI Galway. 
Introduction 
After many years of delay, tidal stream energy is now becoming a commercial reality. The 
MeyGen project is set to become the first 4-turbine, 6MW tidal array [1]. At the same time, EDF 
is committed to projects in France using the OpenHydro/DCNS tidal device and projects are also 
being considered in the Bay of Fundy in Canada and elsewhere [2]. A number of market 
assessments for tidal stream energy have been independently developed and, as with any early- 
stage technology sector, there is a wide degree of variation between projections. The International 
Energy Agency’s ‘Blue Map’ [3] medium growth scenario predicts 13GW of installed tidal 
capacity by 2050, with a high growth scenario of 52GW over the same period. 
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Despite the huge growth potential in the tidal energy market, there is only limited data available 
about how composite materials will perform under high cyclic loading in harsh marine conditions. 
Moreover, there is no published work available for the full-scale fatigue testing of tidal blades. 
Therefore, the Large Structures Research Group, NUI Galway is collaborating with Orbital Marine 
Power (OMP) Limited in the H2020 FloTEC and the OCEANERA-COFUND SEABLADE 
projects to design and test a full-scale blade for the OMP tidal turbines. 

The Large Structures Research Group at NUI Galway has many years of experience in structural 
design and processing of glass and carbon fibre‐reinforced composite materials. As a member of 
the MaREI Centre, the group has developed advanced computational design methodologies [4,5] 
for tidal current turbine blades, performed design and optimization studies on wind turbine blade 
structures of several scales [6]-[8], and conducted structural testing of components for a 3/8th scale 
blade and rotor subsection for the OpenHydro prototype tidal turbine [9]. 

Orbital Marine Power (OMP) Limited is credited with pioneering floating tidal stream turbines 
since the company’s formation in 2002 in Orkney, Scotland. OMP has maintained and advanced 
this position by developing the world’s leading engineering knowledge and technology in floating 
tidal stream turbines. The OMP SR2000 produced unrivalled performance during a demonstration 
programme, where it delivered multiple world-firsts, including exporting over 3,250 MWh of 
electricity to the Orkney grid during a 12 month period. This was more than the entire wave and 
tidal sector in Scotland had exported over the 12 years prior to the launch of the SR2000. 

In this paper, the two aspects detailed are the structural design and testing of the O2-2000 
turbine blade, which is the next generation of the SR2000 blade. The NUI Galway in-house 
developed software BladeComp is utilised to design and optimise the layups of the O2-2000 blade 
in order to balance both blade strength and manufacturing costs. The structural testing aims to 
evaluate the blade performance under both extreme static loading and long-term fatigue loading, 
which will be conducted in the Large Structures Research Laboratory of NUI Galway. 
Blade Design 
The turbine blade targeted in this research is designed for the OMP floating tidal energy converter 
(Fig. 1). It has a capacity of 2 MW and is equipped with two 20 m diameter twin-bladed rotors, 
which make it one of the largest tidal turbine systems in the world. The aerodynamic design, which 
addressed the external shape of the O2-2000 blade (Fig. 2), was conducted by OMP. The structural 
design of the blade has been generated and assessed using BladeComp, which automates the 
process of generating, analysing and post-processing finite element analysis models of tidal turbine 
blades. This software acts as a wrapper for the finite-element (FE) software, utilising the advanced 
mechanic features of the FE technics and tailoring the analysis to specifically address the design 
of tidal turbine blades based on genetic algorithm. 

The designed O2-2000 turbine blade consists of a single internal shear web. The blade trailing 
edge fairings and the blade tip are constructed separately to the main body and will be adhesively 
bonded to the finished structure. The O2-2000 turbine blades are constructed from glass-fibre 
epoxy, using a “semi-preg” powder epoxy material technology developed by project partners 
ÉireComposites Teo. The laminates that comprise the turbine elements are reinforced with 
unidirectional and biaxial E-glass plies. The biaxial plies are used in the leading and trailing edge 
sections of the blade shells and the shear webs. The blade sections subjected to bending stress (the 
spar caps and root region) will include significant unidirectional reinforcement. The flapwise and 
edgewise design loading profiles defined for the blade design and structural testing were supplied 
by OMP. 
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Fig. 1 The Orbital Marine Power Ltd 

designed floating tidal energy convertor 
Fig. 2 The Orbital O2-2000 tidal turbine 

blade 
 

Structural Testing 
With the O2-2000 tidal turbine blade designed and manufactured, the structural testing, which 
includes both static and fatigue mechanical tests, will be conducted in the Large Structures 
Research Laboratory located in NUI Galway. Fig. 3 shows the test setup overview. The blade is 
supported at its root on the support frame and will be loaded via three hydraulic actuators ranging 
in capacities from 240 kN to 750 kN. The actuators can be controlled separately, and thus will 
enable the application of complex loading patterns in the static and fatigue testing. The load 
amplitudes of the actuators are converted from the design loading profiles to simulate the operating 
conditions of the blade underwater. 

  
 
 

 
Fig. 3 Overview of the test setup Fig. 4 The support frame 

 
Support Frame. During the testing, the blade root is expected to be fully constrained. To 
achieve this, a root support frame was designed, which is shown in Fig. 4, where there is a ring of 
bolt holes drilled on the front surface of the support frame, with a pitch hole diameter of 1640 mm. 
However, the pitch hole diameter of the O2-2000 blade root is 1400 mm. Thus, an adopter plate, 
with two rings of bolt holes drilled on its surface, is designed to mount the blade root on the support 
frame. To prevent the blade root movements during the static and fatigue testing, the support frame 
is connected to the reinforced concrete reaction floor of the laboratory through pre-tensioned bolts. 
Load Application. Three hydraulic actuators will be used in the static and fatigue testing for load 
application purpose. Swivel connections are used to mount the actuators to the reaction frame. Thus, 
no moments will be introduced to the blade. During operation, the whole blade external surface 
will suffer tidal loads. Thus, more load points will result in better simulation of blade operation 
conditions. Since there are only three actuators available, a load introduction device is designed 
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to introduce more point loads. As shown in Fig. 5, the triangle-shaped device can transfer a single 
load from actuator to two bottom contact surfaces. By employing this device, the load point 
number is doubled, which allows a good simulation of tidal loads. To spread the point loads 
uniformly to the blade surface and avoid the local damage, a clamp device is used, which is shown 
in Fig. 6 and is a steel section filled with plywood or Nylon. The clamp comprises of two parts, a 
pressure side and a suction side. The inner surface is in contact with the blade external surface. A 
5 mm thick rubber layer will be padded on the blade surface to avoid any damages. The clamp 
allows for testing the blade both in the pressure-to-suction and suction-to-pressure directions 
without any change in the test set-up, which is capable of both static and fatigue testing. 

 
 

  
Fig. 5 The load introduction device Fig. 6 The clamp for load introduction 

  
Data Acquisition. The strain values on the blade surface will be measured by the electrical 
resistance strain gauges to monitor the damage occurrence of the composite materials. Two types 
of displacement transducers, namely the draw-wire string potentiometers and the LVDTs, will be 
employed to measure the deflection of the blade and the root movements of the blade root 
connection. Additionally, a Digital Image Correlation (DIC) and a laser scanner will be utilised to 
supply more detailed information about the blade deformation. The blade natural frequencies will 
be measured by a laser vibrometer to estimate the blade damage level under fatigue loading. 

 

Fig. 7 The load application locations of the blade 
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Test Loading Definition. The tidal loads can be decomposed into flapwise and edgewise 
components. In the static testing, to simulate the extreme loading condition of the tidal turbine, the 
loads in two directions should be applied to the blade simultaneously. But due to the facility 
limitation, there are only three actuators available in the laboratory which only allows for applying 
flapwise loads. To overcome this issue, the blade will be installed with a specific pitch angle. By 
pitching the blade, an attack angle is introduced to the actuator load direction, which will introduce 
additional edgewise loading to the blade. It should be noted that the load point locations (Fig. 7) 
cannot be adjusted as the actuators are fixed. Thus, only the blade pitch angle and the actuator 
amplitudes can be tuned to make the blade load profiles (including moments and shear loads) under 
testing loading agree well with that under design loading. For this purpose, a genetic algorithm 
based calibration was conducted. The variables to address in the calibration are the blade pitch 
angle and the actuator load amplitudes. The goodness-of-fit is judged according to the mean error 
between the blade moment and shear profiles under the design and calibrated loading. The 
calibration results show that the optimised blade pitch angle should be 12.5°. The blade moment 
profiles under the design loading and the calibrated test loading are compared in Fig. 8. Good 
agreement can be found in these comparisons, which indicates that the method of pitching blade 
to get the flapwise and edgewise loads applied simultaneously is suitable for the static testing. 

  
(a) Flapwise moments (b) Edgewise moments 
Fig. 8 Design loads and converted testing loads for the static test 

 
Regarding the fatigue testing, the damage equivalent load case defined in the Blade Data Pack 

[10] is used. Similar to the static testing, calibration was conducted to obtain the blade pitch angle 
and actuator amplitudes. It was found that the best blade pitch angle for applying static loading is 
15°. However, it is estimated that at least two weeks of additional time would be required to 
remove the instrumentation, disconnect and reinstall the rotated blade and reinstall the 
instrumentation. Thus, decision was made that the blade pitch angle used in fatigue testing keeps 
the same as that of static testing to reduce the testing period. Fig. 9 shows the blade load profile 
comparisons under design fatigue loading and calibrated fatigue loading. It could be found that the 
blade load profiles under calibrated fatigue loading agree well with that under design fatigue 
loading, without changing the blade pitch angle. 

The maximum operating frequency of the actuator is dependent on its displacement amplitude. 
In fatigue testing, all three actuators will be adjusted to operate under the same frequency. The 
initial estimates for allowable actuator displacements of ±39 mm, ±18 mm and ±6 mm for actuators 
3, 2 and 1, respectively. This will result in a loading frequency of 0.33 Hz, which leads to a test 
duration of approximately 35 days (of continuous operation) for 1,000,000 cycles. It should be 
noted that with consideration of stoppages for regular inspections of blade and test setup, the 
testing period is scheduled for approximately 2 months. 
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(a) Flapwise moments (b) Edgewise moments 
Fig. 9 Design loads and converted testing loads for the fatigue test 

Summary and Future Work 
This paper focuses on the design and testing of a blade for a 2MW floating tidal energy convertor 
which is developed by OMP. The design of the tidal blade is briefed with considerations of 
reducing the material costs and increasing the blade strength. The preparation of the blade static 
and fatigue testing is illustrated, including the support frame, the load introduction mechanism and 
the test loading definition. Currently, the designed tidal turbine blade is being manufactured. Based 
on the test specifications described in this paper, the strength and durability of the blade will be 
evaluated through the static and fatigue testing, respectively. The test results will not only provide 
valuable data to gain the confidence of OMP in the commercialisation of the O2-2000 tidal turbine 
but also contribute to the field of full-scale testing of tidal turbine blade. 
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Abstract. This paper proposes a modelling of the Antarctic Circumpolar Current (ACC) by means 
of a two-point boundary value problem. As the major means of exchange of water between the 
great ocean basins (Atlantic, Pacific and Indian), the ACC plays a highly important role in the 
global climate.  Despite its importance, it remains one of the most poorly understood components 
of global ocean circulation.  We present some recent results on the existence and uniqueness of 
solutions of a two-point nonlinear boundary value problem that arises in the modeling of the flow 
of the (ACC) (see discussions in [4-9]).  
Introduction 
The Antarctic Circumpolar current is one of the five main currents.  It is the only current that flows 
completely around the globe, and is the strongest and largest wind-driven ocean current on the 
planet.  It extends from the bottom of the ocean to the sea surface and is the primary means of 
inter-basin exchange.   

The flow of ACC can be modelled using the following two-point boundary-value problem 



 ∈−′′

∗∗ ,=)(,=(0)
,(0,1),)())(()(=)(

0 utuuu
ttbtuFtatu

                         (1) 

where RRF →:  is a given continuous function and [0,1)[0,1):, →ba  are given bounded 
continuous functions satisfying  

∫ ∞<+
1

0

)()( dssbsa
 

was recently derived as a model for the azimuthal horizontal jet flow components of the 
Antarctic Circumpolar Current. The existence of nontrivial solutions is of considerable interest, 
since these correspond to azimuthal flows that feature variations in the meridional direction, 
being thus models that capture the essential geophysical features, confirmed by field data.  

A  general  result  ensures  the  existence and uniqueness of a solution to Eq. 1,  provided  that 
for every (0,1)∈ε  we have: 

• all solutions of the initial-value problem 
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exist on )[0,1 ε+  for all R∈10 ,uu ;  
• there do not exist two solutions on ][0, ∗t  to the two-point boundary-value problem  



 ∈−′′

∗∗ ,=)(,=(0)
,(0,1),)())(()(=)(

0 utuuu
ttbtuFtatu

                                             (3) 

for any ),1(1 εε +−∈∗t  and R∈∗u . 
In  particular,  global  existence  for  Eq. 2 and uniqueness for Eq. 3 ensure  the  solvability of 

Eq. 1. While this is by no means the only possible approach that can accommodate nonlinear 
functions F , it has some advantages over more classical methods in that the type of hypotheses 
that need to be verified seem to accommodate large classes of functions. 
Modeling of the ACC 
For terrestrial regions outside the poles let us introduce the spherical coordinates (see Fig.1): 

• )[0,πθ ∈  is the polar angle (with 0=θ  corresponding to the North Pole and with 
2

= πθ  

along the Equator);  
• πϕ [0,2∈ ) is the angle of longitude (or azimuthal angle). 

 
Figure 1: Depiction of the azimuthal and polar spherical coordinates of a point P  

on the spherical surface of the Earth: 
 

In terms of the stream function ),( ϕθψ , a horizontal ocean flow on the spherical Earth has 
azimuthal and meridional velocity components given by φψθ )csc(  and θψ− ; see [3]. 
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By associating ),( ϕθΨ  with the vorticity of the ocean motion (not accounting for the effects 
of the Earth’s rotation), given by  

,),(cos=),( ϕθθωϕθψ Ψ+−                                                                 (4) 

where  0>ω  is the non-dimensional form of the Coriolis parameter, the governing equation 
for the horizontal flow on the sphere takes the form (see [2]) 

,)cos(=cot
sin

1
2 θωθ
θ θθθϕϕ −ΨΨ+Ψ+Ψ F                                                                          (5) 

where )cos( θω−ΨF  is the oceanic vorticity, while θω cos2  is the planetary vorticity, 
generated by the Earth’s rotation. 

By means of the stereographic projection  

,
cos1

sin=
2

cot=with=
θ

θθξ φ

−






rer i                                                                                  (6) 

where ),( φr  are the polar coordinates in the equatorial plane, we transform the model Eq. 5 in 
spherical coordinates into an equivalent planar elliptic partial differential equation.  

More precisely, using the complex variable ξ , we can write Eq. 5  as  

.0=
)(1

)(
)(1

12 23 ξξ
ψ

ξξ
ξξωψ ξξ +

−
+
−

+
F                                                                                             (7) 

Using the Cartesian coordinates ),( yx  in the complex  ξ -plane, the equation Eq. 7  is 
equivalent to the following semilinear elliptic partial differential equation  

,0=
)(1

)(4
)(1
)(18 222322

22

yx
F

yx
yx

++
−

++
+−

+∆
ψωψ                                                                               (8) 

where 22= yx ∂+∂∆  denotes the Laplace operator; see [3, 4]. 
Since the ACC presents a considerable uniformity in the azimuthal direction (see the 

discussions in [1, 4]), we can take advantage of this feature to simplify the problem Eq. 8  further. 
Indeed, solutions with no variation in the azimuthal direction correspond to radially symmetric 

solutions )(= rψψ   of the problem Eq. 8. 
The change of variables 

,<<,)(=)( 21 ssssUrψ                                                                                                      (9) 

with /2= ser −  for ),(ln2=<)(ln2=<0 21 −+ −− rsrs  for 1<<<0 +− rr , can now be used to 
transform the partial differential equation Eq. 8 to the second-order ordinary differential equation 
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Note that, for 21 <<0 ss , the change of variables  

,=with)(=)(
12

1

ss
sstsUtu
−
−                                                                                                  (11) 

transforms the second-order differential equation Eq. 10 to the equivalent one of the form  

,1<<0,)()()(= ttbuFtau −′′                                                                                           (12) 

where 
.
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+
−
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ω

 
 

We will couple the derived differential equation with the Dirichlet conditions on the boundary 
D∂  of D  

,=)(,=)( 201 αtuutu                                                                                                                 (13) 

which reflect the physically relevant condition that D  represents the stereographic projection 
of a surface on the sphere delimited by two streamlines. 
Main results 
The following result provides sufficient conditions for the global existence of the solutions to the 
initial-value problem Eq. 2. 

Theorem 1. [8] If the continuous function RR →:F  satisfies 

,,))(()( 21

0
R∈≥+ −∫ uuFWdFM

u
ξξ                                                                                 (14) 

for some constant 0>M  and some strictly increasing function )[0,)[0,: ∞→∞W  with 
0=(0)W , 0>)(sW  for 0>s  and satisfying   

,=
)(1

∞∫
∞

uW
du                                                                                                                            (15) 

and if   

,=)(lim
0||

∞∫∞→
ξξ dF

u

u
                                                                                                                  (16) 

then all solutions of (2) are global in time. 
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Since Theorem 1 proves the global existence of solutions of the initial-value problem Eq. 2, we 
now study the question of the uniqueness of solutions to the two-point boundary-value problem 
Eq. 1.  

Theorem 2. [8] If the continuous function RR →:F  is monotone nondecreasing on R , then 
the solution of the Eq. 3 is unique. 

Theorem 3, [8] Assume that the continuous function RR →:F  is monotone nondecreasing and 
satisfies the conditions Eq. 14 and Eq.16, for some nondecreasing continuous function 

)[0,)[0,: ∞→∞W  with 0=(0)W , 0>)(uW  for 0>u , and subject to the constraint Eq. 15. Then 
the problem Eq. 1 admits a unique solution. 
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